Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Neurochem Res ; 48(5): 1382-1394, 2023 May.
Article in English | MEDLINE | ID: mdl-36460840

ABSTRACT

BACKGROUND: Ischemic stroke is a very dangerous disease with high incidence, fatality and disability rate in human beings. Massive evidence has indicated that oxidative stress and inflammation are intimately correlated with progression of ischemic stroke. Additionally, LncRNAs were reported to be involved in ischemic stroke. Here, we aim to explore the effects and molecular mechanism of lncRNA OIP5-AS1 on oxidative stress and inflammation in ischemic stroke. METHODS: HMC3 and SH-SY5Y cells were under the condition of oxygen-glucose deprivation/reoxygenation (OGD/R) treatment to establish cell models of ischemic stroke. Commercial kits were employed to detect the indicators of oxidative stress including ROS, MDA and SOD. The expression of OIP5-AS1, miR-155-5p and IRF2BP2 mRNA was determined using RT-qPCR. The protein levels of inflammatory factors including TNF-α, IL-1ß and IL-6 and IRF2BP2 were assessed by western blot and/or ELISA. Luciferase activity assay was employed to validate their correlations among OIP5-AS1, miR-155-5p and IRF2BP2. RESULTS: In OGD/R-induced HMC3 and SH-SY5Y cells, the expression of OIP5-AS1 and IRF2BP2 was reduced while miR-155-5p was elevated. OGD/R induction promoted oxidative stress and inflammatory response in HMC3 and SH-SY5Y cells, while OIP5-AS1 or IRF2BP2 sufficiency as well as miR-155-5p inhibitor attenuated OGD/R-induced these influences. In addition, IRF2BP2 knockdown abolished the suppressive impacts of OIP5-AS1 overexpression on oxidative stress and inflammatory response in OGD/R-induced HMC3 and SH-SY5Y cells. Mechanistically, OIP5-AS1 enhanced IRF2BP2 expression via sponging miR-155-5p. CONCLUSION: OIP5-AS1 suppressed oxidative stress and inflammatory response to alleviate cell injury caused by OGD/R induction in HMC3 and SH-SY5Y cells through regulating miR-155-5p/IRF2BP2 axis, which might offer novel targeted molecules for ischemic stroke therapy.


Subject(s)
Ischemic Stroke , MicroRNAs , Neuroblastoma , Humans , MicroRNAs/metabolism , Inflammation/genetics , Oxidative Stress , DNA-Binding Proteins/metabolism , Transcription Factors/metabolism
2.
World J Cardiol ; 16(7): 422-435, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39086892

ABSTRACT

BACKGROUND: Chronic heart failure is a complex clinical syndrome. The Chinese herbal compound preparation Jianpi Huatan Quyu recipe has been used to treat chronic heart failure; however, the underlying molecular mechanism is still not clear. AIM: To identify the effective active ingredients of Jianpi Huatan Quyu recipe and explore its molecular mechanism in the treatment of chronic heart failure. METHODS: The effective active ingredients of eight herbs composing Jianpi Huatan Quyu recipe were identified using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. The target genes of chronic heart failure were searched in the Genecards database. The target proteins of active ingredients were mapped to chronic heart failure target genes to obtain the common drug-disease targets, which were then used to construct a key chemical component-target network using Cytoscape 3.7.2 software. The protein-protein interaction network was constructed using the String database. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed through the Metascape database. Finally, our previously published relevant articles were searched to verify the results obtained via network pharmacology. RESULTS: A total of 227 effective active ingredients for Jianpi Huatan Quyu recipe were identified, of which quercetin, kaempferol, 7-methoxy-2-methyl isoflavone, formononetin, and isorhamnetin may be key active ingredients and involved in the therapeutic effects of TCM by acting on STAT3, MAPK3, AKT1, JUN, MAPK1, TP53, TNF, HSP90AA1, p65, MAPK8, MAPK14, IL6, EGFR, EDN1, FOS, and other proteins. The pathways identified by KEGG enrichment analysis include pathways in cancer, IL-17 signaling pathway, PI3K-Akt signaling pathway, HIF-1 signaling pathway, calcium signaling pathway, cAMP signaling pathway, NF-kappaB signaling pathway, AMPK signaling pathway, etc. Previous studies on Jianpi Huatan Quyu recipe suggested that this Chinese compound preparation can regulate the TNF-α, IL-6, MAPK, cAMP, and AMPK pathways to affect the mitochondrial structure of myocardial cells, oxidative stress, and energy metabolism, thus achieving the therapeutic effects on chronic heart failure. CONCLUSION: The Chinese medicine compound preparation Jianpi Huatan Quyu recipe exerts therapeutic effects on chronic heart failure possibly by influencing the mitochondrial structure of cardiomyocytes, oxidative stress, energy metabolism, and other processes. Future studies are warranted to investigate the role of the IL-17 signaling pathway, PI3K-Akt signaling pathway, HIF-1 signaling pathway, and other pathways in mediating the therapeutic effects of Jianpi Huatan Quyu recipe on chronic heart failure.

3.
Mol Neurobiol ; 60(10): 6109-6120, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37422573

ABSTRACT

Ischemic stroke causes lethal damage to the brain. Identifying key regulators of OGD/R-induced cerebral injury is important for developing novel therapies for ischemic stroke. HMC3 and SH-SY5Y cells were treated with OGD/R as an in vitro ischemic stroke model. Cell viability and apoptosis were determined via CCK-8 assay and flow cytometry. Inflammatory cytokines were examined by ELISA. Luciferase activity was measured for evaluating the interaction of XIST, miR-25-3p, and TRAF3. Bcl-2, Bax, Bad, cleaved-caspase 3, total caspase 3, and TRAF3 were detected via western blotting. HMC3 and SH-SY5Y cells showed increased XIST expression and decreased miR-25-3p expression following OGD/R. Importantly, silencing of XIST and overexpression of miR-25-3p reduced apoptosis and inflammatory response following OGD/R. Furthermore, XIST worked as a miR-25-3p sponge, and miR-25-3p targeted TRAF3 to suppress its expression. Moreover, the knockdown of TRAF3 ameliorated OGD/R-induced injury. Loss of XIST-mediated protective effects was reversed by overexpression of TRAF3. LncRNA XIST exacerbates OGD/R-induced cerebral damage via sponging miR-25-3p and enhancing TRAF3 expression.


Subject(s)
Ischemic Stroke , MicroRNAs , Neuroblastoma , RNA, Long Noncoding , Reperfusion Injury , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , Caspase 3/metabolism , TNF Receptor-Associated Factor 3/genetics , TNF Receptor-Associated Factor 3/metabolism , Glucose , Oxygen/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Apoptosis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL