Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 25(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891899

ABSTRACT

In aquaculture, viral diseases pose a significant threat and can lead to substantial economic losses. The primary defense against viral invasion is the innate immune system, with interferons (IFNs) playing a crucial role in mediating the immune response. With advancements in molecular biology, the role of non-coding RNA (ncRNA), particularly microRNAs (miRNAs), in gene expression has gained increasing attention. While the function of miRNAs in regulating the host immune response has been extensively studied, research on their immunomodulatory effects in teleost fish, including silver carp (Hyphthalmichthys molitrix), is limited. Therefore, this research aimed to investigate the immunomodulatory role of microRNA-30b-5p (miR-30b-5p) in the antiviral immune response of silver carp (Hypophthalmichthys molitrix) by targeting cytokine receptor family B5 (CRFB5) via the JAK/STAT signaling pathway. In this study, silver carp were stimulated with polyinosinic-polycytidylic acid (poly (I:C)), resulting in the identification of an up-regulated miRNA (miR-30b-5p). Through a dual luciferase assay, it was demonstrated that CRFB5, a receptor shared by fish type I interferon, is a novel target of miR-30b-5p. Furthermore, it was found that miR-30b-5p can suppress post-transcriptional CRFB5 expression. Importantly, this study revealed for the first time that miR-30b-5p negatively regulates the JAK/STAT signaling pathway, thereby mediating the antiviral immune response in silver carp by targeting CRFB5 and maintaining immune system stability. These findings not only contribute to the understanding of how miRNAs act as negative feedback regulators in teleost fish antiviral immunity but also suggest their potential therapeutic measures to prevent an excessive immune response.


Subject(s)
Carps , Fish Proteins , MicroRNAs , Poly I-C , Signal Transduction , Animals , Carps/genetics , Carps/immunology , Carps/virology , Carps/metabolism , Fish Diseases/immunology , Fish Diseases/virology , Fish Diseases/genetics , Fish Proteins/genetics , Fish Proteins/metabolism , Gene Expression Regulation/drug effects , Immunity, Innate/genetics , Janus Kinases/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Poly I-C/pharmacology , STAT Transcription Factors/metabolism , STAT Transcription Factors/genetics
2.
Biomolecules ; 14(9)2024 Sep 08.
Article in English | MEDLINE | ID: mdl-39334901

ABSTRACT

Fine particulate matter (PM2.5) is a significant cause of respiratory diseases and associated cellular damage. The mechanisms behind this damage have not been fully explained. This study investigated two types of cellular damage (inflammation and pyroptosis) induced by PM2.5, focusing on their relationship with two organelles (the endoplasmic reticulum and mitochondria). Animal models have demonstrated that PM2.5 induces excessive endoplasmic reticulum stress (ER stress), which is a significant cause of lung damage in rats. This was confirmed by pretreatment with an ER stress inhibitor (4-Phenylbutyric acid, 4-PBA). We found that, in vitro, the intracellular Ca2+ ([Ca2+]i) dysregulation induced by PM2.5 in rat alveolar macrophages was associated with ER stress. Changes in mitochondria-associated membranes (MAMs) result in abnormal mitochondrial function. This further induced the massive expression of NLRP3 and GSDMD-N, which was detrimental to cell survival. In conclusion, our findings provide valuable insights into the relationship between [Ca2+]i dysregulation, mitochondrial damage, inflammation and pyroptosis under PM2.5-induced ER stress conditions. Their interactions ultimately have an impact on respiratory health.


Subject(s)
Calcium , Endoplasmic Reticulum Stress , Endoplasmic Reticulum , Lung Injury , Mitochondria , Particulate Matter , Phenylbutyrates , Animals , Phenylbutyrates/pharmacology , Mitochondria/metabolism , Mitochondria/drug effects , Calcium/metabolism , Rats , Endoplasmic Reticulum Stress/drug effects , Particulate Matter/toxicity , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/drug effects , Lung Injury/metabolism , Lung Injury/chemically induced , Lung Injury/pathology , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/drug effects , Male , Pyroptosis/drug effects , Rats, Sprague-Dawley , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
3.
Toxics ; 12(6)2024 May 25.
Article in English | MEDLINE | ID: mdl-38922066

ABSTRACT

It is well known that Particulate Matter2.5 (PM2.5) has a major adverse effect on the organism. However, the health hazards of livestock farm PM2.5 to humans and animals are not yet known, and the role of miRNAs in the cellular damage induced by livestock farm PM2.5 is also unclear. Therefore, our study used cowshed PM2.5 to stimulate rat alveolar macrophage NR8383 to construct an in vitro injury model to investigate the effect of miR-122-5p on PM2.5-induced apoptosis in the NR8383. The level of apoptosis was quantified by flow cytometry and Hoechst 33342/PI double staining. Furthermore, the potential target gene Collagen type IV alpha (COL4A1) of miR-122-5p was identified through the use of bioinformatics methods. The results demonstrated a decline in cell viability and an increase in apoptosis with rising PM2.5 concentrations and exposure durations. The transfection of miR-122-5p mimics resulted in an upregulation of the pro-apoptotic protein Bcl-xL/Bcl-2 and activation of cleaved caspase-3 while inhibiting the anti-apoptotic protein B-cell lymphoma-2. The experimental data indicate that miR-122-5p is involved in the apoptotic process by targeting COL4A1. Furthermore, the overexpression of COL4A1 was observed to enhance the PM2.5-activated PI3K/AKT/NF-κB signaling pathway, which contributed to the inhibition of apoptosis. This finding offers a promising avenue for the development of therapeutic strategies aimed at mitigating cellular damage induced by PM2.5 exposure.

4.
Toxics ; 11(12)2023 Dec 03.
Article in English | MEDLINE | ID: mdl-38133382

ABSTRACT

Objective: To investigate the role of miR-212-5p-targeted ARAF during the apoptosis of rat alveolar macrophages induced by cowshed PM2.5. Methods: miRNA and related target genes and pathways were predicted using the KEGG, TargetScan, and other prediction websites. NR8383 macrophages were treated with cowshed PM2.5 to establish an in vitro lung injury model in rats; meanwhile, for the assessment of cell viability, apoptosis, intracellular calcium ions, and mitochondrial membrane potential in NR8383 cells, RT-qPCR was used to detect the expression of miR-212-5p and the target gene ARAF. Results: The bioinformatic analyses showed that miR-212-5p and ARAF were involved in PM2.5-associated cellular damage. Exposure to different concentrations (0 µg/mL, 60 µg/mL, 180 µg/mL, 300 µg/mL) with different durations (0 h, 12 h, 24 h, 48 h) of cowshed PM2.5 resulted in apoptosis, increased intracellular calcium ions, and decreased mitochondrial membrane potential. The miR-212-5p mimic group showed an up-regulation of Bax and cleaved Caspase 3 expression but decreased Bcl2 expression compared to the NC group, and overexpression of ARAF up-regulated the expression of p-MEK1/2 and p-ERK1/2 and simultaneously reversed the above phenomena. Conclusions: miR-212-5p targets ARAF to affect the cowshed PM2.5-induced apoptosis through the MEK/ERK signaling pathway, providing a potential target for relevant farming industry and pathology studies.

SELECTION OF CITATIONS
SEARCH DETAIL