ABSTRACT
BRAF(V600E) mutant melanomas treated with inhibitors of the BRAF and MEK kinases almost invariably develop resistance that is frequently caused by reactivation of the mitogen activated protein kinase (MAPK) pathway. To identify novel treatment options for such patients, we searched for acquired vulnerabilities of MAPK inhibitor-resistant melanomas. We find that resistance to BRAF+MEK inhibitors is associated with increased levels of reactive oxygen species (ROS). Subsequent treatment with the histone deacetylase inhibitor vorinostat suppresses SLC7A11, leading to a lethal increase in the already-elevated levels of ROS in drug-resistant cells. This causes selective apoptotic death of only the drug-resistant tumor cells. Consistently, treatment of BRAF inhibitor-resistant melanoma with vorinostat in mice results in dramatic tumor regression. In a study in patients with advanced BRAF+MEK inhibitor-resistant melanoma, we find that vorinostat can selectively ablate drug-resistant tumor cells, providing clinical proof of concept for the novel therapy identified here.
Subject(s)
Drug Resistance, Neoplasm , Melanoma/drug therapy , Skin Neoplasms/drug therapy , Amino Acid Transport System y+/metabolism , Animals , Apoptosis , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic/drug effects , Histone Deacetylase Inhibitors/pharmacology , Humans , MAP Kinase Kinase 1/metabolism , MAP Kinase Signaling System , Melanoma/genetics , Mice , Mutation , Neoplasm Transplantation , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/genetics , Reactive Oxygen Species/metabolism , Skin Neoplasms/genetics , Treatment Outcome , Vorinostat/pharmacologyABSTRACT
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
ABSTRACT
Emerging data show that tissue-resident memory T (TRM) cells play an important protective role at murine and human barrier sites. TRM cells in the epidermis of mouse skin patrol their surroundings and rapidly respond when antigens are encountered. However, whether a similar migratory behavior is performed by human TRM cells is unclear, as technology to longitudinally follow them in situ has been lacking. To address this issue, we developed an ex vivo culture system to label and track T cells in fresh skin samples. We validated this system by comparing in vivo and ex vivo properties of murine TRM cells. Using nanobody labeling, we subsequently demonstrated in human ex vivo skin that CD8+ TRM cells migrated through the papillary dermis and the epidermis, below sessile Langerhans cells. Collectively, this work allows the dynamic study of resident immune cells in human skin and provides evidence of tissue patrol by human CD8+ TRM cells.
Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Immunologic Memory , Skin/immunology , Animals , Antigens/immunology , Cell Line, Tumor , Cell Movement/immunology , Epidermis/immunology , Epidermis/metabolism , Fluorescent Antibody Technique , Humans , Mice , Organ Specificity/immunology , Single-Domain Antibodies/immunology , Skin/metabolism , Vaccines, DNA/genetics , Vaccines, DNA/immunologyABSTRACT
Triacylglycerols (TAGs) are the main source of stored energy in the body, providing an important substrate pool for mitochondrial beta-oxidation. Imbalances in the amount of TAGs are associated with obesity, cardiac disease and various other pathologies1,2. In humans, TAGs are synthesized from excess, coenzyme A-conjugated fatty acids by diacylglycerol O-acyltransferases (DGAT1 and DGAT2)3. In other organisms, this activity is complemented by additional enzymes4, but whether such alternative pathways exist in humans remains unknown. Here we disrupt the DGAT pathway in haploid human cells and use iterative genetics to reveal an unrelated TAG-synthesizing system composed of a protein we called DIESL (also known as TMEM68, an acyltransferase of previously unknown function) and its regulator TMX1. Mechanistically, TMX1 binds to and controls DIESL at the endoplasmic reticulum, and loss of TMX1 leads to the unconstrained formation of DIESL-dependent lipid droplets. DIESL is an autonomous TAG synthase, and expression of human DIESL in Escherichia coli endows this organism with the ability to synthesize TAG. Although both DIESL and the DGATs function as diacylglycerol acyltransferases, they contribute to the cellular TAG pool under specific conditions. Functionally, DIESL synthesizes TAG at the expense of membrane phospholipids and maintains mitochondrial function during periods of extracellular lipid starvation. In mice, DIESL deficiency impedes rapid postnatal growth and affects energy homeostasis during changes in nutrient availability. We have therefore identified an alternative TAG biosynthetic pathway driven by DIESL under potent control by TMX1.
Subject(s)
Acyltransferases , Triglycerides , Animals , Humans , Mice , Acyltransferases/metabolism , Coenzyme A/metabolism , Diacylglycerol O-Acyltransferase/metabolism , Escherichia coli/metabolism , Homeostasis , Triglycerides/biosynthesis , Energy Metabolism , Nutrients/metabolism , Fatty Acids/chemistry , Fatty Acids/metabolismABSTRACT
DNA damage threatens genomic integrity and instigates stem cell failure. To bypass genotoxic lesions during replication, cells employ DNA damage tolerance (DDT), which is regulated via PCNA ubiquitination and REV1. DDT is conserved in all domains of life, yet its relevance in mammals remains unclear. Here, we show that inactivation of both PCNA-ubiquitination and REV1 results in embryonic and adult lethality, and the accumulation of DNA damage in hematopoietic stem and progenitor cells (HSPCs) that ultimately resulted in their depletion. Our results reveal the crucial relevance of DDT in the maintenance of stem cell compartments and mammalian life in unperturbed conditions.
Subject(s)
DNA Damage , Animals , DNA Repair , DNA Replication , Hematopoietic Stem Cells/metabolism , Mammals/metabolism , Proliferating Cell Nuclear Antigen/metabolism , UbiquitinationABSTRACT
Computed tomography (CT) has been a powerful diagnostic tool since its emergence in the 1970s. Using CT data, 3D structures of human internal organs and tissues, such as blood vessels, can be reconstructed using professional software. This 3D reconstruction is crucial for surgical operations and can serve as a vivid medical teaching example. However, traditional 3D reconstruction heavily relies on manual operations, which are time-consuming, subjective, and require substantial experience. To address this problem, we develop a novel semiparametric Gaussian mixture model tailored for the 3D reconstruction of blood vessels. This model extends the classical Gaussian mixture model by enabling nonparametric variations in the component-wise parameters of interest according to voxel positions. We develop a kernel-based expectation-maximization algorithm for estimating the model parameters, accompanied by a supporting asymptotic theory. Furthermore, we propose a novel regression method for optimal bandwidth selection. Compared to the conventional cross-validation-based (CV) method, the regression method outperforms the CV method in terms of computational and statistical efficiency. In application, this methodology facilitates the fully automated reconstruction of 3D blood vessel structures with remarkable accuracy.
ABSTRACT
Porcine circovirus type 3 (PCV3) is closely associated with various diseases, such as the porcine dermatitis, nephropathy syndrome, and multisystemic clinicopathological diseases. PCV3-associated diseases are increasingly recognized as severe diseases in the global swine industry. Ring finger protein 2 (RNF2), an E3 ubiquitin ligase exclusively located in the nucleus, contributes to various biological processes. This ligase interacts with the PCV3 Cap. However, its role in PCV3 replication remains unclear. This study confirmed that the nuclear localization signal domain of the Cap and the RNF2 N-terminal RING domain facilitate the interaction between the Cap and RNF2. Furthermore, RNF2 promoted the binding of K48-linked polyubiquitination chains to lysine at positions 139 and 140 (K139 and K140) of the PCV3 Cap, thereby degrading the Cap. RNF2 knockdown and overexpression increased or decreased PCV3 replication, respectively. Moreover, the RING domain-deleted RNF2 mutant eliminated the RNF2-induced degradation of the PCV3 Cap and RNF2-mediated inhibition of viral replication. This indicates that both processes were associated with its E3 ligase activity. Our findings demonstrate that RNF2 can interact with and degrade the PCV3 Cap via its N-terminal RING domain in a ubiquitination-dependent manner, thereby inhibiting PCV3 replication.IMPORTANCEPorcine circovirus type 3 is a recently described pathogen that is prevalent worldwide, causing substantial economic losses to the swine industry. However, the mechanisms through which host proteins regulate its replication remain unclear. Here, we demonstrate that ring finger protein 2 inhibits porcine circovirus type 3 replication by interacting with and degrading the Cap of this pathogen in a ubiquitination-dependent manner, requiring its N-terminal RING domain. Ring finger protein 2-mediated degradation of the Cap relies on its E3 ligase activity and the simultaneous existence of K139 and K140 within the Cap. These findings reveal the mechanism by which this protein interacts with and degrades the Cap to inhibit porcine circovirus type 3 replication. This consequently provides novel insights into porcine circovirus type 3 pathogenesis and facilitates the development of preventative measures against this pathogen.
Subject(s)
Capsid Proteins , Circovirus , Ubiquitin-Protein Ligases , Ubiquitination , Virus Replication , Circovirus/genetics , Circovirus/metabolism , Circovirus/physiology , Animals , Swine , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Capsid Proteins/metabolism , Capsid Proteins/genetics , Humans , HEK293 Cells , Proteolysis , Cell Line , Swine Diseases/virology , Swine Diseases/metabolism , Circoviridae Infections/virology , Circoviridae Infections/metabolism , Protein BindingABSTRACT
The expansion of GGC repeats within NOTCH2NLC leads to the translation of the uN2CpolyG protein, the primary pathogenic factor in neuronal intranuclear inclusion disease (NIID). This study aims to explore the deposition of uN2CpolyG as an amyloid in the vessel wall, leading to uN2CpolyG cerebral amyloid angiopathy (CAA)-related cerebral microbleeds (CMBs). A total of 97 patients with genetically confirmed NIID were enrolled in this study. We analyzed the presence of CMBs using susceptibility-weighted imaging sequences and compared general clinical information, cerebrovascular risk factors, stroke history, antiplatelet medication use, and MRI features between NIID patients with and without CMBs. We further performed hematoxylin and eosin (H&E), Perl's, Congo red, and Thioflavin S staining, ubiquitin, p62 and uN2CpolyG immunostaining on brain tissue obtained from four NIID patients. A total of 354 CMBs were detected among 41 patients with NIID, with nearly half located in the deep brain, one-third in the lobes, and approximately 20% in the infratentorial area. No significant differences in cerebrovascular disease risk factors or history of antiplatelet drug use were observed between patients with and without CMBs. However, patients with CMBs suffered a higher incidence of previous ischemic and hemorrhagic stroke events. This group also had a higher incidence of recent subcortical infarcts and a higher proportion of white matter lesions in the external capsule and temporal pole. Conversely, patients without CMBs showed higher detection of high signals at the corticomedullary junction on diffusion-weighted imaging and more pronounced brain atrophy. H&E staining showed blood vessel leakage and hemosiderin-laden macrophage clusters, and Prussian blue staining revealed brain tissue iron deposition. CMBs occurred more frequently in small vessels lacking intranuclear inclusions, and extensive degeneration of endothelial cells and smooth muscle fibres was observed mainly in vessels lacking inclusions. Congo red-positive amyloid deposition was observed in the cerebral vessels of NIID patients, with disordered filamentous fibres appearing under an electron microscope. Additionally, the co-localization of Thioflavin S-labeled amyloid and uN2CpolyG protein in the cerebral vascular walls of NIID patients further suggested that uN2CpolyG is the main pathogenic protein in this form of amyloid angiopathy. In conclusion, we reviewed patients with GGC repeat expansion of NOTCH2NLC from a novel perspective, providing initial clinical, neuroimaging, and pathological evidence suggesting that uN2CpolyG may contribute to a distinct type of CAA.
ABSTRACT
Early repolarization syndrome (ERS) is defined as occurring in patients with early repolarization pattern who have survived idiopathic ventricular fibrillation with clinical evaluation unrevealing for other explanations. The pathophysiologic basis of the ERS is currently uncertain. The objective of the present study was to examine the electrophysiological mechanism of ERS utilizing induced pluripotent stem cells (iPSCs) and CRISPR/Cas9 genome editing. Whole genome sequencing was used to identify the DPP6 (c.2561T > C/p.L854P) variant in four families with sudden cardiac arrest induced by ERS. Cardiomyocytes were generated from iPSCs from a 14-year-old boy in the four families with ERS and an unrelated healthy control subject. Patch clamp recordings revealed more significant prolongation of the action potential duration (APD) and increased transient outward potassium current (Ito) (103.97 ± 18.73 pA/pF vs 44.36 ± 16.54 pA/pF at +70 mV, P < 0.05) in ERS cardiomyocytes compared with control cardiomyocytes. Of note, the selective correction of the causal variant in iPSC-derived cardiomyocytes using CRISPR/Cas9 gene editing normalized the Ito, whereas prolongation of the APD remained unchanged. ERS cardiomyocytes carrying DPP6 mutation increased Ito and lengthen APD, which maybe lay the electrophysiological foundation of ERS.
ABSTRACT
A common strategy for the functional interpretation of genome-wide association study (GWAS) findings has been the integrative analysis of GWAS and expression data. Using this strategy, many association methods (e.g., PrediXcan and FUSION) have been successful in identifying trait-associated genes via mediating effects on RNA expression. However, these approaches often ignore the effects of splicing, which can carry as much disease risk as expression. Compared to expression data, one challenge to detect associations using splicing data is the large multiple testing burden due to multidimensional splicing events within genes. Here, we introduce a multidimensional splicing gene (MSG) approach, which consists of two stages: 1) we use sparse canonical correlation analysis (sCCA) to construct latent canonical vectors (CVs) by identifying sparse linear combinations of genetic variants and splicing events that are maximally correlated with each other; and 2) we test for the association between the genetically regulated splicing CVs and the trait of interest using GWAS summary statistics. Simulations show that MSG has proper type I error control and substantial power gains over existing multidimensional expression analysis methods (i.e., S-MultiXcan, UTMOST, and sCCA+ACAT) under diverse scenarios. When applied to the Genotype-Tissue Expression Project data and GWAS summary statistics of 14 complex human traits, MSG identified on average 83%, 115%, and 223% more significant genes than sCCA+ACAT, S-MultiXcan, and UTMOST, respectively. We highlight MSG's applications to Alzheimer's disease, low-density lipoprotein cholesterol, and schizophrenia, and found that the majority of MSG-identified genes would have been missed from expression-based analyses. Our results demonstrate that aggregating splicing data through MSG can improve power in identifying gene-trait associations and help better understand the genetic risk of complex traits.
Subject(s)
Genome-Wide Association Study , Quantitative Trait Loci , Humans , Genome-Wide Association Study/methods , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci/geneticsABSTRACT
BACKGROUND: Atrial fibrillation (AF) is a prevalent arrhythmic condition resulting in increased stroke risk and is associated with high mortality. Electrolyte imbalance can increase the risk of AF, where the relationship between AF and serum electrolytes remains unclear. METHODS: A total of 15,792 individuals were included in the observational study, with incident AF ascertainment in the Atherosclerosis Risk in Communities (ARIC) study. The Cox regression models were applied to calculate the hazard ratio (HR) and 95% confidence interval (CI) for AF based on different serum electrolyte levels. Mendelian randomization (MR) analyses were performed to examine the causal association. RESULTS: In observational study, after a median 19.7 years of follow-up, a total of 2551 developed AF. After full adjustment, participants with serum potassium below the 5th percentile had a higher risk of AF relative to participants in the middle quintile. Serum magnesium was also inversely associated with the risk of AF. An increased incidence of AF was identified in individuals with higher serum phosphate percentiles. Serum calcium levels were not related to AF risk. Moreover, MR analysis indicated that genetically predicted serum electrolyte levels were not causally associated with AF risk. The odds ratio for AF were 0.999 for potassium, 1.044 for magnesium, 0.728 for phosphate, and 0.979 for calcium, respectively. CONCLUSIONS: Serum electrolyte disorders such as hypokalemia, hypomagnesemia and hyperphosphatemia were associated with an increased risk of AF and may also serve to be prognostic factors. However, the present study did not support serum electrolytes as causal mediators for AF development.
Subject(s)
Atrial Fibrillation , Humans , Atrial Fibrillation/epidemiology , Atrial Fibrillation/genetics , Risk Factors , Magnesium , Mendelian Randomization Analysis , Calcium , Potassium , Phosphates , Electrolytes , Genome-Wide Association Study/methodsABSTRACT
The efficacy of anthracycline-based chemotherapeutics, which include doxorubicin and its structural relatives daunorubicin and idarubicin, remains almost unmatched in oncology, despite a side effect profile including cumulative dose-dependent cardiotoxicity, therapy-related malignancies and infertility. Detoxifying anthracyclines while preserving their anti-neoplastic effects is arguably a major unmet need in modern oncology, as cardiovascular complications that limit anti-cancer treatment are a leading cause of morbidity and mortality among the 17 million cancer survivors in the U.S. In this study, we examined different clinically relevant anthracycline drugs for a series of features including mode of action (chromatin and DNA damage), bio-distribution, anti-tumor efficacy and cardiotoxicity in pre-clinical models and patients. The different anthracycline drugs have surprisingly individual efficacy and toxicity profiles. In particular, aclarubicin stands out in pre-clinical models and clinical studies, as it potently kills cancer cells, lacks cardiotoxicity, and can be safely administered even after the maximum cumulative dose of either doxorubicin or idarubicin has been reached. Retrospective analysis of aclarubicin used as second-line treatment for relapsed/refractory AML patients showed survival effects similar to its use in first line, leading to a notable 23% increase in 5-year overall survival compared to other intensive chemotherapies. Considering individual anthracyclines as distinct entities unveils new treatment options, such as the identification of aclarubicin, which significantly improves the survival outcomes of AML patients while mitigating the treatment-limiting side-effects. Building upon these findings, an international multicenter Phase III prospective study is prepared, to integrate aclarubicin into the treatment of relapsed/refractory AML patients.
Subject(s)
Aclarubicin , Anthracyclines , Leukemia, Myeloid, Acute , Animals , Female , Humans , Male , Aclarubicin/pharmacology , Aclarubicin/therapeutic use , Anthracyclines/therapeutic use , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/adverse effects , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/mortality , Treatment OutcomeABSTRACT
Accurate detection and screening of Pb in biological samples is helpful to assess the risk associated with lead pollution to human health. However, conventional atomic spectroscopic instruments are bulky and cumbersome, requiring additional sample pretreatment equipment, and difficult to perform field analysis with. Herein, a portable point discharge (PD) microplasma-optical emission spectrometric (OES) device with online digestion function is designed for field and sensitive determination of lead in biological samples. With rice as a model, online digestion of a batch of six 50 mg samples can be achieved in the HNO3 and H2O2 system within 25 min by a temperature control and timing module. Compared to the conventional microwave digestion, the digestion efficiency of this device reaches 97%. Pb in digestion solution is converted into volatile species by hydride generation (HG) and directly introduced into PD-OES for excitation and detection by a self-designed rotatable and telescopic cutoff gas sampling column. Six samples can be successively detected in 2 min, and argon consumption of the whole process is only <800 mL. Under the optimized conditions, the detection limit of Pb is 0.018 mg kg-1 (0.9 µg L-1) and precision is 3.6%. The accuracy and practicability of the present device are verified by measuring several certified reference materials and real biological samples. By virtue of small size (23.5 × 17 × 8.5 cm3), lightweight (2.5 kg), and low energy consumption (24.3 W), the present device provides a convenient tool for field analysis of toxic elements in biological samples.
Subject(s)
Lead , Optical Devices , Humans , Hydrogen Peroxide , Spectrum Analysis/methods , DigestionABSTRACT
Microplastics (MPs) can act as carriers of environmental arsenic species into the stomach with food and release arsenic species during digestion, which threatens human health. Herein, an integrated dynamic stomach model (DSM)-capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICPMS) is developed for online monitoring of the release and transformation behaviors of arsenic species loaded on MPs (As-MPs) in the simulated human stomach. The 3D-printed DSM with a soft stomach chamber enables the behaviors of gastric peristalsis, gastric and salivary fluid addition, pH adjustment, and gastric emptying (GE) to be controlled by a self-written program after oral ingestion of food with As-MPs. The gastric extract during digestion is introduced into the spiral channel to remove the large particulate impurity and online filtered to obtain the clarified arsenic-containing solution for subsequent speciation analysis of arsenic by CE-ICPMS. The digestion conditions and pretreatment processes of DSM are tracked and validated, and the release rates of As-MPs digested by DSM are compared with those digested by the static stomach model and DSM without GE. The release rate of inorganic arsenic on MPs is higher than that of organic arsenic throughout the gastric digestion process, and 8% of As(V) is reduced to As(III). The detection limits for As(III), DMA, MMA, and As(V) are 0.5-0.9 µg L-1 using DSM-CE-ICPMS, along with precisions of ≤8%. This present method provides an integrated and convenient tool for evaluating the release and transformation of As-MPs during human gastric digestion and provides a reference for exploring the interactions between MPs and metals/metalloids in the human body.
Subject(s)
Arsenic , Electrophoresis, Capillary , Mass Spectrometry , Microplastics , Stomach , Arsenic/analysis , Humans , Mass Spectrometry/methods , Electrophoresis, Capillary/methods , Microplastics/analysis , Stomach/chemistry , Digestion , Models, BiologicalABSTRACT
Lithium-sulfur (Li-S) batteries are considered the most promising energy storage battery due to their low cost and high theoretical energy density. However, the low utilization rate of sulfur and slow redox kinetics have seriously limited the development of Li-S batteries. Herein, the electronic state modulation of metal selenides induced by the bi-metallic coupling strategy is reported to enhance the redox reaction kinetics and sulfur utilization, thereby improving the electrochemical performance of Li-S batteries. Theoretical calculations reveal that the electronic structure can be modulated by Ni-Co coupling, thus lowering the conversion barrier of lithium polysulfides (LiPSs) and Li+, and the synergistic interaction between NiCoSe nanoparticles and nitrogen-doped porous carbon (NPC) is facilitating to enhance electron transport and ion transfer kinetics of the NiCoSe@NPC-S electrodes. As a result, the assembled Li-S batteries based on NiCoSe@NPC-S exhibit high capacities (1020 mAh g-1 at 1 C) and stable cycle performance (80.37% capacity retention after 500 cycles). The special structural design and bimetallic coupling strategy promote the batteries working even under lean electrolyte (7.2 µL mg-1) with a high sulfur loading (6.5 mg cm-2). The proposed bimetallic coupling strategy modulating electronic construction with N-doping porous carbon has jointly contributed the good redox reaction kinetics and high sulfur utilization.
ABSTRACT
IMPORTANCE: Porcine circovirus type 3 (PCV3) is an emerging pathogen that causes multisystem disease in pigs and poses a severe threat to the swine industry. However, the mechanisms of how PCV3 uses host proteins to regulate its own life cycle are not well understood. In this study, we found that PCV3 capsid protein interacts with nucleolin and degrades it. Degradation of nucleolin by the PCV3 capsid protein requires recruitment of the enzyme RNF34, which is transported to the nucleolus from the cytoplasm in the presence of the PCV3 capsid protein. Nucleolin also decreases PCV3 replication by promoting the release of interferon ß. These findings clarify the mechanism by which nucleolin modulates PCV3 replication in cells, thereby facilitating to provide an important strategy for preventing and controlling PCV3 infection.
Subject(s)
Capsid Proteins , Circoviridae Infections , Circovirus , Nucleolin , Swine Diseases , Animals , Capsid Proteins/genetics , Capsid Proteins/metabolism , Circoviridae Infections/metabolism , Circoviridae Infections/veterinary , Circoviridae Infections/virology , Circovirus/metabolism , Nucleolin/metabolism , Phylogeny , Swine , Swine Diseases/virology , UbiquitinationABSTRACT
The substantial increase of infections, caused by novel, sudden, and drug-resistant pathogens, poses a significant threat to human health. While numerous studies have demonstrated the antibacterial and antiviral effects of Traditional Chinese Medicine, the potential of a complex mixture of traditional Chinese Medicine with a broad-spectrum antimicrobial property remains underexplored. This study aimed to develop a complex mixture of Traditional Chinese Medicine (TCM), JY-1, and investigate its antimicrobial properties, along with its potential mechanism of action against pathogenic microorganisms. Antimicrobial activity was assessed using a zone of inhibition assay and the drop plate method. Hyphal induction of Candida albicans was conducted using RPMI1640 medium containing 10% FBS, followed by microscopic visualization. Quantitative real-time PCR (RT-qPCR) was employed to quantify the transcript levels of hyphal-specific genes such as HWP1 and ALS3. The impact of JY-1 on biofilm formation was evaluated using both the XTT reduction assay and scanning electron microscopy (SEM). Furthermore, the cell membrane integrity was assessed by protein and nucleic acid leakage assays. Our results clearly showed that JY-1 significantly inhibits the vegetative growth of Candida spp. and Cryptococcus spp. In addition, this complex mixture is effectively against a wide range of pathogenic bacteria, including Staphylococcus aureus, Vancomycin-resistant enterococci, Escherichia coli, Klebsiella pneumoniae and Enterobacter cloacae. More interestingly, JY-1 plays a direct anti-viral role against the mammalian viral pathogen vesicular stomatitis virus (VSV). Further mechanistic studies indicate that JY-1 acts to reduce the expression of hyphal specific genes HWP1 and ALS3, resulting in the suppression of the hyphal formation of C. albicans. The antimicrobial property of JY-1 could be attributed to its ability to reduce biofilm formation and disrupt the cell membrane permeability, a process resulting in microbial cell death and the release of cellular contents. Taken together, our work identified a potent broad-spectrum antimicrobial agent, a complex mixture of TCM which might be developed as a potential antimicrobial drug.
Subject(s)
Anti-Infective Agents , Medicine, Chinese Traditional , Animals , Humans , Cell Membrane Permeability , Biofilms , Candida albicans , Anti-Infective Agents/pharmacology , Complex Mixtures/pharmacology , Permeability , Microbial Sensitivity Tests , MammalsABSTRACT
Chromophores with hybridized local and charge-transfer (HLCT) excited state are promising for the realization of high performance blue organic light-emitting diodes (OLEDs). The rational manipulation of HLCT excited state for efficient emitters remains challenging. Herein, we present three donor-π-acceptor (D-π-A) molecules (mPAN, mPANPH, and mPNAPH) with phenanthro[9,10-d]imidazole (PI) and pyridinyl as donor and π-bridge respectively. Changes in various kinds of polycyclic aromatic derivative acceptors (anthracene, 9-phenylanthracene, and 1-phenylnaphthalene) could manipulate the excited states and optoelectronic properties. Theoretical calculations reveal that the S1 state of mPNAPH exhibits HLCT nature while the other two molecules show local excited (LE) state dominated feature. The photophysical properties also demonstrate this characteristic. Therefore, compared with mPAN and mPANPH, mPNAPH has higher photoluminescence quantum yield (PLQY) whether in solutions or neat films. Ultimately, the non-doped devices based on these emitters show high luminance larger than 35000â cd m-2 , and high maximum external quantum efficiencies (EQEmax s) larger than 5 % with low efficiency roll-off. In particular, the mPNAPH-based device displays an excellent performance of pure blue emission at 456â nm with Commission Internationale de L'Eclairage coordinate of (0.15, 0.16) and EQEmax of 6.13 % that benefited from the HLCT state and high-lying reverse intersystem crossing process.
ABSTRACT
Fractal formation in spin-coated thin-film polymers is of experimental and theoretical interest. Modeling the determinants and dynamics of this process will deepen our understanding of polymer aggregation and the predictability of thin-film structures. This is especially true if the model used has readily interpretable parameters and has been demonstrated to yield a close match to experimental processes under a variety of conditions. In this work, we adapted and applied a relatively new model of fractal growth comprised of a spreading and contracting triangular network, to model spin-coated, thin-film polymers made of poly(vinyl alcohol) on polydimethylsiloxane substrates. We drew clear connections between model parameters and the process of polymer aggregation and we demonstrated the ability of the model to simulate fractal formation under a wide variety of conditions including varying the degree of hydrolysis of the polymer, changing the spin-coating process, and solvent annealing and reforming of polymer fractals under different drying conditions. We also showed how the model is able to replicate idiosyncratic experimental settings yielding novel fractal patterns.
ABSTRACT
We analyzed the clinical characteristics of outpatients with influenza-B-associated pneumonia during the 2021-2022 influenza season and analyzed the molecular epidemiology and evolution of influenza B virus. The presence of influenza B virus was confirmed by reverse transcription polymerase chain reaction (RT-PCR). Electronic medical records were used to collect and analyze data of outpatients. The HA and NA genes were phylogenetically analyzed using ClustalW 2.10 and MEGA 11.0. Out of 1569 outpatients who tested positive for influenza B virus, 11.7% (184/1569) developed pneumonia, and of these, 19.0% (35/184) had underlying diseases. Fever, cough, and sore throat were the most common symptoms. Among the complications, acute respiratory distress syndrome (ARDS), acute kidney injury (AKI), and shock accounted for 2.7% (5/184), 4.9% (9/184), and 1.6% (3/184), respectively. Of the outpatients, 2.7% (5/184) were admitted to the hospital, and 0.5% (1/184) of them died. All of the strains from Beijing were identified as belonging to the B/Victoria lineage. The HA and NA gene sequences of 41 influenza B viruses showed high similarity to each other, and all of them belonged to clade 1A.3. Compared with the vaccine strain B/Washington/02/2019, all of the isolates contained N150K, G181E, and S194D mutations. S194D, E195K, and K200R mutations were detected in the 190 helix of the receptor binding region of HA. Co-mutations of H122Q, A127T, P144L, N150K, G181E, S194D, and K200R in HA and D53N, N59S, and G233E in NA were detected in 78.0% (32/41) of the isolates, and 56.3% (18/32) of these were from outpatients with influenza-B-associated pneumonia. Influenza outpatients with underlying diseases were more likely to develop pneumonia. No significant differences were observed in clinical symptoms or laboratory results between outpatients with and without pneumonia, so testing for influenza virus seems to be a good choice. The observed amino acid variations suggest that current vaccines might not provide effective protection.