Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell Mol Life Sci ; 78(4): 1837-1851, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32851475

ABSTRACT

Proteasome inhibitors, such as bortezomib and carfilzomib, have shown efficacy in anti-cancer therapy in hematological diseases but not in solid cancers. Here, we found that liposarcomas (LPS) are susceptible to proteasome inhibition, and identified drugs that synergize with carfilzomib, such as selinexor, an inhibitor of XPO1-mediated nuclear export. Through quantitative nuclear protein profiling and phospho-kinase arrays, we identified potential mode of actions of this combination, including interference with ribosome biogenesis and inhibition of pro-survival kinase PRAS40. Furthermore, by assessing global protein levels changes, FADS2, a key enzyme regulating fatty acids synthesis, was found down-regulated after proteasome inhibition. Interestingly, SC26196, an inhibitor of FADS2, synergized with carfilzomib. Finally, to identify further combinational options, we performed high-throughput drug screening and uncovered novel drug interactions with carfilzomib. For instance, cyclosporin A, a known immunosuppressive agent, enhanced carfilzomib's efficacy in vitro and in vivo. Altogether, these results demonstrate that carfilzomib and its combinations could be repurposed for LPS clinical management.


Subject(s)
Fatty Acid Desaturases/genetics , Karyopherins/genetics , Liposarcoma/drug therapy , Oligopeptides/pharmacology , Receptors, Cytoplasmic and Nuclear/genetics , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Bortezomib/pharmacology , Cell Line, Tumor , Cell Nucleus/drug effects , Drug Resistance, Neoplasm/genetics , Drug Synergism , Fatty Acid Desaturases/antagonists & inhibitors , Gene Expression Regulation, Neoplastic/drug effects , Humans , Hydrazines/pharmacology , Liposarcoma/genetics , Liposarcoma/pathology , Piperazines/pharmacology , Proteasome Endopeptidase Complex/drug effects , Proteasome Inhibitors/pharmacology , Triazoles/pharmacology , Exportin 1 Protein
2.
Gastroenterology ; 159(4): 1311-1327.e19, 2020 10.
Article in English | MEDLINE | ID: mdl-32619460

ABSTRACT

BACKGROUND & AIMS: We investigated the transcriptome of esophageal squamous cell carcinoma (ESCC) cells, activity of gene regulatory (enhancer and promoter regions), and the effects of blocking epigenetic regulatory proteins. METHODS: We performed chromatin immunoprecipitation sequencing with antibodies against H3K4me1, H3K4me3, and H3K27ac and an assay for transposase-accessible chromatin to map the enhancer regions and accessible chromatin in 8 ESCC cell lines. We used the CRC_Mapper algorithm to identify core regulatory circuitry transcription factors in ESCC cell lines, and determined genome occupancy profiles for 3 of these factors. In ESCC cell lines, expression of transcription factors was knocked down with small hairpin RNAs, promoter and enhancer regions were disrupted by CRISPR/Cas9 genome editing, or bromodomains and extraterminal (BET) family proteins and histone deacetylases (HDACs) were inhibited with ARV-771 and romidepsin, respectively. ESCC cell lines were then analyzed by whole-transcriptome sequencing, immunoprecipitation, immunoblots, immunohistochemistry, and viability assays. Interactions between distal enhancers and promoters were identified and verified with circular chromosome conformation capture sequencing. NOD-SCID mice were given injections of modified ESCC cells, some mice where given injections of HDAC or BET inhibitors, and growth of xenograft tumors was measured. RESULTS: We identified super-enhancer-regulated circuits and transcription factors TP63, SOX2, and KLF5 as core regulatory factors in ESCC cells. Super-enhancer regulation of ALDH3A1 mediated by core regulatory factors was required for ESCC viability. We observed direct interactions between the promoter region of TP63 and functional enhancers, mediated by the core regulatory circuitry transcription factors. Deletion of enhancer regions from ESCC cells decreased expression of the core regulatory circuitry transcription factors and reduced cell viability; these same results were observed with knockdown of each core regulatory circuitry transcription factor. Incubation of ESCC cells with BET and HDAC disrupted the core regulatory circuitry program and the epigenetic modifications observed in these cells; mice given injections of HDAC or BET inhibitors developed smaller xenograft tumors from the ESCC cell lines. Xenograft tumors grew more slowly in mice given the combination of ARV-771 and romidepsin than mice given either agent alone. CONCLUSIONS: In epigenetic and transcriptional analyses of ESCC cell lines, we found the transcription factors TP63, SOX2, and KLF5 to be part of a core regulatory network that determines chromatin accessibility, epigenetic modifications, and gene expression patterns in these cells. A combination of epigenetic inhibitors slowed growth of xenograft tumors derived from ESCC cells in mice.


Subject(s)
Epigenesis, Genetic , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/genetics , Gene Expression Regulation, Neoplastic , Kruppel-Like Transcription Factors/genetics , SOXB1 Transcription Factors/genetics , Transcription Factors/genetics , Transcription, Genetic , Tumor Suppressor Proteins/genetics , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation , Chromatin Assembly and Disassembly , Epigenesis, Genetic/drug effects , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/pathology , Gene Expression Regulation, Neoplastic/drug effects , Histone Deacetylase Inhibitors/pharmacology , Humans , Kruppel-Like Transcription Factors/metabolism , Mice, Inbred NOD , Mice, SCID , Proteins/antagonists & inhibitors , Proteins/metabolism , SOXB1 Transcription Factors/metabolism , Transcription Factors/metabolism , Transcription, Genetic/drug effects , Transcriptome , Tumor Burden , Tumor Suppressor Proteins/metabolism , Xenograft Model Antitumor Assays
3.
Nucleic Acids Res ; 47(3): 1255-1267, 2019 02 20.
Article in English | MEDLINE | ID: mdl-30496486

ABSTRACT

As the second most common malignant bone tumor in children and adolescents, Ewing sarcoma is initiated and exacerbated by a chimeric oncoprotein, most commonly, EWS-FLI1. In this study, we apply epigenomic analysis to characterize the transcription dysregulation in this cancer, focusing on the investigation of super-enhancer and its associated transcriptional regulatory mechanisms. We demonstrate that super-enhancer-associated transcripts are significantly enriched in EWS-FLI1 target genes, contribute to the aberrant transcriptional network of the disease, and mediate the exceptional sensitivity of Ewing sarcoma to transcriptional inhibition. Through integrative analysis, we identify MEIS1 as a super-enhancer-driven oncogene, which co-operates with EWS-FLI1 in transcriptional regulation, and plays a key pro-survival role in Ewing sarcoma. Moreover, APCDD1, another super-enhancer-associated gene, acting as a downstream target of both MEIS1 and EWS-FLI1, is also characterized as a novel tumor-promoting factor in this malignancy. These data delineate super-enhancer-mediated transcriptional deregulation in Ewing sarcoma, and uncover numerous candidate oncogenes which can be exploited for further understanding of the molecular pathogenesis for this disease.


Subject(s)
Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Myeloid Ecotropic Viral Integration Site 1 Protein/genetics , Sarcoma, Ewing/genetics , Transcription, Genetic , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Enhancer Elements, Genetic , Gene Expression Regulation, Neoplastic , Humans , Nucleotide Motifs/genetics , Oncogene Proteins, Fusion/genetics , Proto-Oncogene Protein c-fli-1/genetics , RNA-Binding Protein EWS/genetics , Sarcoma, Ewing/pathology , Signal Transduction/genetics
4.
Gut ; 69(4): 630-640, 2020 04.
Article in English | MEDLINE | ID: mdl-31409603

ABSTRACT

OBJECTIVE: While oesophageal squamous cell carcinoma remains infrequent in Western populations, the incidence of oesophageal adenocarcinoma (EAC) has increased sixfold to eightfold over the past four decades. We aimed to characterise oesophageal cancer-specific and subtypes-specific gene regulation patterns and their upstream transcription factors (TFs). DESIGN: To identify regulatory elements, we profiled fresh-frozen oesophageal normal samples, tumours and cell lines with chromatin immunoprecipitation sequencing (ChIP-Seq). Mathematical modelling was performed to establish (super)-enhancers landscapes and interconnected transcriptional circuitry formed by master TFs. Coregulation and cooperation between master TFs were investigated by ChIP-Seq, circularised chromosome conformation capture sequencing and luciferase assay. Biological functions of candidate factors were evaluated both in vitro and in vivo. RESULTS: We found widespread and pervasive alterations of the (super)-enhancer reservoir in both subtypes of oesophageal cancer, leading to transcriptional activation of a myriad of novel oncogenes and signalling pathways, some of which may be exploited pharmacologically (eg, leukemia inhibitory factor (LIF) pathway). Focusing on EAC, we bioinformatically reconstructed and functionally validated an interconnected circuitry formed by four master TFs-ELF3, KLF5, GATA6 and EHF-which promoted each other's expression by interacting with each super-enhancer. Downstream, these master TFs occupied almost all EAC super-enhancers and cooperatively orchestrated EAC transcriptome. Each TF within the transcriptional circuitry was highly and specifically expressed in EAC and functionally promoted EAC cell proliferation and survival. CONCLUSIONS: By establishing cancer-specific and subtype-specific features of the EAC epigenome, our findings promise to transform understanding of the transcriptional dysregulation and addiction of EAC, while providing molecular clues to develop novel therapeutic modalities against this malignancy.


Subject(s)
Adenocarcinoma/genetics , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/genetics , Gene Regulatory Networks/physiology , Transcription Factors/genetics , Adenocarcinoma/pathology , Case-Control Studies , Cell Line, Tumor , Cell Proliferation , DNA-Binding Proteins/genetics , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/pathology , GATA6 Transcription Factor/genetics , Humans , Kruppel-Like Transcription Factors/genetics , Proto-Oncogene Proteins c-ets/genetics
5.
EMBO Rep ; 19(1): 73-88, 2018 01.
Article in English | MEDLINE | ID: mdl-29217659

ABSTRACT

p63, more specifically its ΔNp63α isoform, plays essential roles in squamous cell carcinomas (SCCs), yet the mechanisms controlling its nuclear transport remain unknown. Nucleoporins (NUPs) are a family of proteins building nuclear pore complexes (NPC) and mediating nuclear transport across the nuclear envelope. Recent evidence suggests a cell type-specific function for certain NUPs; however, the significance of NUPs in SCC biology remains unknown. In this study, we show that nucleoporin 62 (NUP62) is highly expressed in stratified squamous epithelia and is further elevated in SCCs. Depletion of NUP62 inhibits proliferation and augments differentiation of SCC cells. The impaired ability to maintain the undifferentiated status is associated with defects in ΔNp63α nuclear transport. We further find that differentiation-inducible Rho kinase reduces the interaction between NUP62 and ΔNp63α by phosphorylation of phenylalanine-glycine regions of NUP62, attenuating ΔNp63α nuclear import. Our results characterize NUP62 as a gatekeeper for ΔNp63α and uncover its role in the control of cell fate through regulation of ΔNp63α nuclear transport in SCC.


Subject(s)
Carcinoma, Squamous Cell/genetics , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms/genetics , Membrane Glycoproteins/genetics , Membrane Proteins/genetics , Nuclear Pore Complex Proteins/genetics , Skin Neoplasms/genetics , Uterine Cervical Neoplasms/genetics , rho-Associated Kinases/genetics , Active Transport, Cell Nucleus/genetics , Amino Acid Sequence , Atlases as Topic , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cell Differentiation , Cell Line, Tumor , Cell Nucleus/metabolism , Cell Proliferation , Computational Biology , Cytosol/metabolism , Female , HEK293 Cells , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Humans , Membrane Glycoproteins/metabolism , Membrane Proteins/metabolism , Nuclear Pore Complex Proteins/metabolism , Phosphorylation , Rho Guanine Nucleotide Exchange Factors/genetics , Rho Guanine Nucleotide Exchange Factors/metabolism , Signal Transduction , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , rho-Associated Kinases/metabolism
6.
Proc Natl Acad Sci U S A ; 114(15): 3981-3986, 2017 04 11.
Article in English | MEDLINE | ID: mdl-28356518

ABSTRACT

ZBTB transcription factors orchestrate gene transcription during tissue development. However, their roles in glioblastoma (GBM) remain unexplored. Here, through a functional screening of ZBTB genes, we identify that BCL6 is required for GBM cell viability and that BCL6 overexpression is associated with worse prognosis. In a somatic transgenic mouse model, depletion of Bcl6 inhibits the progression of KrasG12V-driven high-grade glioma. Transcriptome analysis demonstrates the involvement of BCL6 in tumor protein p53 (TP53), erythroblastic leukemia viral oncogene homolog (ErbB), and MAPK signaling pathways. Indeed, BCL6 represses the expression of wild-type p53 and its target genes in GBM cells. Knockdown of BCL6 augments the activation of TP53 pathway in response to radiation. Importantly, we discover that receptor tyrosine kinase AXL is a transcriptional target of BCL6 in GBM and mediates partially the regulatory effects of BCL6 on both MEK-ERK (mitogen-activated protein/extracellular signal-regulated kinase kinase-extracellular signal-regulated kinase) and S6K-RPS6 (ribosomal protein S6 kinase-ribosomal protein S6) axes. Similar to BCL6 silencing, depletion of AXL profoundly attenuates GBM proliferation both in vitro and in vivo. Moreover, targeted inhibition of BCL6/nuclear receptor corepressor 1 (NCoR) complex by peptidomimetic inhibitor not only significantly decreases AXL expression and the activity of MEK-ERK and S6K-RPS6 cascades but also displays a potent antiproliferative effect against GBM cells. Together, these findings uncover a glioma-promoting role of BCL6 and provide the rationale of targeting BCL6 as a potential therapeutic approach.


Subject(s)
Glioblastoma/drug therapy , Glioblastoma/pathology , Proto-Oncogene Proteins c-bcl-6/metabolism , Animals , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Gefitinib , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/metabolism , Glioma/genetics , Glioma/metabolism , Glioma/pathology , Humans , MAP Kinase Kinase Kinases/metabolism , Mice, Mutant Strains , Molecular Targeted Therapy , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-bcl-6/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-6/genetics , Quinazolines/pharmacology , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays , Axl Receptor Tyrosine Kinase
7.
Gastroenterology ; 154(8): 2137-2151.e1, 2018 06.
Article in English | MEDLINE | ID: mdl-29454790

ABSTRACT

BACKGROUND & AIMS: Long non-coding RNAs (lncRNAs) are expressed in tissue-specific pattern, but it is not clear how these are regulated. We aimed to identify squamous cell carcinoma (SCC)-specific lncRNAs and investigate mechanisms that control their expression and function. METHODS: We studied expression patterns and functions of 4 SCC-specific lncRNAs. We obtained 113 esophageal SCC (ESCC) and matched non-tumor esophageal tissues from a hospital in Shantou City, China, and performed quantitative reverse transcription polymerase chain reaction assays to measure expression levels of LINC01503. We collected clinical data from patients and compared expression levels with survival times. LINC01503 was knocked down using small interfering RNAs and oligonucleotides in TE7, TE5, and KYSE510 cell lines and overexpressed in KYSE30 cells. Cells were analyzed by chromatin immunoprecipitation sequencing, luciferase reporter assays, colony formation, migration and invasion, and mass spectrometry analyses. Cells were injected into nude mice and growth of xenograft tumors was measured. LINC01503 interaction with proteins was studied using fluorescence in situ hybridization, RNA pulldown, and RNA immunoprecipitation analyses. RESULTS: We identified a lncRNA, LINC01503, which is regulated by a super enhancer and is expressed at significantly higher levels in esophageal and head and neck SCCs than in non-tumor tissues. High levels in SCCs correlated with shorter survival times of patients. The transcription factor TP63 bound to the super enhancer at the LINC01503 locus and activated its transcription. Expression of LINC01503 in ESCC cell lines increased their proliferation, colony formation, migration, and invasion. Knockdown of LINC01503 in SCC cells reduced their proliferation, colony formation, migration, and invasion, and the growth of xenograft tumors in nude mice. Expression of LINC01503 in ESCC cell lines reduced ERK2 dephosphorylation by DUSP6, leading to activation of ERK signaling via MAPK. LINC01503 disrupted the interaction between EBP1 and the p85 subunit of PI3K, increasing AKT signaling. CONCLUSIONS: We identified an lncRNA, LINC01503, which is increased in SCC cells compared with non-tumor cells. Increased expression of LINC01503 promotes ESCC cell proliferation, migration, invasion, and growth of xenograft tumors. It might be developed as a biomarker of aggressive SCCs in patients.


Subject(s)
Carcinogenesis/genetics , Carcinoma, Squamous Cell/genetics , Esophageal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , RNA, Long Noncoding/genetics , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics , Animals , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Squamous Cell/mortality , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , China , Enhancer Elements, Genetic/genetics , Esophageal Neoplasms/mortality , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma , Female , Gene Expression Profiling , Gene Knockdown Techniques , Humans , Male , Mice , Mice, Nude , Middle Aged , RNA Interference , RNA, Long Noncoding/metabolism , RNA, Small Interfering/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism , Xenograft Model Antitumor Assays
8.
J Pathol ; 246(1): 89-102, 2018 09.
Article in English | MEDLINE | ID: mdl-29926931

ABSTRACT

Characterising the activated oncogenic signalling that leads to advanced breast cancer is of clinical importance. Here, we showed that SET domain, bifurcated 1 (SETDB1), a histone H3 lysine 9 methyltransferase, is aberrantly expressed and behaves as an oncogenic driver in breast cancer. SETDB1 enhances c-MYC and cyclin D1 expression by promoting the internal ribosome entry site (IRES)-mediated translation of MYC/CCND1 mRNA, resulting in prominent signalling of c-MYC to promote cell cycle progression, and provides a growth/self-renewal advantage to breast cancer cells. The activated c-MYC-BMI1 axis is essential for SETDB1-mediated breast tumourigenesis, because silencing of either c-MYC or BMI1 profoundly impairs the enhanced growth/colony formation conferred by SETDB1. Furthermore, c-MYC directly binds to the SETDB1 promoter region and enhances its transcription, suggesting a positive regulatory interplay between SETDB1 and c-MYC. In this study, we identified SETDB1 as a prominent oncogene and characterised the underlying mechanism whereby SETDB1 drives breast cancer, providing a therapeutic rationale for targeting SETDB1-BMI1 signalling in breast cancer. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Breast Neoplasms/enzymology , Carcinogenesis/metabolism , Polycomb Repressive Complex 1/metabolism , Protein Methyltransferases/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Cycle , Cell Proliferation , Cyclin D1/genetics , Cyclin D1/metabolism , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Gene Expression Regulation, Neoplastic , HEK293 Cells , Histone-Lysine N-Methyltransferase , Humans , MCF-7 Cells , Mice , Oncogenes , Polycomb Repressive Complex 1/genetics , Protein Methyltransferases/genetics , Proto-Oncogene Proteins c-myc/genetics , Signal Transduction , Transcriptional Activation
9.
Gut ; 67(10): 1769-1779, 2018 10.
Article in English | MEDLINE | ID: mdl-28860350

ABSTRACT

OBJECTIVES: Oesophageal squamous cell carcinoma (OSCC) and adenocarcinoma (OAC) are distinct cancers in terms of a number of clinical and epidemiological characteristics, complicating the design of clinical trials and biomarker developments. We analysed 1048 oesophageal tumour-germline pairs from both subtypes, to characterise their genomic features, and biological and clinical significance. DESIGN: Previously exome-sequenced samples were re-analysed to identify significantly mutated genes (SMGs) and mutational signatures. The biological functions of novel SMGs were investigated using cell line and xenograft models. We further performed whole-genome bisulfite sequencing and chromatin immunoprecipitation (ChIP)-seq to characterise epigenetic alterations. RESULTS: OSCC and OAC displayed nearly mutually exclusive sets of driver genes, indicating that they follow independent developmental paths. The combined sample size allowed the statistical identification of a number of novel subtype-specific SMGs, mutational signatures and prognostic biomarkers. Particularly, we identified a novel mutational signature similar to Catalogue Of Somatic Mutations In Cancer (COSMIC)signature 16, which has prognostic value in OSCC. Two newly discovered SMGs, CUL3 and ZFP36L2, were validated as important tumour-suppressors specific to the OSCC subtype. We further identified their additional loss-of-function mechanisms. CUL3 was homozygously deleted specifically in OSCC and other squamous cell cancers (SCCs). Notably, ZFP36L2 is associated with super-enhancer in healthy oesophageal mucosa; DNA hypermethylation in its super-enhancer reduced active histone markers in squamous cancer cells, suggesting an epigenetic inactivation of a super-enhancer-associated SCC suppressor. CONCLUSIONS: These data comprehensively contrast differences between OSCC and OAC at both genomic and epigenomic levels, and reveal novel molecular features for further delineating the pathophysiological mechanisms and treatment strategies for these cancers.


Subject(s)
Adenocarcinoma/genetics , Carcinoma, Squamous Cell/genetics , Cullin Proteins/genetics , Esophageal Neoplasms/genetics , Transcription Factors/genetics , Adenocarcinoma/pathology , Animals , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Proliferation/genetics , DNA Methylation , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma , Humans , Loss of Function Mutation , Prognosis
10.
Gut ; 66(8): 1358-1368, 2017 08.
Article in English | MEDLINE | ID: mdl-27196599

ABSTRACT

OBJECTIVES: Oesophageal squamous cell carcinoma (OSCC) is an aggressive malignancy and the major histological subtype of oesophageal cancer. Although recent large-scale genomic analysis has improved the description of the genetic abnormalities of OSCC, few targetable genomic lesions have been identified, and no molecular therapy is available. This study aims to identify druggable candidates in this tumour. DESIGN: High-throughput small-molecule inhibitor screening was performed to identify potent anti-OSCC compounds. Whole-transcriptome sequencing (RNA-Seq) and chromatin immunoprecipitation sequencing (ChIP-Seq) were conducted to decipher the mechanisms of action of CDK7 inhibition in OSCC. A variety of in vitro and in vivo cellular assays were performed to determine the effects of candidate genes on OSCC malignant phenotypes. RESULTS: The unbiased high-throughput small-molecule inhibitor screening led us to discover a highly potent anti-OSCC compound, THZ1, a specific CDK7 inhibitor. RNA-Seq revealed that low-dose THZ1 treatment caused selective inhibition of a number of oncogenic transcripts. Notably, further characterisation of the genomic features of these THZ1-sensitive transcripts demonstrated that they were frequently associated with super-enhancer (SE). Moreover, SE analysis alone uncovered many OSCC lineage-specific master regulators. Finally, integrative analysis of both THZ1-sensitive and SE-associated transcripts identified a number of novel OSCC oncogenes, including PAK4, RUNX1, DNAJB1, SREBF2 and YAP1, with PAK4 being a potential druggable kinase. CONCLUSIONS: Our integrative approaches led to a catalogue of SE-associated master regulators and oncogenic transcripts, which may significantly promote both the understanding of OSCC biology and the development of more innovative therapies.


Subject(s)
Acrylamides/pharmacology , Aminopyridines/pharmacology , Antineoplastic Agents/pharmacology , Carcinoma, Squamous Cell/genetics , Esophageal Neoplasms/genetics , Gene Expression/drug effects , Phenylenediamines/pharmacology , Pyrimidines/pharmacology , Adaptor Proteins, Signal Transducing/genetics , Animals , Carcinoma, Squamous Cell/drug therapy , Cell Line, Tumor , Cell Proliferation/drug effects , Core Binding Factor Alpha 2 Subunit/genetics , Cyclin-Dependent Kinases/antagonists & inhibitors , Drug Screening Assays, Antitumor , Esophageal Neoplasms/drug therapy , Female , Gene Expression Profiling , HSP40 Heat-Shock Proteins/genetics , High-Throughput Screening Assays , Humans , Mice , Neoplasm Transplantation , Oncogenes/genetics , Phosphoproteins/genetics , Sequence Analysis, RNA , Sterol Regulatory Element Binding Protein 2/genetics , Transcription Factors , Transcriptome , YAP-Signaling Proteins , p21-Activated Kinases/genetics , Cyclin-Dependent Kinase-Activating Kinase
11.
Mol Carcinog ; 54(10): 1205-13, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25044025

ABSTRACT

DNAJB6 is a member of the heat shock protein 40 (Hsp40) family. We here investigated the clinical correlation and biological role of DNAJB6 overexpression in colorectal cancer (CRC). The expression of DNAJB6 protein was examined in 200 cases of colorectal adenocarcinomas by immunohistochemistry (IHC) technology. Gene transfection and RNA interference were performed to determine the effect of DNAJB6 expression on the invasion of CRC cells and to explore the underlying molecular mechanisms in vitro and in vivo. Overexpression of DNAJB6 was found in 39% (78/200) of the CRC tissues, especially in tumors at pT4 as compared with at pT1-3 (P = 0.02). A Kaplan-Meier survival analysis revealed a correlation between DNAJB6 expression and overall survival (OS) times (P = 0.003). Multivariate analysis confirmed that DNAJB6 overexpression was an independent prognostic factor for CRC (P = 0.002). RNA interference-mediated silencing of the DNAJB6 gene inhibited the invasion of CRC cells in vitro were accompanied by a significant reduction in the protein levels of IQ-domain GTPase-activating protein 1 (IQGAP1) and phosphorylated ERK (pERK). An in vivo assay showed that inhibition of DNAJB6 expression decreased the lung metastases of CRC cells. IHC analysis of serial sections showed that there was a positive correlation between DNAJB6 and IQGAP1 expression in primary CRC tissues (P = 0.013). The data suggest that DNAJB6 plays an important oncogenic role in CRC cell invasion by up-regulating IQGAP1 and activating the ERK signaling pathway and that DNAJB6 may be used as a prognostic marker for CRC.


Subject(s)
Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , HSP40 Heat-Shock Proteins/genetics , MAP Kinase Signaling System/genetics , Molecular Chaperones/genetics , Neoplasm Invasiveness/genetics , Nerve Tissue Proteins/genetics , Signal Transduction/genetics , ras GTPase-Activating Proteins/genetics , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Animals , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic/genetics , HCT116 Cells , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , Middle Aged , Neoplasm Invasiveness/pathology , Phosphorylation/genetics , Prognosis , RNA Interference/physiology , Up-Regulation/genetics
12.
Front Immunol ; 15: 1330785, 2024.
Article in English | MEDLINE | ID: mdl-38440724

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is the main prevalent histological subtype and accounts for 85% of esophageal cancer cases worldwide. Traditional treatment for ESCC involves chemotherapy, radiotherapy, and surgery. However, the overall prognosis remains unfavorable. Recently, immune checkpoint blockade (ICB) therapy using anti-programmed cell death-1 (PD-1)/PD-1 ligand (PD-L1) antibodies have not only achieved remarkable benefits in the clinical management of ESCC but have also completely changed the treatment approach for this cancer. In just a few years, ICB therapy has rapidly advanced and been added to standard first-line treatment regimen in patients with ESCC. However, preoperative immunotherapy is yet to be approved. In this review, we summarize the ICB antibodies commonly used in clinical immunotherapy of ESCC, and discuss the advances of immunotherapy combined with chemotherapy and radiotherapy in the perioperative treatment of ESCC, aiming to provide reference for clinical management of ESCC patients across the whole course of treatment.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/therapy , Esophageal Neoplasms/therapy , Programmed Cell Death 1 Receptor , Immunotherapy , Radioimmunotherapy , Antibodies
13.
Dis Model Mech ; 17(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38258518

ABSTRACT

Organoid culture systems are very powerful models that recapitulate in vivo organ development and disease pathogenesis, offering great promise in basic research, drug screening and precision medicine. However, the application of organoids derived from patients with cancer to immunotherapeutic research is a relatively untapped area. Esophageal cancer is one of the most lethal malignancies worldwide, including two major pathological subtypes: esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma. ESCC shares many biological and genomic features with oral squamous cell cancers. Herein, we provide a versatile protocol for the establishment and maintenance of oral and esophageal organoid cultures derived from both murine and human samples. We describe culture conditions for organoids derived from normal tongue, esophagus and gastroesophageal junction, esophageal cancer and Barrett's esophagus. In addition, we establish an ex vivo model by co-culturing patient tumor-derived organoids and autologous CD8+ T lymphocytes to assess CD8+ T cell-mediated tumor killing. Our protocol can also be modified for organoid establishment from other squamous epithelia and carcinomas. The co-culture model can serve as a template for studies of other tumor-immune cell interactions and the efficacy of immune checkpoint blockade therapy.


Subject(s)
Adenocarcinoma , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Animals , Mice , Organoids
14.
Cell Chem Biol ; 31(4): 792-804.e7, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-37924814

ABSTRACT

Master transcription factors such as TP63 establish super-enhancers (SEs) to drive core transcriptional networks in cancer cells, yet the spatiotemporal regulation of SEs within the nucleus remains unknown. The nuclear pore complex (NPC) may tether SEs to the nuclear pore where RNA export rates are maximal. Here, we report that NUP153, a component of the NPC, anchors SEs to the NPC and enhances TP63 expression by maximizing mRNA export. This anchoring is mediated through protein-protein interaction between the intrinsically disordered regions (IDRs) of NUP153 and the coactivator BRD4. Silencing of NUP153 excludes SEs from the nuclear periphery, decreases TP63 expression, impairs cellular growth, and induces epidermal differentiation of squamous cell carcinoma. Overall, this work reveals the critical roles of NUP153 IDRs in the regulation of SE localization, thus providing insights into a new layer of gene regulation at the epigenomic and spatial level.

15.
Nat Commun ; 15(1): 2484, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509096

ABSTRACT

Squamous cell carcinomas (SCCs) are common and aggressive malignancies. Immune check point blockade (ICB) therapy using PD-1/PD-L1 antibodies has been approved in several types of advanced SCCs. However, low response rate and treatment resistance are common. Improving the efficacy of ICB therapy requires better understanding of the mechanism of immune evasion. Here, we identify that the SCC-master transcription factor TP63 suppresses interferon-γ (IFNγ) signaling. TP63 inhibition leads to increased CD8+ T cell infiltration and heighten tumor killing in in vivo syngeneic mouse model and ex vivo co-culture system, respectively. Moreover, expression of TP63 is negatively correlated with CD8+ T cell infiltration and activation in patients with SCC. Silencing of TP63 enhances the anti-tumor efficacy of PD-1 blockade by promoting CD8+ T cell infiltration and functionality. Mechanistically, TP63 and STAT1 mutually suppress each other to regulate the IFNγ signaling by co-occupying and co-regulating their own promoters and enhancers. Together, our findings elucidate a tumor-extrinsic function of TP63 in promoting immune evasion of SCC cells. Over-expression of TP63 may serve as a biomarker predicting the outcome of SCC patients treated with ICB therapy, and targeting TP63/STAT/IFNγ axis may enhance the efficacy of ICB therapy for this deadly cancer.


Subject(s)
Carcinoma, Squamous Cell , Interferon-gamma , Animals , Humans , Mice , B7-H1 Antigen/metabolism , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Immunity , Interferon-gamma/metabolism , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , Transcription Factors/metabolism , Tumor Microenvironment , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
16.
Nat Commun ; 14(1): 1919, 2023 04 06.
Article in English | MEDLINE | ID: mdl-37024489

ABSTRACT

Alternative lengthening of telomeres (ALT) supports telomere maintenance in 10-15% of cancers, thus representing a compelling target for therapy. By performing anti-cancer compound library screen on isogenic cell lines and using extrachromosomal telomeric C-circles, as a bona fide marker of ALT activity, we identify a receptor tyrosine kinase inhibitor ponatinib that deregulates ALT mechanisms, induces telomeric dysfunction, reduced ALT-associated telomere synthesis, and targets, in vivo, ALT-positive cells. Using RNA-sequencing and quantitative phosphoproteomic analyses, combined with C-circle level assessment, we find an ABL1-JNK-JUN signalling circuit to be inhibited by ponatinib and to have a role in suppressing telomeric C-circles. Furthermore, transcriptome and interactome analyses suggest a role of JUN in DNA damage repair. These results are corroborated by synergistic drug interactions between ponatinib and either DNA synthesis or repair inhibitors, such as triciribine. Taken together, we describe here a signalling pathway impacting ALT which can be targeted by a clinically approved drug.


Subject(s)
Signal Transduction , Telomere , Cell Survival , Signal Transduction/drug effects , Gene Expression Regulation , DNA Repair , DNA Replication , JNK Mitogen-Activated Protein Kinases/metabolism , Humans , Animals , Mice , Cell Line, Tumor
17.
Yi Chuan ; 34(5): 519-25, 2012 May.
Article in Zh | MEDLINE | ID: mdl-22659423

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is one of the most common malignancies with poor prognosis in China. Patients with ESCC may present with vague symptoms in early stage and most of the cases are diagnosed at advanced stage, without the chance of optimal therapy. In the development and progression of ESCC, cytogenetic and molecular aberrations are frequently observed. This review is to summarize the advances in the chromosomal and genomic alterations of ESCC reported recently.


Subject(s)
Carcinoma, Squamous Cell/genetics , Chromosome Aberrations , Esophageal Neoplasms/genetics , Carcinoma, Squamous Cell/metabolism , DNA Methylation , Esophageal Neoplasms/metabolism , Humans
18.
Comput Struct Biotechnol J ; 19: 2790-2795, 2021.
Article in English | MEDLINE | ID: mdl-34093993

ABSTRACT

Super-enhancers (SEs) are congregated enhancer clusters with high level of loading of transcription factors (TFs), cofactors and epigenetic modifications. Through direct co-occupancy at their own SEs as well as each other's, a small set of so called "master" TFs form interconnected core regulatory circuitry (CRCs) to orchestrate transcriptional programs in both normal and malignant cells. These master TFs can be predicted mathematically using epigenomic methods. In this Review, we summarize the identification of SEs and CRCs in cancer cells, the mechanisms by which master TFs and SEs cooperatively regulate cancer-type-specific expression programs, and the cancer-type- and subtype-specificity of CRC and the significance in cancer biology.

19.
Nat Commun ; 12(1): 2485, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33931649

ABSTRACT

CpG Island promoter genes make up more than half of human genes, and a subset regulated by Polycomb-Repressive Complex 2 (PRC2+-CGI) become DNA hypermethylated and silenced in cancer. Here, we perform a systematic analysis of CGI genes across TCGA cancer types, finding that PRC2+-CGI genes are frequently prone to transcriptional upregulation as well. These upregulated PRC2+-CGI genes control important pathways such as Epithelial-Mesenchymal Transition (EMT) and TNFα-associated inflammatory response, and have greater cancer-type specificity than other CGI genes. Using publicly available chromatin datasets and genetic perturbations, we show that transcription factor binding sites (TFBSs) within distal enhancers underlie transcriptional activation of PRC2+-CGI genes, coinciding with loss of the PRC2-associated mark H3K27me3 at the linked promoter. In contrast, PRC2-free CGI genes are predominantly regulated by promoter TFBSs which are common to most cancer types. Surprisingly, a large subset of PRC2+-CGI genes that are upregulated in one cancer type are also hypermethylated/silenced in at least one other cancer type, underscoring the high degree of regulatory plasticity of these genes, likely derived from their complex regulatory control during normal development.


Subject(s)
Chromatin/metabolism , CpG Islands , Gene Expression Regulation, Neoplastic/genetics , Neoplasms/metabolism , Polycomb-Group Proteins/metabolism , Signal Transduction/genetics , Binding Sites , Cell Line, Tumor , Chromatin/genetics , Chromatin Immunoprecipitation Sequencing , DNA Methylation , DNA-Binding Proteins/metabolism , Databases, Genetic , Down-Regulation , Embryonic Stem Cells/metabolism , Enhancer Elements, Genetic , Gene Expression Profiling , Hepatocyte Nuclear Factor 4/genetics , Hepatocyte Nuclear Factor 4/metabolism , Histones/metabolism , Humans , Multigene Family , Neoplasms/genetics , Polycomb-Group Proteins/genetics , Principal Component Analysis , Promoter Regions, Genetic , Protein Binding , Up-Regulation
20.
Nat Commun ; 12(1): 4362, 2021 07 16.
Article in English | MEDLINE | ID: mdl-34272396

ABSTRACT

Squamous cell carcinomas (SCCs) comprise one of the most common histologic types of human cancer. Transcriptional dysregulation of SCC cells is orchestrated by tumor protein p63 (TP63), a master transcription factor (TF) and a well-researched SCC-specific oncogene. In the present study, both Gene Set Enrichment Analysis (GSEA) of SCC patient samples and in vitro loss-of-function assays establish fatty-acid metabolism as a key pathway downstream of TP63. Further studies identify sterol regulatory element binding transcription factor 1 (SREBF1) as a central mediator linking TP63 with fatty-acid metabolism, which regulates the biosynthesis of fatty-acids, sphingolipids (SL), and glycerophospholipids (GPL), as revealed by liquid chromatography tandem mass spectrometry (LC-MS/MS)-based lipidomics. Moreover, a feedback co-regulatory loop consisting of SREBF1/TP63/Kruppel like factor 5 (KLF5) is identified, which promotes overexpression of all three TFs in SCCs. Downstream of SREBF1, a non-canonical, SCC-specific function is elucidated: SREBF1 cooperates with TP63/KLF5 to regulate hundreds of cis-regulatory elements across the SCC epigenome, which converge on activating cancer-promoting pathways. Indeed, SREBF1 is essential for SCC viability and migration, and its overexpression is associated with poor survival in SCC patients. Taken together, these data shed light on mechanisms of transcriptional dysregulation in cancer, identify specific epigenetic regulators of lipid metabolism, and uncover SREBF1 as a potential therapeutic target and prognostic marker in SCC.


Subject(s)
Carcinoma, Squamous Cell/metabolism , Esophageal Neoplasms/metabolism , Head and Neck Neoplasms/metabolism , Kruppel-Like Transcription Factors/metabolism , Lipid Metabolism/genetics , Lung Neoplasms/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism , Acetylation , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Chromatin Immunoprecipitation Sequencing , Chromatography, Liquid , Epigenomics , ErbB Receptors/genetics , ErbB Receptors/metabolism , Esophageal Neoplasms/genetics , Fatty Acids/biosynthesis , Fatty Acids/metabolism , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms/genetics , Histones/metabolism , Humans , Kruppel-Like Transcription Factors/genetics , Lung Neoplasms/genetics , Regulatory Elements, Transcriptional , Signal Transduction/genetics , Sphingolipids/biosynthesis , Sphingolipids/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Tandem Mass Spectrometry , Transcription Factors/genetics , Transcriptome/genetics , Tumor Suppressor Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL