Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Stress ; 27(1): 2357338, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38807493

ABSTRACT

Virtual reality based physical stress (VRPS) paradigms could eliminate the influence of social factors on participants, and it may be a desirable tool to explore the impact of personality traits on stress levels. In this study, we attempt to explore the effects of VRPS on stress response among individuals with different personality traits. Forty male participants with an average age of 22.79 ± 0.41 years were divided into two groups based on Harm Avoidance (HA) scores of Tridimensional Personality Questionnaire (TPQ), referred to as the Low-HA group and the High-HA group. The stress levels of the participants were assessed using salivary α-amylase (sAA) activity and heart rate variability (HRV) indices pre- and post-stress. The influence of personality traits on stress response among different groups was analyzed. VRPS significantly affected the sAA activity and HRV indicators of both groups. During and after stress, there were significant differences in sAA activity and HRV indicators between the two groups. The sAA levels and HRV indices of the Low-HA group were lower than those of the High-HA group. Furthermore, sAA levels and HRV indices were correlated with the scores of TPQ. VRPS scenarios elicit different stress responses on individuals with different harm avoidance personality traits. Stress evaluation based on VR scenarios presents potential in personality trait assessments, particularly for distinguishing between individuals with low and high HA tendencies.


Subject(s)
Heart Rate , Personality , Salivary alpha-Amylases , Stress, Psychological , Virtual Reality , Humans , Male , Personality/physiology , Heart Rate/physiology , Stress, Psychological/physiopathology , Stress, Psychological/psychology , Young Adult , Salivary alpha-Amylases/metabolism , Salivary alpha-Amylases/analysis , Saliva/chemistry , Adult , Stress, Physiological/physiology , Surveys and Questionnaires , Harm Reduction
2.
Phys Chem Chem Phys ; 26(35): 23240-23249, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39192767

ABSTRACT

Two-dimensional (2D) MXene superconductors have been currently attracting considerable interest due to their unique electronic properties and diverse applicability. Utilizing first-principles computational methods, we have designed two distinct configurations of hydrogenated 2D Ti2N MXene materials, namely Ti2NH2 and Ti2NH4, and have conducted an exhaustive analysis of their structural stability, electronic characteristics, and superconductivity. Hydrogenation endows monolayer Ti2N with inherent metallic characteristics, as evidenced by an elevated density of states (DOS) at the Fermi level (Ef). Notably, Ti2NH4 exhibits a superconducting critical temperature (Tc) of 15.8 K, which is predominantly ascribed to the electronic contributions stemming from the Ti 3d orbitals. Analysis of phonon dispersion underscores the pivotal role that diverse lattice vibrational modes play in electron-phonon coupling (EPC), particularly the significance of low-frequency vibrations for facilitating electron pairing and the emergence of superconductivity. Furthermore, strain engineering can effectively modulate the superconducting properties of Ti2NH4, with a 2% tensile strain enhancing the EPC strength (λ) to 0.857 and increasing Tc to 18.7 K. This research elucidates the superconducting mechanisms of hydrogenated Ti2N structures, offering valuable insights for the development of novel 2D superconducting materials.

3.
Mikrochim Acta ; 191(9): 545, 2024 08 19.
Article in English | MEDLINE | ID: mdl-39158763

ABSTRACT

An electrochemical biosensor based on dual-amplified nucleic acid mode and biocatalytic silver deposition was constructed using catalytic hairpin assembly-hybrid chain reaction (CHA-HCR). The electrochemical detection of silver on the electrode by linear sweep voltammetry (LSV) can be utilized to quantitatively measure miR-205-5p since the amount of silver deposited on the electrode is proportional to the target nucleic acid. The current response values exhibit strong linearity with the logarithm of miR-205-5p concentrations ranging from 0.1 pM to 10 µM, and the detection limit is 28 fM. A consistent trend was found in the results of the qRT-PCR and electrochemical biosensor techniques, which were employed to determine the total RNA recovered from cells, respectively. Moreover, the constructed sensor was used to assess miR-205-5p on various cell counts, and the outcomes demonstrated the excellent analytical efficiency of the proposed strategy. The recoveries ranged from 97.85% to 115.3% with RSDs of 2.251% to 4.869% in human serum samples. Our electrochemical biosensor for miR-205-5p detection exhibits good specificity, high sensitivity, repeatability, and stability. It is a potentially useful sensing platform for tumor diagnosis and tumor type identification in clinical settings.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Limit of Detection , MicroRNAs , Silver , Biosensing Techniques/methods , Humans , MicroRNAs/blood , MicroRNAs/analysis , Silver/chemistry , Electrochemical Techniques/methods , Electrodes , Nucleic Acid Amplification Techniques/methods
4.
Eur J Immunol ; 52(12): 1934-1945, 2022 12.
Article in English | MEDLINE | ID: mdl-36155909

ABSTRACT

Innate immunity is the first and essential line for resisting pathogens, and the immune intensity and duration need to be strictly regulated to balance excessive or insufficient immune response. MicroRNAs (miRNAs) are crucial regulators of immune response in Drosophila, yet how immune-related miRNAs are regulated remains poorly understood. Herein, we elucidated that the involvement of miR-317 in NF-κB transcription factor Relish mediated Drosophila Imd pathway in response to Gram-negative (G-) bacteria stimulation. Remarkably, the dynamic expression profiling for immune response indicated that Relish simultaneously enhances the expression of the effector antimicrobial peptide Dpt as well as miR-317 post-infection. Upregulation of miR-317 could further down-regulate the expression of PGRP-LC, thereby forming a feedback in Drosophila Imd pathway to prevent over-activation and restore immune homeostasis. Taken together, our study not only uncovers a novel Relish/miR-317/PGRP-LC regulatory axis to attenuate Drosophila Imd immune response and facilitate immune homeostasis restoration, but also provides vital insights into the complex mechanisms of animal innate immune regulation.


Subject(s)
MicroRNAs , Animals , MicroRNAs/genetics , Drosophila
5.
Mol Psychiatry ; 27(10): 4123-4135, 2022 10.
Article in English | MEDLINE | ID: mdl-35444255

ABSTRACT

The intricate processes of microbiota-gut-brain communication in modulating human cognition and emotion, especially in the context of mood disorders, have remained elusive. Here we performed faecal metagenomic, serum metabolomics and neuroimaging studies on a cohort of 109 unmedicated patients with depressed bipolar disorder (BD) patients and 40 healthy controls (HCs) to characterise the microbial-gut-brain axis in BD. Across over 12,000 measured metabolic features, we observed a large discrepancy (73.54%) in the serum metabolome between BD patients and HCs, spotting differentially abundant microbial-derived neuroactive metabolites including multiple B-vitamins, kynurenic acid, gamma-aminobutyric acid and short-chain fatty acids. These metabolites could be linked to the abundance of gut microbiota presented with corresponding biosynthetic potentials, including Akkermansia muciniphila, Citrobacter spp. (Citrobacter freundii and Citrobacter werkmanii), Phascolarctobacterium spp., Yersinia spp. (Yersinia frederiksenii and Yersinia aleksiciae), Enterobacter spp. (Enterobacter cloacae and Enterobacter kobei) and Flavobacterium spp. Based on functional neuroimaging, BD-related neuroactive microbes and metabolites were discovered as potential markers associated with BD-typical features of functional connectivity of brain networks, hinting at aberrant cognitive function, emotion regulation, and interoception. Our study combines gut microbiota and neuroactive metabolites with brain functional connectivity, thereby revealing potential signalling pathways from the microbiota to the gut and the brain, which may have a role in the pathophysiology of BD.


Subject(s)
Bipolar Disorder , Gastrointestinal Microbiome , Microbiota , Humans , Gastrointestinal Microbiome/genetics , Bipolar Disorder/metabolism , Brain-Gut Axis , Metabolome , Brain/metabolism
6.
J Nanobiotechnology ; 20(1): 11, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34983545

ABSTRACT

Nanomaterials (NMs) have received considerable attention in the field of agrochemicals due to their special properties, such as small particle size, surface structure, solubility and chemical composition. The application of NMs and nanotechnology in agrochemicals dramatically overcomes the defects of conventional agrochemicals, including low bioavailability, easy photolysis, and organic solvent pollution, etc. In this review, we describe advances in the application of NMs in chemical pesticides and fertilizers, which are the two earliest and most researched areas of NMs in agrochemicals. Besides, this article concerns with the new applications of NMs in other agrochemicals, such as bio-pesticides, nucleic acid pesticides, plant growth regulators (PGRs), and pheromone. We also discuss challenges and the industrialization trend of NMs in the field of agrochemicals. Constructing nano-agrochemical delivery system via NMs and nanotechnology facilitates the improvement of the stability and dispersion of active ingredients, promotes the precise delivery of agrochemicals, reduces residual pollution and decreases labor cost in different application scenarios, which is potential to maintain the sustainability of agricultural systems and improve food security by increasing the efficacy of agricultural inputs.


Subject(s)
Agriculture/methods , Agrochemicals , Nanostructures , Nanotechnology/methods , Sustainable Development
7.
J Cell Mol Med ; 25(14): 6463-6469, 2021 07.
Article in English | MEDLINE | ID: mdl-34014031

ABSTRACT

Bipolar disorder (BD) is a common psychiatric illness with high prevalence and disease burden. Accumulating susceptibility genes for BD have been identified in recent years. However, the exact functions of these genes remain largely unknown. Despite its high heritability, gene and environment interaction is commonly accepted as the major contributing factor to BD pathogenesis. Intestine microbiota is increasingly recognized as a critical environmental factor for human health and diseases via the microbiota-gut-brain axis. BD individuals showed altered diversity and compositions in the commensal microbiota. In addition to pro-inflammatory factors, such as interleukin-6 and tumour necrosis factor-α, type 1 interferon signalling pathway is also modulated by specific intestinal bacterial strains. Disruption of the microbiota-gut-brain axis contributes to peripheral and central nervous system inflammation, which accounts for the BD aetiology. Administration of type 1 interferon can induce the expression of TRANK1, which is associated with elevated circulating biomarkers of the impaired blood-brain barrier in BD patients. In this review, we focus on the influence of intestine microbiota on the expression of bipolar gene TRANK1 and propose that intestine microbiota-dependent type 1 interferon signalling is sufficient to induce the over-expression of TRANK1, consequently causing the compromise of BBB integrity and facilitating the entrance of inflammatory mediators into the brain. Activated neuroinflammation eventually contributes to the occurrence and development of BD. This review provides a new perspective on how gut microbiota participate in the pathogenesis of BD. Future studies are needed to validate these assumptions and develop new treatment targets for BD.


Subject(s)
Bipolar Disorder/genetics , Brain-Gut Axis/genetics , Cytokines/genetics , Gastrointestinal Microbiome/genetics , Bipolar Disorder/metabolism , Bipolar Disorder/microbiology , Bipolar Disorder/pathology , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/microbiology , Blood-Brain Barrier/pathology , Brain/metabolism , Brain/pathology , Disease Susceptibility , Humans
8.
Small ; 16(39): e2003833, 2020 10.
Article in English | MEDLINE | ID: mdl-32830444

ABSTRACT

Monitoring physiological signals and manipulating growth habits of living plants in real time are important for botany research, biohybrid plant robots, and precision agriculture. Although emerging epidermal electronics that can conveniently acquire vital signals of living organisms exhibit a high potential for such scenarios, it is a significant challenge to adapt such devices for plants, because they are fragile and usually have complex surfaces that can change significantly during rapid growth. A gentle fabrication process is critical in order to employ compliant electronic systems to adapt to this highly dynamic situation. In this study, a hydroprinted liquid-alloy-based morphing electronics (LAME) process is employed for fast-growing plants that will sense physiological signals and even function as a biohybrid to determine plant behavior on demand. Besides various surfaces of inorganic targeting substrates, pinning liquid alloy circuits onto the complex plant epidermis is enhanced by introducing high-surface-energy liquid. Functionally, the new developed LAME can be used to monitor leaf moisture content and length, and manipulate leaf and bean sprout orientation. This study lays the foundation for a new form of morphing electronics for botany or biohybrid plant robots, potentially impacting the next generation of precision agriculture and smart hybrid robots.


Subject(s)
Alloys , Electronics , Monitoring, Physiologic , Agriculture/instrumentation , Alloys/chemistry , Botany/instrumentation , Monitoring, Physiologic/instrumentation
9.
Fish Physiol Biochem ; 42(2): 547-61, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26559691

ABSTRACT

Thioredoxin (Trx) proteins are involved in several cellular processes, such as anti-oxidative stress and cellular redox homeostasis. In this study, we isolated the full-length cDNAs of PoTrx1 and PoTRP14 from Japanese flounder (Paralichthys olivaceus). PoTrx1 is 723 bp in length, with a 366-bp open reading frame (ORF) that encodes for 121 amino acids. PoTRP14 is 909 bp in length, with a 372-bp ORF that encodes for 123 amino acids. PoTrx1 and PoTRP14 are highly conserved in Cys-Gly-Pro-Cys and Cys-Pro-Asp-Cys forms, respectively. Tissue distribution analysis revealed that the transcripts of PoTrx1 and PoTRP14 were ubiquitously expressed in all tested tissues and particularly abundant in immunity-related organs, such as the liver, intestine, gill, and spleen. Development expression profiles indicated that PoTrx1 transcript was expressed from the neurula stage to the 1 day post-hatching stage; the maximum transcript levels were recorded at the somatic stage. The mRNA level of PoTRP14 was constantly expressed at all examined developmental stages, reaching the peak at the before-hatching stage. Prx1 is a peroxiredoxin family member that serves similar functions to PoTrx1 and PoTRP14. A primary hepatocyte culture system was established to examine the immunoregulatory properties of PoTrx1, PoTRP14, and Prx1 in response to lipopolysaccharide, CuSO4, and H2O2 stimulation. Results revealed that the transcript levels of PoTrx1, PoTRP14, and Prx1 were significantly up-regulated in a time-dependent manner after the immunostimulant challenge. These data suggest that PoTrx1, PoTRP14, and Prx1 play critical roles in anti-oxidation and immunoregulation.


Subject(s)
Fish Proteins/metabolism , Flounder/physiology , Homeodomain Proteins/metabolism , Thioredoxins/metabolism , Animals , Flounder/immunology , Immunization
10.
Int J Mol Sci ; 16(3): 6000-17, 2015 Mar 13.
Article in English | MEDLINE | ID: mdl-25782161

ABSTRACT

Members of major histocompatibility complex (MHC) family are important in immune systems. Great efforts have been made to reveal their complicated gene structures. But many existing studies focus on partial sequences of MHC genes. In this study, by gene cloning and sequencing, we identified cDNA sequences and DNA sequences of the MHC class II B in two flatfishes, stone flounder (Kareius bicoloratus) and homozygous diploid Japanese flounder (Paralichthys olivaceus). Eleven cDNA sequences were acquired from eight stone flounder individuals, and most of the polymorphic sites distributed in exons 2 and 3. Twenty-eight alleles were identified from the DNA fragments in these eight individuals. It could be deduced from their Bayesian inference phylogenetic tree that at least four loci of MHC class II B exist in stone flounder. The detailed whole-length DNA sequences in one individual were analyzed, revealing that the intron length varied among different loci. Four different cDNA sequences were identified from one homozygous diploid Japanese flounder individual, implying the existence of at least four loci. Comparison of the cDNA sequences to the DNA sequence confirmed that six exons existed in this gene of Japanese flounder, which was a common feature shared by Pleuronectiformes fishes. Our results proved the multi-locus feature of MHC class II B. The sequences we obtained would provide detailed and systematic data for further research.


Subject(s)
Flounder/genetics , Flounder/metabolism , Genetic Loci/genetics , Histocompatibility Antigens Class II/genetics , Alleles , Amino Acid Sequence , Animals , Base Sequence , Bayes Theorem , DNA, Complementary/metabolism , Exons , Flounder/classification , Histocompatibility Antigens Class II/chemistry , Japan , Molecular Sequence Data , Phylogeny , Sequence Alignment , Sequence Homology, Amino Acid
11.
Int J Mol Sci ; 16(5): 9097-118, 2015 Apr 23.
Article in English | MEDLINE | ID: mdl-25915026

ABSTRACT

PRDM14 is a PR (PRDI-BF1-RIZ1 homologous) domain protein with six zinc fingers and essential roles in genome-wide epigenetic reprogramming. This protein is required for the establishment of germ cells and the maintenance of the embryonic stem cell ground state. In this study, we cloned the full-length cDNA and genomic DNA of the Paralichthys olivaceus prdm14 (Po-prdm14) gene and isolated the 5' regulatory region of Po-prdm14 by whole-genome sequencing. Peptide sequence alignment, gene structure analysis, and phylogenetic analysis revealed that Po-PRDM14 was homologous to mammalian PRDM14. Results of real-time quantitative polymerase chain reaction amplification (RT-qPCR) and in situ hybridization (ISH) in embryos demonstrated that Po-prdm14 was highly expressed between the morula and late gastrula stages, with its expression peaking in the early gastrula stage. Relatively low expression of Po-prdm14 was observed in the other developmental stages. ISH of gonadal tissues revealed that the transcripts were located in the nucleus of the oocytes in the ovaries but only in the spermatogonia and not the spermatocytes in the testes. We also presume that the Po-prdm14 transcription factor binding sites and their conserved binding region among vertebrates. The combined results suggest that Po-PRDM14 has a conserved function in teleosts and mammals.


Subject(s)
Flounder/genetics , Repressor Proteins/chemistry , Repressor Proteins/genetics , Amino Acid Sequence , Animals , Base Sequence , Chromosome Mapping , Cloning, Molecular , DNA, Complementary , Flounder/classification , Gene Expression Regulation , Gene Order , Genetic Loci , Gonads/metabolism , Molecular Sequence Data , Nucleotide Motifs , Phylogeny , Promoter Regions, Genetic , Repressor Proteins/metabolism , Sequence Alignment , Sequence Homology , Transcription Initiation Site
12.
Fish Physiol Biochem ; 40(4): 1263-74, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24566822

ABSTRACT

The Dmrt genes encode a large family of transcription factors with a conserved zinc finger-like DNA-binding DM domain. The function of Dmrt1, one of the family members, in sexual development has been well studied in invertebrates and vertebrates. In the present study, the full-length cDNA of Dmrt1 was isolated from the testis of Sebastes schlegeli. The full-length cDNA of S. schlegeli Dmrt1 (SsDmrt1) was 1,587 bp and contained a 189-bp 5' UTR, a 489-bp 3' UTR and a 909-bp open reading frame, which encoded 302 amino acids with a conserved DM domain and an male-specific motif domain. Phylogenetic analysis showed the evolutionary relationships of SsDmrt1 with other known Dmrt genes in fish and tetrapods. Several transcriptional factor-binding sites in the 5' promoter were identified that might regulate SsDmrt1 expression. Quantitative real-time PCR analysis indicated that SsDmrt1 was expressed in all of the inspected larval developmental stages from 1 to 35 days after birth and that the level of expression gradually decreased. The expression of SsDmrt1 in adult gonads was sexually dimorphic with extremely high expression in the testis, but very low expression in the ovary. No expression was detected in other tissues. Using in situ hybridization, we demonstrated that SsDmrt1 was specifically expressed in the germ cells of both the testis and the ovary. Thus, our results suggest that SsDmrt1 may have an important role in the differentiation of both the testis and the ovary of S. schlegeli.


Subject(s)
Gene Expression Regulation/genetics , Germ Cells/metabolism , Perciformes/genetics , Sex Characteristics , Transcription Factors/genetics , Transcription Factors/metabolism , Animals , Base Sequence , DNA, Complementary/genetics , Gene Components , Humans , In Situ Hybridization , Male , Molecular Sequence Data , Perciformes/metabolism , Phylogeny , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA
13.
Soft Robot ; 11(1): 43-56, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37418155

ABSTRACT

Meso- or micro-scale(or insect-scale) robots that are capable of realizing flexible locomotion and/or carrying on complex tasks in a remotely controllable manner hold great promise in diverse fields, such as biomedical applications, unknown environment exploration, in situ operation in confined spaces, and so on. However, the existing design and implementation approaches for such multifunctional, on-demand configurable insect-scale robots are often focusing on their actuation or locomotion, while matched design and implementation with synergistic actuation and function modules under large deformation targeting varying task/target demands are rarely investigated. In this study, through systematical investigations on synergistical mechanical design and function integration, we developed a matched design and implementation method for constructing multifunctional, on-demand configurable insect-scale soft magnetic robots. Based on such a method, we report a simple approach to construct soft magnetic robots by assembling various modules from the standard part library together. Moreover, diverse soft magnetic robots with desirable motion and function can be (re)configured. Finally, we demonstrated (re)configurable soft magnetic robots shifting into different modes to adapt and respond to varying scenarios. The customizable physical realization of complex soft robots with desirable actuation and diverse functions can pave a new way for constructing more sophisticated insect-scale soft machines that can be applied to practical applications soon.

14.
Chem Sci ; 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39323523

ABSTRACT

A novel approach for efficient synthesis of chiral C,O-chelated BINOL/gold(iii) complexes by diastereomeric resolution using enantiopure BINOL as a chiral resolving agent was demonstrated. The BINOL/gold(iii) diastereomers with different solubility were separated by simple filtration, providing optically pure BINOL/gold(iii) complexes with up to >99 : 1 dr. By combining this with an efficient BINOL ligand dissociation process, a simple and column-free method for chiral resolution of racemic gold(iii) dichloride complexes on a gram scale was established, affording their enantiopure forms in good yields. Conversely, the resolved enantiopure gold(iii) dichloride complexes could serve as chiral resolving agents to resolve disubstituted BINOL derivatives, achieving both BINOLs and gold(iii) complexes in good to excellent yields (overall 77-96% and 76-95%, respectively) with a high optical purity of up to 99% ee. Through a consecutive chirality transfer process, the chiral information from an inexpensive chiral source was transferred to highly valuable gold(iii) complexes, followed by sterically bulky BINOL derivatives. This work would open a new synthetic strategy facilitating the development of structurally diverse chiral gold(iii) complexes and gold(iii)-mediated chiral resolution of BINOL derivatives. In addition, this new class of C,O-chelated BINOL/gold(iii) complexes achieved asymmetric carboalkoxylation of ortho-alkynylbenzaldehydes with an excellent enantioselectivity of up to 99% ee.

15.
Chempluschem ; 89(2): e202300316, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37493184

ABSTRACT

Gold (III) cyclometalated based amphiphiles in aqueous media have been revealed with excellent supramolecular transformations to external stimuli to open new pathways for soft functional material fabrications. Herein, we report a new chiral cyclometalated gold (III) amphiphile (GA) assembling into lamellar nanostructures in aqueous media confirmed with transmission electron microscopy (TEM). Counterion exchange with D-, L-, or racemic-camphorsulfonates features the significant supramolecular helicity enhancements, enabling transformations of GA from lamellar structure to vesicles and to nanotubes with multi-equivalents of counterion. The limited cytotoxicity of GA in aqueous media exhibits good biocompatibility.

16.
Carbohydr Polym ; 343: 122484, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39174103

ABSTRACT

Cellulose molecules, as the basic unit of biomass cellulose, have demonstrated advancements in versatile engineering and modification of cellulose toward sustainable and promising materials in our low-carbon society. However, harvesting high-quality cellulose molecules from natural cellulosic fibers (CF) remains challenging due to strong hydrogen bonds and unique crystalline structure, which limit solvents (such as ionic liquid, IL) transport and diffusion within CF, making the process energy/time-intensively. Herein, we superfast and sustainably engineer biomass fibers into high-performance cellulose molecules via ethanol pre-swelling of CF followed by IL treatment in the microwave (MW) system. Ethanol-pre-swelled cellulosic fibers (SCF) feature modified morphological and structural distinctions, with improved fiber width, pore size, and specific surface area. The ethanol in the SCF structure is appropriately removed through MW heating and cooling, leaving transport and diffusion pathways of IL within the SCF. Such strategy enables the superfast (140 s) and large-scale (kilogram level) harvesting of cellulose molecules with high molecular weight, resulting in high-performance, versatile cellulose ionogel with a 300 % increase in strength and 1027 % in toughness, monitoring human movement, external pressure, and temperature. Our strategy paves the way for time/energy-effectively, sustainably harvesting high-quality polymer molecules from natural sources beyond cellulose toward versatile and advanced materials.

17.
Chempluschem ; 89(2): e202300750, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38150644

ABSTRACT

Invited for this month's cover are the collaborating groups of Prof. Man-Kin Wong and Dr. Franco King-Chi Leung from The Hong Kong Polytechnic University. The cover picture illustrates chiral gold (III) amphiphiles assemble into tubular supramolecular structures in aqueous media through counterion controlled pathway. The nanostructures were further demonstrated with good cytocompatibility in aqueous media. More information can be found in the Research Article by Man-Kin Wong, Franco King-Chi Leung, and co-workers.

18.
CNS Neurosci Ther ; 30(2): e14361, 2024 02.
Article in English | MEDLINE | ID: mdl-37491837

ABSTRACT

AIMS: We aimed to investigate whether peripheral T-cell subsets could be a biomarker to distinguish major depressive disorder (MDD) and bipolar disorder (BD). METHODS: Medical records of hospitalized patients in the Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, from January 2015 to September 2020 with a discharge diagnosis of MDD or BD were reviewed. Patients who underwent peripheral blood examination of T-cell subtype proportions, including CD3+, CD4+, CD8+ T-cell, and natural killer (NK) cells, were enrolled. The Chi-square test, t-test, or one-way analysis of variance were used to analyze group differences. Demographic profiles and T-cell data were used to construct a random forest classifier-based diagnostic model. RESULTS: Totally, 98 cases of BD mania, 459 cases of BD depression (BD-D), and 458 cases of MDD were included. There were significant differences in the proportions of CD3+, CD4+, CD8+ T-cell, and NK cells among the three groups. Compared with MDD, the BD-D group showed higher CD8+ but lower CD4+ T-cell and a significantly lower ratio of CD4+ and CD8+ proportions. The random forest model achieved an area under the curve of 0.77 (95% confidence interval: 0.71-0.83) to distinguish BD-D from MDD patients. CONCLUSION: These findings imply that BD and MDD patients may harbor different T-cell inflammatory patterns, which could be a potential diagnostic biomarker for mood disorders.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , Humans , Bipolar Disorder/diagnosis , Depressive Disorder, Major/diagnosis , Retrospective Studies , T-Lymphocyte Subsets , Biomarkers
19.
J Affect Disord ; 360: 229-241, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823591

ABSTRACT

A high-fat diet can modify the composition of gut microbiota, resulting in dysbiosis. Changes in gut microbiota composition can lead to increased permeability of the gut barrier, allowing bacterial products like lipopolysaccharides (LPS) to enter circulation. This process can initiate systemic inflammation and contribute to neuroinflammation. Empagliflozin (EF), an SGLT2 inhibitor-type hypoglycemic drug, has been reported to treat neuroinflammation. However, there is a lack of evidence showing that EF regulates the gut microbiota axis to control neuroinflammation in HFD models. In this study, we explored whether EF could improve neuroinflammation caused by an HFD via regulation of the gut microbiota and the mechanism underlying this phenomenon. Our data revealed that EF alleviates pathological brain injury, reduces the reactive proliferation of astrocytes, and increases the expression of synaptophysin. In addition, the levels of inflammatory factors in hippocampal tissue were significantly decreased after EF intervention. Subsequently, the results of 16S rRNA gene sequencing showed that EF could change the microbial community structure of mice, indicating that the abundance of Lactococcus, Ligilactobacillus and other microbial populations decreased dramatically. Therefore, EF alleviates neuroinflammation by inhibiting gut microbiota-mediated astrocyte activation in the brains of high-fat diet-fed mice. Our study focused on the gut-brain axis, and broader research on neuroinflammation can provide a more holistic understanding of the mechanisms driving neurodegenerative diseases and inform the development of effective strategies to mitigate their impact on brain health. The results provide strong evidence supporting the larger clinical application of EF.


Subject(s)
Astrocytes , Benzhydryl Compounds , Diet, High-Fat , Gastrointestinal Microbiome , Glucosides , Neuroinflammatory Diseases , Animals , Gastrointestinal Microbiome/drug effects , Diet, High-Fat/adverse effects , Astrocytes/drug effects , Glucosides/pharmacology , Mice , Benzhydryl Compounds/pharmacology , Neuroinflammatory Diseases/drug therapy , Male , Mice, Inbred C57BL , Brain/drug effects , Brain-Gut Axis/drug effects , Disease Models, Animal , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Dysbiosis
20.
ACS Nano ; 18(1): 662-679, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38134332

ABSTRACT

Developing an environmentally friendly and safe nanodelivery system is crucial to improve the efficacy of pesticides and minimize environmental and health risks. However, preparing a completely water-based nanopesticide without using harmful solvents is a technical challenge. In this study, a water-based nanodelivery pesticide system was constructed to improve the efficacy and safety of Emamectin Benzoate (EB). A specific surfactant, 29-(4-(5-hydroxynonan-5-yl)phenoxy)-3,6,9,12,15,18,21,24,27-nonaoxanonacosan-1-ol (SurEB) was designed and synthesized to form a water-based nanodelivery system (EBWNS) with EB. Molecular dynamics simulations revealed the self-assembly and interaction forces between SurEB and EB in water, providing insights into the formation mechanism of EBWNS nanoparticles. The nanodelivery system showed the prolonged effectivity of EB with reduced degradation and demonstrated a good control efficacy for multiple target pests, such as red spider mite, beet armyworm larvae (Lepidoptera: Noctuidae), and rice stem borers (Chilo suppressalis). Toxicology tests on various objects demonstrated that the EBWNS has low toxicity for seeds, HaCaT cells, zebrafish, earthworm, and E. coli. This study provides a distinctive perspective for developing environmentally friendly nanopesticide formulations, which clarified a water-based treatment method for specific lipid-soluble pesticides. The water-based nanodelivery pesticide system has the potential to improve the efficacy and safety of pesticides in the process of field applications.


Subject(s)
Pesticides , Animals , Water , Escherichia coli , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL