ABSTRACT
The composition and stability of the microbial community structure of roots and root zone soils play a key role in the healthy growth of plants. We examined the distribution characteristics of phenolic acids and saponins, as well as microbial communities in the root space (root endosphere, rhizoplane soil, rhizosphere soil, and bulk soil) of healthy and root rot disease-affected Panax notoginseng. The results showed that after infection with root rot, the rhizoplane soil exhibited significant decreases in organic matter and hydrolyzable nitrogen and significant increases in available phosphorus, available potassium, and total nitrogen. The contents of phenolic acids (except benzoic acid) and ginsenoside Rg2 in the root endosphere significantly increased. Ferulic acid and p-hydroxybenzoic acid in the rhizoplane soil significantly increased. Rhodococcus increased significantly in the root endosphere, rhizoplane, and rhizosphere soil; Nitrospira decreased significantly in the rhizoplane, rhizosphere, and bulk soil; and Plectosphaerella decreased significantly in the root endosphere and rhizoplane soil. Moreover, the accumulation of most autotoxins can promote the growth of pathogens. In summary, the spatial autotoxic substances and microbial community differences in P. notoginseng roots jointly induce the occurrence of root rot.IMPORTANCEPanax notoginseng is highly susceptible to soil-borne diseases induced during planting, and root rot, which usually occurs in the root and stem parts of the plant, is the most severe. We divided the root environment of P. notoginseng into four parts (root endosphere, rhizoplane soil, rhizosphere soil, and bulk soil) and studied it with unplanted soil as the control. In this study, we examined the changes in the content of autotoxic substances in the root space of P. notoginseng, along with the interplay between these substances and microorganisms. This study revealed the mechanism underlying root rot and provided a theoretical basis for alleviating continuous cropping obstacles in P. notoginseng.
Subject(s)
Bacteria , Microbiota , Panax notoginseng , Plant Diseases , Plant Roots , Rhizosphere , Soil Microbiology , Panax notoginseng/microbiology , Panax notoginseng/growth & development , Plant Roots/microbiology , Microbiota/drug effects , Bacteria/classification , Bacteria/drug effects , Bacteria/isolation & purification , Plant Diseases/microbiology , Plant Diseases/prevention & control , Saponins , Hydroxybenzoates/analysis , Hydroxybenzoates/metabolismABSTRACT
Antibiotics play an important role in the treatment of infectious diseases. Long-term overuse or misuse of antibiotics, however, has triggered the global crisis of antibiotic resistance, bringing challenges to treating clinical infection. Bacteriophages (phages) are the viruses infecting bacterial cells. Due to high host specificity, high bactericidal activity, and good biosafety, phages have been used as natural alternative antibacterial agents to fight against multiple drug-resistant bacteria. Enterococcus faecalis is the main species detected in secondary persistent infection caused by failure of root canal therapy. Due to strong tolerance and the formation of biofilm, E. faecalis can survive the changes in pH, temperature, and osmotic pressure in the mouth and thus is one of the main causes of periapical lesions. This paper summarizes the advantages of phage therapy, its applications in treating oral diseases caused by E. faecalis infections, and the challenges it faces. It offers a new perspective on phage therapy in oral diseases.
Subject(s)
Bacterial Infections , Bacteriophages , Mouth Diseases , Phage Therapy , Humans , Enterococcus faecalis , Anti-Bacterial Agents/therapeutic useABSTRACT
Enterococcus faecalis is the primary species detected in cases of secondary persistent infection resulting from root canal therapy failure. Due to the overuse of antibacterial agents, E. faecalis has developed resistance to these drugs, making it challenging to treat clinical diseases caused by E. faecalis infection. Therefore, there is an urgent need to explore new alternative drugs for treating E. faecalis infections. We aimed to clone and express the genes of phage endolysins, purify the recombinant proteins, and analyze their antibacterial activity, lysis profile, and ability to remove biofilm. The crude enzyme of phage endolysin pEF51 (0.715 mg/mL), derived from phage PEf771 infecting E. faecalis, exhibited superior bacterial inhibitory activity and a broader bactericidal spectrum than its parental phage PEf771. Furthermore, pEF51 demonstrated high efficacy in eliminating E. faecalis biofilm. Therapeutic results of the infected Sprague-Dawley (SD) rat model indicated that among 10 SD rats, only one developed a thoracic peritoneal abscess and splenic peritoneal abscess after 72 h of treatment with pEF51. This suggests that pEF51 could provide protection against E. faecalis infection in SD rats. Based on the 16S rDNA metagenomic data of the intestinal microbial community of SD rats, endolysin pEF51 exerted a certain influence on the diversity of intestinal microorganisms at the genus level. Thus, pEF51 may serve as a promising alternative to antibiotics in the management of E. faecalis infection.
Subject(s)
Anti-Bacterial Agents , Bacteriophages , Biofilms , Disease Models, Animal , Endopeptidases , Enterococcus faecalis , Gram-Positive Bacterial Infections , Rats, Sprague-Dawley , Enterococcus faecalis/drug effects , Endopeptidases/pharmacology , Endopeptidases/genetics , Endopeptidases/metabolism , Animals , Biofilms/drug effects , Biofilms/growth & development , Bacteriophages/genetics , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Rats , RNA, Ribosomal, 16S/genetics , Gastrointestinal Microbiome/drug effects , Microbial Sensitivity Tests , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , MaleABSTRACT
Enterococcus faecalis, a conditional pathogenic bacterium, is prevalent in the intestinal, oral, and reproductive tracts of humans and animals, causing a variety of infectious diseases. E. faecalis is the main species detected in secondary persistent infection from root canal therapy failure. Due to the abuse of antibacterial agents, E. faecalis has evolved its resistant ability. Therefore, it is difficult to treat clinical diseases infected by E. faecalis. Exploring new alternative drugs for treating E. faecalis infection is urgent. We cloned and expressed the gene of phage holin, purified the recombinant protein, and analyzed the antibacterial activity, lysis profile, and ability to remove bacterial biofilm. It showed that the crude enzyme of phage holin pEF191 exhibited superior bacterial inhibiting activity and a broader lysis host range compared to the parent phage PEf771. In addition, pEF191 demonstrated high efficacy in eliminating E. faecalis biofilm. The therapeutic results of the Sprague-Dawley (SD) rats model infected showed that pEf191 did not affect SD rats, indicating that pEF191 provided greater protection against E. faecalis infection in SD rats. Based on the 16 S rDNA data of SD rats intestinal microorganism population, holin pEF191 exhibited no impact on the diversity of intestinal microorganisms at the phylum and genus levels and improved the relative abundance of favorable bacteria. Thus, pEF191 may serve as a promising alternative to antibiotics in the management of E. faecalis infection.
Subject(s)
Bacteriophages , Rats , Animals , Humans , Bacteriophages/genetics , Enterococcus faecalis/genetics , Rats, Sprague-Dawley , Anti-Bacterial Agents/pharmacology , BiofilmsABSTRACT
Heavy metal (HM) contaminants are the emerging driving force for reshaping the microflora of plants by eradicating the non-tolerance and non-resistant microbes via their lethal effects. Seeds served as a prime source of ancestral microbial diversity hereditary transfer from generation to generation. However, the problem arises when they got exposed to metal contamination, does metal pollutant disrupt the delicate balance of microbial communities within seeds and lead to shifts in their microflora across generations. In this study, the endophytic community within Zea mays seeds was compared across three distinct regions in Yunnan province, China: a HM-contaminated site Ayika (AK), less-contaminated site Sanduoduo (SD), and a non-contaminated Site Dali (DL). High-throughput sequencing techniques were employed to analyze the microbial communities. A total of 492,177 high-quality reads for bacterial communities and 1,001,229 optimized sequences for fungal communities were obtained. These sequences were assigned to 502 and 239 operational taxonomic units (OTUs) for bacteria and fungi, respectively. A higher diversity was recorded in AK samples than in SD and DL. Microbial community structure analysis showed higher diversity and significant fluctuation in specific taxa abundance in the metal-polluted samples exhibiting higher response of microbial flora to HM. In AK samples, bacterial genera such as Gordonia and Burkholderia-Caballeronia-Paraburkholderia were dominant, while in SD Pseudomonas and Streptomyces were dominant. Among the fungal taxa, Fusarium, Saccharomycopsis, and Lecanicillium were prevalent in HM-contaminated sites. Our finding revealed the influential effect of HM contaminants on reshaping the seed microbiome of the Zea mays, showing both the resilience of certain important microbial taxa as well the shifts in the diversity in the contaminated and pristine conditions. The knowledge will benefit to develop effective soil remediation, reclamation, and crop management techniques, and eventually assisting in the extenuation of metal pollution's adverse effects on plant health and agricultural productivity.
Subject(s)
Bacteria , Fungi , Metals, Heavy , Microbiota , Seeds , Soil Pollutants , Zea mays , Zea mays/microbiology , Metals, Heavy/analysis , Seeds/microbiology , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Bacteria/drug effects , China , Soil Pollutants/analysis , Fungi/genetics , Fungi/classification , Fungi/isolation & purification , Fungi/drug effects , Microbiota/drug effects , Soil Microbiology , High-Throughput Nucleotide SequencingABSTRACT
Viruses exist anywhere on earth where there is life, and among them, virus-encoded auxiliary metabolic genes (AMGs) can maintain ecosystem balance and play a major role in the global ecosystem. Although the function of AMGs has been widely reported, the genetic diversity of AMGs in natural ecosystems is still poorly understood. Exploring the genetic diversity of viral community-wide AMGs is essential to gain insight into the complex interactions between viruses and hosts. In this article, we studied the phylogenetic tree, principal co-ordinates analysis (PCoA), α diversity, and metabolic pathways of viral auxiliary metabolism genes involved in the pentose phosphate pathway (PPP) through metagenomics, and the changes of metabolites and genes of host bacteria were further studied by using Pseudomonas mandelii SW-3 and its lytic phage based on metabolic flow and AMGs expression. We found that the viral AMGs in the Napahai plateau wetland were created by a combination of various external forces, which contributed to the rich genetic diversity, uniqueness, and differences of the virus, which promoted the reproduction of offspring and better adaptation to the environment. Overall, this study systematically describes the genetic diversity of AMGs associated with the PPP in plateau wetland ecosystems and further expands the understanding of phage-host unique interactions.
Subject(s)
Bacteriophages , Viruses , Ecosystem , Wetlands , Pentose Phosphate Pathway/genetics , Phylogeny , Genes, Viral , Bacteriophages/genetics , Genome, ViralABSTRACT
Seed endophytes played a crucial role on host plants stress tolerance and heavy metal (HM) accumulation. Dysphania ambrosioides is a hyperaccumulator and showed strong tolerance and extraordinary accumulation capacities of multiple HMs. However, little is known about its seed endophytes response to field HM-contamination, and its role on host plants HM tolerance and accumulation. In this study, the seed endophytic community of D. ambrosioides from HM-contaminated area (H) and non-contaminated area (N) were investigated by both culture-dependent and independent methods. Moreover, Cd tolerance and the plant growth promoting (PGP) traits of dominant endophytes from site H and N were evaluated. The results showed that in both studies, HM-contamination reduced the diversity and richness of endophytic community and changed the most dominant endophyte, but increased resistant species abundance. By functional trait assessments, a great number of dominant endophytes displayed multiple PGP traits and Cd tolerance. Interestingly, soil HM-contamination significantly increased the percentage of Cd tolerance isolates of Agrobacterium and Epicoccum, but significantly decreased the ration of Agrobacterium with the siderophore production ability. However, the other PGP traits of isolates from site H and N showed no significant difference. Therefore, it was suggested that D. ambrosioides might improve its HM tolerance and accumulation through harboring more HM-resistant endophytes rather than PGP endophytes, but to prove this, more work need to be conducted in the future.
Subject(s)
Cadmium , Endophytes , Metals, Heavy , Seeds , Soil Microbiology , Soil Pollutants , Endophytes/metabolism , Endophytes/isolation & purification , Metals, Heavy/metabolism , Seeds/microbiology , Soil Pollutants/metabolism , Cadmium/metabolism , Biodiversity , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Bacteria/genetics , Soil/chemistry , Biodegradation, Environmental , Plant Roots/microbiologyABSTRACT
Nitrogen is an essential component of living organisms and a major nutrient that limits life on Earth. Until now, freely available nitrogen mainly comes from atmospheric nitrogen, but most organisms rely on bioavailable forms of nitrogen, which depends on the complex network of microorganisms with a wide variety of metabolic functions. Microbial-mediated nitrogen cycling contributes to the biogeochemical cycling of wetlands, but its specific microbial abundance, composition, and distribution need to be studied. Based on the metagenomic data, we described the composition and functional characteristics of microbial nitrogen cycle-related genes in the Napahai plateau wetland. Six nitrogen cycling pathways existed, such as dissimilatory nitrate reduction, denitrification, nitrogen fixation, nitrification, anammox, and nitrate assimilation. Most genes related to the nitrogen cycling in this region come from bacteria, mainly from Proteobacteria and Acidobacteria. Habitat types and nitrogen cycle-related genes largely explained the relative abundance of total nitrogen pathways. Phylogenetic trees were constructed based on nitrogen cycle-related genes from different habitats and sources, combined with PCoA analysis, most of them clustered separately, indicating richness and uniqueness. Some microbial groups seemed to be special or general in the nitrogen cycling. In conclusion, it suggested that microorganisms regulated the N cycling process, and may lead to N loss throughout the wetland, thus providing a basis for further elucidation of the microbial regulation of N cycling processes and the Earth's elemental cycles.
Subject(s)
Microbiota , Wetlands , Phylogeny , Nitrogen/metabolism , Nitrates , Microbiota/geneticsABSTRACT
We focused on exploring the diversity of viruses in the Napahai plateau wetland, a unique ecosystem located in Yunnan, China. While viruses in marine environments have been extensively studied for their influence on microbial metabolism and biogeochemical cycles, little is known about their composition and function in plateau wetlands. Metagenomic analysis was employed to investigate the viral diversity and biogeochemical impacts in the Napahai wetland. It revealed that the Caudoviricetes and Malgrandaviricetes class level was the most abundant viral category based on phylogenetic analysis. Additionally, a gene-sharing network highlighted the presence of numerous unexplored viruses and demonstrated their unique characteristics and significant variation within the viral community of the Napahai wetland. Furthermore, the study identified the auxiliary metabolic genes (AMGs). AMGs provide phages with additional functions, such as protection against host degradation and involvement in metabolic pathways, such as the pentose phosphate pathway and DNA biosynthesis. The viruses in the Napahai wetland were found to influence carbon, nitrogen, sulfur, and amino acid metabolism, indirectly contributing to biogeochemical cycling through these AMGs. Overall, the research sheds light on the diverse and unique viral communities in the Napahai plateau wetland and emphasizes the significant roles of viruses in microbial ecology. The findings contribute to a deeper understanding of the characteristics and ecological functions of viral communities in plateau wetland ecosystems.
Subject(s)
Bacteriophages , Wetlands , Ecosystem , Phylogeny , ChinaABSTRACT
With the development of global industrialization, carbon neutrality has become an issue that we must be paid attention to. Microorganisms not only have an important impact on the carbon chemical cycle between the Earth's biosphere and biogeography but also play a key role in maintaining the global organic carbon balance. Wetlands are the main reservoir of organic carbon in the mainland of China, and wetland carbon sinks are indispensable for China to achieve the goal of "dual carbon," and China has taken the consolidation and improvement of wetland carbon sink capacity as an important part of the carbon peaking action plan. As a unique low-latitude, high-altitude seasonal plateau wetland in China, Napahai shows high research value. However, the role of microbes in maintaining dissolved organic carbon balance in this area has not been reported. In the study, six carbon fixation genes, accA, aclB, acsA, acsB, cbbL, and rbcL, were analyzed based on metagenomics to elucidate the rich genetic diversity, uniqueness and differences in the Napahai plateau wetland. It was found that the microbial diversity in the Napahai plateau wetland was different from other habitats. In addition, the aclB gene, a rare taxon with high genetic diversity and rich species in the Napahai plateau wetland, played a key role in the microbial metabolic pathway. Finally, the construction of a metabolic pathway through the Kyoto encyclopedia for genes and genomes revealed the contribution of microbes to carbon fixation and the role of microbes in maintaining the organic carbon balance of the Napahai plateau wetland.
Subject(s)
Soil , Wetlands , Soil/chemistry , Ecosystem , Carbon Cycle , China , Carbon/analysisABSTRACT
A phage PEf771 that specifically infects and lyses pathogenic Enterococcus faecalis YN771 in patients with refractory periapical periodontitis was used to investigate resistance against E. faecalis infection in vitro and in vivo. PEf771 completely lysed YN771 within 3 h, with a multiplicity of infection of 1. Compared with ten routinely used clinical antibiotics, PEf771 demonstrated the highest bacteriostatic effect within 72 h. The antibacterial effect of PEf771 on extracted teeth within 72 h was better than that of conventional root canal disinfectants such as camphorated phenol, formaldehyde cresol solution, and Ca(OH)2 (P < 0.05) within 72 h. Using E. faecalis, intraperitoneal and periapical infection models were established using Sprague Dawley (SD) rats. The results showed that all SD rats inoculated with 9.6 × 1011 CFU/mL E. faecalis YN771 or 2.9 × 1011 CFU/mL E. faecalis RYN771 died within 8 h. Additionally, all SD rats inoculated with YN771 and treated with antibiotics died within 72 h. Although SD rats inoculated with RYN771 and treated with antibiotics survived for 72 h, the pathological anatomy of these rats showed purulent discharge, numerous pus and blood-filled ascites, and extensive liver abscesses. Notably, YN771 rats treated with PEf771 and RYN771 rats treated with RPEf771 survived for 72 h, and their pathological anatomy showed that the liver, kidneys, intestine, and mesenteries were normal. Computed tomography analysis of SD rats infected with periapical periodontitis showed pathological changes in experimental teeth inoculated with YN771, despite undergoing a normal root canal treatment. Contrastingly, none of the experimental teeth exhibited root periapical inflammation following PEf771 treatment. Hematoxylin and eosin staining revealed a gap between the periodontal ligament and the cementum of experimental teeth, whereas PEf771-treated teeth exhibited normal results. These findings suggested that phage therapy using PEf771 might effectively prevent E. faecalis infection after root canal treatment.Key points⢠Compared with common clinical antibiotics, PEf771 showed the highest antibacterial.⢠The liver, kidney, intestine, and mesentery of SD rats treated with PEf771 were normal.⢠Phage therapy can effectively prevent E. faecalis YN771 and RYN771 infection.
Subject(s)
Periapical Periodontitis , Phage Therapy , Animals , Enterococcus faecalis , Humans , Periapical Periodontitis/microbiology , Periapical Periodontitis/therapy , Rats , Rats, Sprague-Dawley , Root Canal Therapy/methodsABSTRACT
Hybrid histidine kinases (HHKs) are major sensor proteins for fungi that contribute to stress tolerance. In the present work, we investigated the roles and mechanisms of the HHK HisK2301 in cold-adapted Rhodosporidium kratochvilovae strain YM25235. The HisK2301 deletion strain was constructed by homologous recombination method and arranged for multiple stress tests. We analysed the content of carotenoid using UV-Vis and HPLC. Relative transcript levels of genes phytoene desaturase (RKCrtI) and phytoene synthase and lycopene cyclase (RKCrtYB) were analysed by RT-qPCR. Intracellular reactive oxygen species (ROS) generation was measured using 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). Our results clearly indicated that YM25235 produces γ-carotene, torulene, ß-carotene and torularhodin, with the latter two components strongly related to adapt to cold. HisK2301 is crucial for YM25235 adaptation to different types of stress such as cold, salt, osmotic and oxidative stress. Growth at low temperature clearly induced oxidative stress in YM25235, as more ROS accumulated at cold. During cold stress, HisK2301 is suggested to sense cold-induced ROS signals and then promote carotenoid production partially by RKCrtI and RKCrtYB to scavenge excessive ROS production. Such an inducible protective system may confer YM25235 fast response and better adaptation to cold stress. To conclude, our findings give the first insight into the effect of HisK2301 on carotenoid biosynthesis and cold-induced oxidative stress in fungi under low temperature and suggest the potential use of the cold-adapted HHK HisK2301 in industrial production of carotenoid.
Subject(s)
Carotenoids , Cold-Shock Response , Histidine Kinase/genetics , Histidine Kinase/metabolism , Reactive Oxygen Species , Temperature , Carotenoids/metabolism , Oxidative StressABSTRACT
Carbon dots (CDs) have excellent application prospects in various fields such as fluorescent dyes, but expanding their application, especially in bioimaging and the detection of organic pollutants, is still a major research objective. In this study, fluorescent CDs were successfully synthesized via the hydrothermal method using Serratia marcescens KMR-3. The platform based on CDs-KMR3 exhibited excellent stability, good biocompatibility, and low biotoxicity, and can be effectively applied to the imaging of bacteria, fungi, plant cells, protozoa and mammalian cells, and can specifically stain the membranes of all tested cells. In this study, for the first time, bacteria-derived CDs were used to image the representative species of organisms ranging from lower-order to higher-order organisms, thereby proving the feasibility of the application of CDs in the fluorescence imaging of Paramecium caudatum. Additionally, CDs-KMR3 can rapidly diffuse into all the parts of the leaf through diffusion into the veins and intercellular interstitium in response to the induction of transpiration. Moreover, the data illustrate that CDs-KMR3 are likely to enter the digestive tracts of microworms by ingestion through the oral cavity and pharynx, and spread to the pseudocoelom and somatic cells, and finally to be excreted from microworms through the anus. Furthermore, this platform can be utilized as fluorescent probes for the rapid and highly selective detection of p-nitrophenol (p-NP). Moreover, this study contributed to the increased application of bacteria-derived CDs in bioimaging and detection of p-NP.
Subject(s)
Carbon/chemistry , Fluorescent Dyes/chemistry , Molecular Imaging/methods , Nanoparticles/chemistry , Nitrophenols/analysis , Optical Imaging/methods , Serratia marcescens/chemistry , HeLa Cells , Humans , Limit of Detection , Nitrophenols/chemistry , Nitrophenols/metabolismABSTRACT
Although bacteriophages are more numerous and have smaller genomes than their bacterial hosts, relatively few have their genomes sequenced. Here, we isolated the Pseudomonas fluorescens bacteriophage from Napahai plateau wetland and performed de novo genome sequencing. Based on the previous biological characteristics and bioinformatics analysis, it was determined that VW-6B was a linear double-stranded DNA (dsDNA) phage with 35,306 bp, with 56.76% G+C content and 197 bp tandem repeats. The VW-6B genome contained 46 open-reading frames (ORFs), and no tRNA genes were found. Based on phage genome structure, sequence comparison, and collinear analysis, VW-6B should be classified into the family Siphoviridae and be considered as a member of a new species in the Mu-like phage. The newly isolated bacteriophage can specifically infect P. fluorescens, which further enriches the diversity of known bacteriophages and provides a basis for the subsequent research and application of bacteriophages.
Subject(s)
Bacteriophages , Siphoviridae , Bacteriophages/genetics , China , DNA, Viral/genetics , Genome, Viral , Open Reading Frames , Phylogeny , Sequence Analysis, DNA , Siphoviridae/genetics , WetlandsABSTRACT
In response to the restriction of nutrients and predation by natural enemies, bacteria have evolved complex coping strategies to ensure the reproduction and survival of individual species. Quorum sensing (QS) is involved in the bacterial response to phage predation and regulation of cellular metabolism. However, to date, no clear evidence exists regarding the involvement of autoinducer-2 (AI-2)-mediated QS systems in Escherichia coli in response to the challenges of nutrient restriction and phage infection. In this study, the role of the AI-2-mediated QS system in resisting T4 phage infection and regulating cell mechanisms in E. coli was revealed for the first time. This effect of the AI-2-mediated QS was achieved by simultaneously downregulating the T4 absorption site and carbon and glucose metabolism. Additionally, we found that lsrB, a metabolic brake, participates in AI-2-mediated regulation and maintenance of the normal metabolic balance of cells. The novel phage defense strategy and regulation and maintenance of cellular metabolism effectively limited the expansion of the phage population.
Subject(s)
Escherichia coli Proteins , Quorum Sensing , Bacteria/metabolism , Bacteriophage T4/metabolism , Carrier Proteins , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Homoserine , LactonesABSTRACT
As the most abundant biological entities on earth, bacteriophages (phages) were considered as the antagonists of bacteria. With the rapid development of genomics and molecular biology technologies, a subtle and complex relationship between phages and their host bacteria has been uncovered. Prophage refers to an intracellular form of a bacteriophage, which is usually integrated into the hereditary material of the host. Prophage is ubiquitously distributed in bacterial genomes. It reproduces when the host does and can affect important biological properties of their bacterial hosts, such as virulence, biofilm formation and host immunity. Interestingly, prophages were also involved in regulating the lysogeny-lytic state by "monitoring" the quorum sensing of bacteria. Recently, anti-CRISPR proteins encoded by prophages were found, which attracts a lot of attention. In this review, we summarized the prediction, distribution, classification and functions of prophages to lay a foundation for further studying interactions between phages and bacteria.
Subject(s)
Bacteriophages , Prophages , Bacteria/genetics , Bacteriophages/genetics , Genome, Bacterial , Lysogeny/genetics , Prophages/geneticsABSTRACT
Enterococcus faecalis is a common pathogen causing refractory periapical periodontitis and secondary intraradicular infections. In this study, E. faecalis YN771 isolated from a re-treated root canal at a stomatology department was used as the host bacterium and was co-cultured with wastewater from the same department and patient samples to isolate a phage that lyses E. faecalis. We studied the biological and genomic characteristics of this phage. Transmission electron microscopy showed that this phage's head is icosahedral in structure, with a head diameter of around 98.4 nm, and a contractile tail of around 228.5 nm in length and a diameter of 17.3 nm. The phage was identified as a member of the Myoviridae family and named PEf771. It is sensitive to proteinase K but resistant to chloroform and Triton X-100. Its lytic cycle is 45 min, burst size is 78, optimal multiplicity of infection is 0.1, lysis spectrum is narrow, and host strain specificity is strong. Its optimal growth temperature is 37 °C, most suitable pH is 6.0, and is sensitive to ultraviolet radiation. Whole-genome sequencing of PEf771 indicated it has a genome size of 151 052 bp, with a GC content of 36.97%, and encodes 197 proteins plus 26 tRNAs. PEf771 is most closely related to E. faecalis phage EFDG1. Phage PEf771 has strong host specificity and lytic ability, so it is important to further characterize this phage and its interaction with E. faecalis.
Subject(s)
Enterococcus faecalis/virology , Genome, Viral/genetics , Myoviridae/genetics , Bacteriophages/genetics , Bacteriophages/ultrastructure , Base Composition , Genomics , Host Specificity , Humans , Microscopy, Electron, Transmission , Myoviridae/ultrastructure , Ultraviolet Rays , Whole Genome SequencingABSTRACT
Peptide amphiphiles (PAs) can self-assemble into a variety of supramolecular structures with excellent biofunctions. However, their assembly with time has rarely been observed and reported. Here, we find that a novel gemini-type PA [12-(Lys)2-12], taking two lysine (Lys) groups as the spacer, shows an obvious assembly and evolution process with time. Driven by the strong hydrophobic interaction between the alkyl chains as well as the electrostatic force and hydrogen bonding among the peptide spacers, the 12-(Lys)2-12 molecules first self-assemble into vesicles and then transform into fibrils, ribbons, and belts with time. If replacing the -(Lys)2- spacer with four lysine groups [-(Lys)4-] or two glutamic acid groups [-(Glu)2-], the PA molecules do not show the aggregate growth with time. This indicates that the lysine structure and its length are important structural factors contributing to the dynamic aggregate evolution behavior. More interestingly, this assembly and evolution behavior is highly dependent on 12-(Lys)2-12 concentration. Only in the proper concentration region (0.5-0.7 mM), the self-assembly displays the aggregate growth with time. At lower or higher concentrations, the aggregate growth is largely delayed or inhibited. Moreover, we also find that the aggregate growth of 12-(Lys)2-12 is related to the fibril solubilization temperature ( Tfâs). The faster aggregate growth occurs when the temperature is much lower than Tfâs. This work gains new insights into the evolution of the self-assembling structures of peptide amphiphiles.
Subject(s)
Lysine/chemistry , Peptides/chemistry , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Molecular StructureABSTRACT
p-Nitrophenol (p-NP) pollutants are widely present in soil and aquatic environments and can seriously impair the health of living beings. Hence, a rapid, sensitive, and selective method for p-NP detection is urgently needed. Herein, for the first time, we successfully synthesized fluorescent carbon dots (CDs) from Bacillus cereus (BC) via a one-step hydrothermal process. The obtained CDs-BC can be applied as a rapid, highly selective, and sensitive sensor for p-NP detection. The fluorescence quenching efficiency of the CD-BC sensor exhibited excellent linear responses with p-NP concentrations at both 0.3-6.5 µM and 6.5-30 µM, with a detection limit of 0.11 µM. The mechanism of p-NP detection is based on the inner filter effect (IFE). Preliminary bacteria, cell, and animal studies showed that the as-prepared CDs-BC possess high photostability, excellent biocompatibility, low or no biotoxicity, and multicolor fluorescence emission properties; furthermore, they can be rapidly excreted from the body of mice, which suggests their potential for applications in the biomedical field.
Subject(s)
Bacillus cereus/metabolism , Carbon/chemistry , Carbon/metabolism , Limit of Detection , Microscopy, Confocal/methods , Nitrophenols/analysis , Quantum Dots/chemistry , Animals , Carbon/pharmacokinetics , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Fluorescent Dyes/pharmacokinetics , HeLa Cells , Humans , Mice , Nitrophenols/chemistry , Serratia marcescens/metabolism , Tissue DistributionABSTRACT
Carbon dots (CDs) have broad prospective applications in various fields, and expanding the applications of fluorescent CDs, especially for CDs derived from bacteria, is a major research goal. In this study, novel CDs derived from Escherichia coli BW25113 (WT) were successfully synthesized via a one-step hydrothermal method. Unlike previously developed CDs-E. coli, CDs-WT can be used for microbial imaging of both live and dead cells. We demonstrated the biocompatibility, excellent penetrability, and nontoxic characteristics of CDs-WT for use as fluorescent probes for bioimaging both in vitro and in vivo. Importantly, we provide the first demonstration of CDs-WT distribution in various organs of mice, including the ability to cross the blood-brain barrier and the potential for rapid excretion through the intestines. Additionally, CDs-WT can be instantly utilized as a fluorescent probe for the highly selective and rapid detection of p-nitrophenol (p-NP) by the inner filter effect, with a limit of detection for p-NP of 11 nM, the lowest value reported to date. Hence, our results demonstrate the feasibility of p-NP detection and extend the bio-imaging applications of CDs prepared from bacteria.