Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Plant Biotechnol J ; 22(2): 316-329, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37786281

ABSTRACT

Nitrate (NO3 - ) is crucial for optimal plant growth and development and often limits crop productivity under low availability. In comparison with model plant Arabidopsis, the molecular mechanisms underlying NO3 - acquisition and utilization remain largely unclear in maize. In particular, only a few genes have been exploited to improve nitrogen use efficiency (NUE). Here, we demonstrated that NO3 - -inducible ZmNRT1.1B (ZmNPF6.6) positively regulated NO3 - -dependent growth and NUE in maize. We showed that the tandem duplicated proteoform ZmNRT1.1C is irrelevant to maize seedling growth under NO3 - supply; however, the loss of function of ZmNRT1.1B significantly weakened plant growth under adequate NO3 - supply under both hydroponic and field conditions. The 15 N-labelled NO3 - absorption assay indicated that ZmNRT1.1B mediated the high-affinity NO3 - -transport and root-to-shoot NO3 - translocation. Transcriptome analysis further showed, upon NO3 - supply, ZmNRT1.1B promotes cytoplasmic-to-nuclear shuttling of ZmNLP3.1 (ZmNLP8), which co-regulates the expression of genes involved in NO3 - response, cytokinin biosynthesis and carbon metabolism. Remarkably, overexpression of ZmNRT1.1B in modern maize hybrids improved grain yield under N-limiting fields. Taken together, our study revealed a crucial role of ZmNRT1.1B in high-affinity NO3 - transport and signalling and offers valuable genetic resource for breeding N use efficient high-yield cultivars.


Subject(s)
Arabidopsis , Nitrogen , Nitrogen/metabolism , Nitrates/metabolism , Zea mays/genetics , Zea mays/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Breeding , Arabidopsis/genetics , Plant Roots/metabolism
2.
Theor Appl Genet ; 137(5): 102, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607439

ABSTRACT

KEY MESSAGE: A total of 389 and 344 QTLs were identified by GWAS and QTL mapping explaining accumulatively 32.2-65.0% and 23.7-63.4% of phenotypic variation for 14 shoot-borne root traits using more than 1300 individuals across multiple field trails. Efficient nutrient and water acquisition from soils depends on the root system architecture (RSA). However, the genetic determinants underlying RSA in maize remain largely unexplored. In this study, we conducted a comprehensive genetic analysis for 14 shoot-borne root traits using 513 inbred lines and 800 individuals from four recombinant inbred line (RIL) populations at the mature stage across multiple field trails. Our analysis revealed substantial phenotypic variation for these 14 root traits, with a total of 389 and 344 QTLs identified through genome-wide association analysis (GWAS) and linkage analysis, respectively. These QTLs collectively explained 32.2-65.0% and 23.7-63.4% of the trait variation within each population. Several a priori candidate genes involved in auxin and cytokinin signaling pathways, such as IAA26, ARF2, LBD37 and CKX3, were found to co-localize with these loci. In addition, a total of 69 transcription factors (TFs) from 27 TF families (MYB, NAC, bZIP, bHLH and WRKY) were found for shoot-borne root traits. A total of 19 genes including PIN3, LBD15, IAA32, IAA38 and ARR12 and 19 GWAS signals were overlapped with selective sweeps. Further, significant additive effects were found for root traits, and pyramiding the favorable alleles could enhance maize root development. These findings could contribute to understand the genetic basis of root development and evolution, and provided an important genetic resource for the genetic improvement of root traits in maize.


Subject(s)
Genome-Wide Association Study , Zea mays , Humans , Zea mays/genetics , Genomics , Chromosome Mapping , Alleles
3.
BMC Plant Biol ; 23(1): 392, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37580686

ABSTRACT

Soil salinity poses a significant challenge to crop growth and productivity, particularly affecting the root system, which is vital for water and nutrient uptake. To identify genetic factors that influence root elongation in stressful environments, we conducted a genome-wide association study (GWAS) to investigate the natural variation associated with total root length (TRL) under salt stress and normal conditions in maize seedlings. Our study identified 69 genetic variants associated with 38 candidate genes, among which a specific single nucleotide polymorphism (SNP) in ZmNAC087 was significantly associated with TRL under salt stress. Transient expression and transactivation assays revealed that ZmNAC087 encodes a nuclear-localized protein with transactivation activity. Further candidate gene association analysis showed that non-coding variations in ZmNAC087 promoter contribute to differential ZmNAC087 expression among maize inbred lines, potentially influencing the variation in salt-regulated TRL. In addition, through nucleotide diversity analysis, neutrality tests, and coalescent simulation, we demonstrated that ZmNAC087 underwent selection during maize domestication and improvement. These findings highlight the significance of natural variation in ZmNAC087, particularly the favorable allele, in maize salt tolerance, providing theoretical basis and valuable genetic resources for the development of salt-tolerant maize germplasm.


Subject(s)
Genome-Wide Association Study , Seedlings , Seedlings/genetics , Zea mays/physiology , Phenotype , Salt Tolerance/genetics
4.
Plant Cell Physiol ; 63(9): 1309-1320, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35861152

ABSTRACT

Optimal plant growth and development rely on morphological and physiological adaptions of the root system to forage heterogeneously distributed nitrogen (N) in soils. Rice grows mainly in the paddy soil where ammonium (NH4+) is present as the major N source. Although root NH4+ foraging behaviors are expected to be agronomically relevant, the underlying mechanism remains largely unknown. Here, we showed that NH4+ supply transiently enhanced the high-affinity NH4+ uptake and stimulated lateral root (LR) branching and elongation. These synergistic physiological and morphological responses were closely related to NH4+-induced expression of NH4+ transporters OsAMT1;1 and OsAMT1;2 in roots. The two independent double mutants (dko) defective in OsAMT1;1 and OsAMT1;2 failed to induce NH4+ uptake and stimulate LR formation, suggesting that OsAMT1s conferred the substrate-dependent root NH4+ foraging. In dko plants, NH4+ was unable to activate the expression of OsPIN2, and the OsPIN2 mutant (lra1) exhibited a strong reduction in NH4+-triggered LR branching, suggesting that the auxin pathway was likely involved in OsAMT1s-dependent LR branching. Importantly, OsAMT1s-dependent root NH4+ foraging behaviors facilitated rice growth and N acquisition under fluctuating NH4+ supply. These results revealed an essential role of OsAMT1s in synergizing root morphological and physiological processes, allowing for efficient root NH4+ foraging to optimize N capture under fluctuating N availabilities.


Subject(s)
Ammonium Compounds , Cation Transport Proteins , Oryza , Ammonium Compounds/metabolism , Cation Transport Proteins/metabolism , Gene Expression Regulation, Plant , Nitrogen/metabolism , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/metabolism
5.
Plant Physiol ; 183(3): 998-1010, 2020 07.
Article in English | MEDLINE | ID: mdl-32398320

ABSTRACT

Root developmental plasticity enables plants to adapt to limiting or fluctuating nutrient conditions in the soil. When grown under nitrogen (N) deficiency, plants develop a more exploratory root system by increasing primary and lateral root length. However, mechanisms underlying this so-called foraging response remain poorly understood. We performed a genome-wide association study in Arabidopsis (Arabidopsis thaliana) and we show here that noncoding variations of the brassinosteroid (BR) biosynthesis gene DWARF1 (DWF1) lead to variation of the DWF1 transcript level that contributes to natural variation of root elongation under low N. In addition to DWF1, other central BR biosynthesis genes upregulated under low N include CONSTITUTIVE PHOTOMORPHOGENIC DWARF, DWF4, and BRASSINOSTEROID-6-OXIDASE 2 Phenotypic characterization of knockout and knockdown mutants of these genes showed significant reduction of their root elongation response to low N, suggesting a systemic stimulation of BR biosynthesis to promote root elongation. Moreover, we show that low N-induced root elongation is associated with aboveground N content and that overexpression of DWF1 significantly improves plant growth and overall N accumulation. Our study reveals that mild N deficiency induces key genes in BR biosynthesis and that natural variation in BR synthesis contributes to the root foraging response, complementing the impact of enhanced BR signaling observed recently. Furthermore, these results suggest a considerable potential of BR biosynthesis to genetically engineer plants with improved N uptake.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Brassinosteroids/biosynthesis , Nitrogen/deficiency , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Genome-Wide Association Study , Signal Transduction/genetics
6.
Physiol Plant ; 171(4): 809-822, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33481273

ABSTRACT

Boron (B) is an essential mineral element for plant growth, and the seed B pool of crops can be crucial when seedlings need to establish on low-B soils. To date, it is poorly understood how B accumulation in grain crops is genetically controlled. Here, we assessed the genotypic variation of the B concentration in grains of a spring barley (Hordeum vulgare L.) association panel that represents broad genetic diversity. We found a large genetic variation of the grain B concentration and detected in total 23 quantitative trait loci (QTLs) using genome-wide association mapping. HvNIP2;2/HvLsi6, encoding a potential B-transporting membrane protein, mapped closely to a major-effect QTL accounting for the largest proportion of grain B variation. Based on transport studies using heterologous expression systems and gene expression analysis, we demonstrate that HvNIP2;2/HvLsi6 represents a functional B channel and that expression variation in its transcript level associates with root and shoot B concentrations as well as with root dry mass formation under B-deficient conditions.


Subject(s)
Hordeum , Boron , Chromosome Mapping , Genome-Wide Association Study , Hordeum/genetics , Phenotype , Quantitative Trait Loci/genetics
7.
J Exp Bot ; 71(15): 4393-4404, 2020 07 25.
Article in English | MEDLINE | ID: mdl-31970412

ABSTRACT

Among all essential mineral elements, nitrogen (N) is required in the largest amounts and thus is often a limiting factor for plant growth. N is taken up by plant roots in the form of water-soluble nitrate, ammonium, and, depending on abundance, low-molecular weight organic N. In soils, the availability and composition of these N forms can vary over space and time, which exposes roots to various local N signals that regulate root system architecture in combination with systemic signals reflecting the N nutritional status of the shoot. Uncovering the molecular mechanisms underlying N-dependent signaling provides great potential to optimize root system architecture for the sake of higher N uptake efficiency in crop breeding. In this review, we summarize prominent signaling mechanisms and their underlying molecular players that derive from external N forms or the internal N nutritional status and modulate root development including root hair formation and gravitropism. We also compare the current state of knowledge of these pathways between Arabidopsis and graminaceous plant species.


Subject(s)
Arabidopsis , Nitrogen , Arabidopsis/genetics , Nitrates , Plant Breeding , Plant Roots
8.
J Exp Bot ; 71(15): 4547-4561, 2020 07 25.
Article in English | MEDLINE | ID: mdl-32133500

ABSTRACT

Plants can develop root systems with distinct anatomical features and morphological plasticity to forage nutrients distributed heterogeneously in soils. Lateral root proliferation is a typical nutrient-foraging response to a local supply of nitrate, which has been investigated across many plant species. However, the underlying mechanism in maize roots remains largely unknown. Here, we report on identification of a maize truncated MIKC-type MADS-box transcription factor (ZmTMM1) lacking K- and C-domains, expressed preferentially in the lateral root branching zone and induced by the localized supply of nitrate. ZmTMM1 belongs to the AGL17-like MADS-box transcription factor family that contains orthologs of ANR1, a key regulator for root nitrate foraging in Arabidopsis. Ectopic overexpression of ZmTMM1 recovers the defective growth of lateral roots in the Arabidopsis anr1 agl21 double mutant. The local activation of glucocorticoid receptor fusion proteins for ZmTMM1 and an artificially truncated form of AtANR1 without the K- and C-domains stimulates the lateral root growth of the Arabidopsis anr1 agl21 mutant, providing evidence that ZmTMM1 encodes a functional MADS-box that modulates lateral root development. However, no phenotype was observed in ZmTMM1-RNAi transgenic maize lines, suggesting a possible genetic redundancy of ZmTMM1 with other AGL17-like genes in maize. A comparative genome analysis further suggests that a nitrate-inducible transcriptional regulation is probably conserved in both truncated and non-truncated forms of ZmTMM1-like MADS-box transcription factors found in grass species.


Subject(s)
Arabidopsis Proteins , Transcription Factors , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Nitrates/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
9.
J Exp Bot ; 73(14): 4612-4614, 2022 08 11.
Article in English | MEDLINE | ID: mdl-35950462
10.
Ultrason Sonochem ; 93: 106310, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36708697

ABSTRACT

Seed germination is an essential biological process for establishing new organisms of higher plants, it is especially significant for those aged seeds stored in gene banks for years. In this study, we investigated ultrasound treatment induced germination for aged Pinus tabuliformis seeds, which has been used in large scale aircraft sowing based afforestation in North China over 30 years' ago without knowing possible mechanisms. We showed certain strength of ultrasound could increase the germination rate of aged seeds for about 3 times compare with control. Interestingly, although our transcriptome and lipidome analysis showed the differences between control and ultrasound treatments can be observed 1 day after germination by partial least squares discriminant analysis (PLSDA) analysis, majority (75 % or 69 %) of the significantly altered genes or lipids were commonly shared between them. Further analysis for the commonly altered lipids between both treatments showed ultrasound provoked the variations of lipids during germination process. Our investigation also revealed large amount of ultrasound-related genes and lipids that might be involved in germination promotion process. We hypothesis ultrasound provokes seed lipidome which further increases seed germination of Pinus tabuliformis. Our study provides new insides into the role of ultrasound induced lipidome change in seed germination. Moreover, we provide a new method to improve germination of aged seeds which might benefit preservation of seeds in gene banks.


Subject(s)
Germination , Pinus , Lipid Metabolism , Seeds , Lipids
11.
Curr Biol ; 33(18): 3926-3941.e5, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37699396

ABSTRACT

As a major determinant of the nutrient-acquiring root surface, root hairs (RHs) provide a low-input strategy to enhance nutrient uptake. Although primary and lateral roots exhibit elongation responses under mild nitrogen (N) deficiency, the foraging response of RHs and underlying regulatory mechanisms remain elusive. Employing transcriptomics and functional studies revealed a framework of molecular components composing a cascade of auxin synthesis, transport, and signaling that triggers RH elongation for N acquisition. Through upregulation of Tryptophan Aminotransferase of Arabidopsis 1 (TAA1) and YUCCA8, low N increases auxin accumulation in the root apex. Auxin is then directed to the RH differentiation zone via the auxin transport machinery, AUXIN TRANSPORTER PROTEIN 1 (AUX1) and PIN-FORMED 2 (PIN2). Upon arrival to the RH zone, auxin activates the transcription factors AUXIN RESPONSE FACTOR 6 and 8 (ARF6/8) to promote the epidermal and auxin-inducible transcriptional module ROOT HAIR DEFECTIVE 6 (RHD6)-LOTUS JAPONICA ROOT HAIRLESS-LIKE 3 (LRL3) to steer RH elongation in response to low N. Our study uncovers a spatially defined regulatory signaling cascade for N foraging by RHs, expanding the mechanistic framework of hormone-regulated nutrient sensing in plant roots.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Epidermis , Hair , Signal Transduction , Arabidopsis/genetics , Indoleacetic Acids , Nitrogen , Arabidopsis Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors
12.
Mol Plant ; 15(1): 86-103, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34920172

ABSTRACT

Optimal plant development requires root uptake of 14 essential mineral elements from the soil. Since the bioavailability of these nutrients underlies large variation in space and time, plants must dynamically adjust their root architecture to optimize nutrient access and acquisition. The information on external nutrient availability and whole-plant demand is translated into cellular signals that often involve phytohormones as intermediates to trigger a systemic or locally restricted developmental response. Timing and extent of such local root responses depend on the overall nutritional status of the plant that is transmitted from shoots to roots in the form of phytohormones or other systemic long-distance signals. The integration of these systemic and local signals then determines cell division or elongation rates in primary and lateral roots, the initiation, emergence, or elongation of lateral roots, as well as the formation of root hairs. Here, we review the cascades of nutrient-related sensing and signaling events that involve hormones and highlight nutrient-hormone relations that coordinate root developmental plasticity in plants.


Subject(s)
Arabidopsis/growth & development , Arabidopsis/metabolism , Cell Plasticity/drug effects , Plant Development/drug effects , Plant Growth Regulators/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Edible Grain/growth & development , Edible Grain/metabolism
13.
Front Plant Sci ; 13: 992799, 2022.
Article in English | MEDLINE | ID: mdl-36388478

ABSTRACT

Soil salinity is a major constraint that restricts crop productivity worldwide. Lateral roots (LRs) are important for water and nutrient acquisition, therefore understanding the genetic basis of natural variation in lateral root length (LRL) is of great agronomic relevance to improve salt tolerance in cultivated germplasms. Here, using a genome-wide association study, we showed that the genetic variation in ZmSULTR3;4, which encodes a plasma membrane-localized sulfate transporter, is associated with natural variation in maize LRL under salt stress. The transcript of ZmSULTR3;4 was found preferentially in the epidermal and vascular tissues of root and increased by salt stress, supporting its essential role in the LR formation under salt stress. Further candidate gene association analysis showed that DNA polymorphisms in the promoter region differentiate the expression of ZmSULTR3;4 among maize inbred lines that may contribute to the natural variation of LRL under salt stress. Nucleotide diversity and neutrality tests revealed that ZmSULTR3;4 has undergone selection during maize domestication and improvement. Overall, our results revealed a regulatory role of ZmSULTR3;4 in salt regulated LR growth and uncovered favorable alleles of ZmSULTR3;4, providing an important selection target for breeding salt-tolerant maize cultivar.

14.
Nat Commun ; 12(1): 5437, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34521826

ABSTRACT

Lateral roots (LRs) dominate the overall root surface of adult plants and are crucial for soil exploration and nutrient acquisition. When grown under mild nitrogen (N) deficiency, flowering plants develop longer LRs to enhance nutrient acquisition. This response is partly mediated by brassinosteroids (BR) and yet unknown mechanisms. Here, we show that local auxin biosynthesis modulates LR elongation while allelic coding variants of YUCCA8 determine the extent of elongation under N deficiency. By up-regulating the expression of YUCCA8/3/5/7 and of Tryptophan Aminotransferase of Arabidopsis 1 (TAA1) under mild N deficiency auxin accumulation increases in LR tips. We further demonstrate that N-dependent auxin biosynthesis in LRs acts epistatic to and downstream of a canonical BR signaling cascade. The uncovered BR-auxin hormonal module and its allelic variants emphasize the importance of fine-tuning hormonal crosstalk to boost adaptive root responses to N availability and offer a path to improve soil exploration by expanded root systems in plants.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Brassinosteroids/metabolism , Indoleacetic Acids/metabolism , Mixed Function Oxygenases/genetics , Nitrogen/deficiency , Plant Roots/genetics , Tryptophan Transaminase/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Mixed Function Oxygenases/metabolism , Plant Growth Regulators , Plant Roots/growth & development , Plant Roots/metabolism , Plants, Genetically Modified , Protein Isoforms/genetics , Protein Isoforms/metabolism , Signal Transduction , Soil/chemistry , Tryptophan Transaminase/metabolism
15.
Nat Commun ; 10(1): 2378, 2019 05 30.
Article in English | MEDLINE | ID: mdl-31147541

ABSTRACT

Developmental plasticity of root system architecture is crucial for plant performance in nutrient-poor soils. Roots of plants grown under mild nitrogen (N) deficiency show a foraging response characterized by increased root length but mechanisms underlying this developmental plasticity are still elusive. By employing natural variation in Arabidopsis accessions, we show that the brassinosteroid (BR) signaling kinase BSK3 modulates root elongation under mild N deficiency. In particular, a proline to leucine substitution in the predicted kinase domain of BSK3 enhances BR sensitivity and signaling to increase the extent of root elongation. We further show that low N specifically upregulates transcript levels of the BR co-receptor BAK1 to activate BR signaling and stimulate root elongation. Altogether, our results uncover a role of BR signaling in root elongation under low N. The BSK3 alleles identified here provide targets for improving root growth of crops growing under limited N conditions.


Subject(s)
Arabidopsis Proteins/genetics , Nitrogen/deficiency , Plant Roots/growth & development , Protein Serine-Threonine Kinases/genetics , Arabidopsis , Arabidopsis Proteins/metabolism , Brassinosteroids/metabolism , Gene Expression Regulation, Plant , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Soil/chemistry , Up-Regulation
16.
Front Plant Sci ; 10: 400, 2019.
Article in English | MEDLINE | ID: mdl-31001309

ABSTRACT

Breeding new crop cultivars with efficient root systems carries great potential to enhance resource use efficiency and plant adaptation to unstable climates. Here, we evaluated the natural variation of root system architectural traits in a diverse spring barley association panel and conducted genome-wide association mapping to identify genomic regions associated with root traits. For six studied traits, root system depth, root spreading angle, seminal root number, total seminal root length, and average seminal root length 1.9- to 4.2-fold variations were recorded. Using a mixed linear model, 55 QTLs were identified cumulatively explaining between 12.1% of the phenotypic variance for seminal root number to 48.1% of the variance for root system depth. Three major QTLs controlling root system depth, root spreading angle and total seminal root length were found on Chr 2H (56.52 cM), Chr 3H (67.92 cM), and Chr 2H (76.20 cM) and explained 12.4%, 18.4%, and 22.2% of the phenotypic variation, respectively. Meta-analysis and allele combination analysis indicated that root system depth and root spreading angle are valuable candidate traits for improving grain yield by pyramiding of favorable alleles.

SELECTION OF CITATIONS
SEARCH DETAIL