ABSTRACT
Potassium (K+), being an essential macronutrient in plants, plays a central role in many aspects. Root growth is highly plastic and is affected by many different abiotic stresses including nutrient deficiency. The Shaker-type K+ channel Arabidopsis (Arabidopsis thaliana) K+ Transporter 1 (AKT1) is responsible for K+ uptake under both low and high external K+ conditions. However, the upstream transcription factor of AKT1 is not clear. Here, we demonstrated that the WRKY6 transcription factor modulates root growth to low potassium (LK) stress in Arabidopsis. WRKY6 showed a quick response to LK stress and also to many other abiotic stress treatments. The two wrky6 T-DNA insertion mutants were highly sensitive to LK treatment, whose primary root lengths were much shorter, less biomass and lower K+ content in roots than those of wild-type plants, while WRKY6-overexpression lines showed opposite phenotypes. A further investigation showed that WRKY6 regulated the expression of the AKT1 gene via directly binding to the W-box elements in its promoter through EMSA and ChIP-qPCR assays. A dual luciferase reporter analysis further demonstrated that WRKY6 enhanced the transcription of AKT1. Genetic analysis further revealed that the overexpression of AKT1 greatly rescued the short root phenotype of the wrky6 mutant under LK stress, suggesting AKT1 is epistatic to WRKY6 in the control of LK response. Further transcriptome profiling suggested that WRKY6 modulates LK response through a complex regulatory network. Thus, this study unveils a transcription factor that modulates root growth under potassium deficiency conditions by affecting the potassium channel gene AKT1 expression.
Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Plant Roots , Potassium , Transcription Factors , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/physiology , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Potassium/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Plants, Genetically Modified , Promoter Regions, Genetic/genetics , Potassium ChannelsABSTRACT
OBJECTIVE: ASPP1 (apoptosis stimulating of p53 protein 1) is critical in regulating cell apoptosis as a cofactor of p53 to promote its transcriptional activity in the nucleus. However, whether cytoplasmic ASPP1 affects p53 nuclear trafficking and its role in cardiac diseases remains unknown. This study aims to explore the mechanism by which ASPP1 modulates p53 nuclear trafficking and the subsequent contribution to cardiac ischemia/reperfusion (I/R) injury. METHODS AND RESULTS: The immunofluorescent staining showed that under normal condition ASPP1 and p53 colocalized in the cytoplasm of neonatal mouse ventricular cardiomyocytes, while they were both upregulated and translocated to the nuclei upon hypoxia/reoxygenation treatment. The nuclear translocation of ASPP1 and p53 was interdependent, as knockdown of either ASPP1 or p53 attenuated nuclear translocation of the other one. Inhibition of importin-ß1 resulted in the cytoplasmic sequestration of both p53 and ASPP1 in neonatal mouse ventricular cardiomyocytes with hypoxia/reoxygenation stimulation. Overexpression of ASPP1 potentiated, whereas knockdown of ASPP1 inhibited the expression of Bax (Bcl2-associated X), PUMA (p53 upregulated modulator of apoptosis), and Noxa, direct apoptosis-associated targets of p53. ASPP1 was also increased in the I/R myocardium. Cardiomyocyte-specific transgenic overexpression of ASPP1 aggravated I/R injury as indicated by increased infarct size and impaired cardiac function. Conversely, knockout of ASPP1 mitigated cardiac I/R injury. The same qualitative data were observed in neonatal mouse ventricular cardiomyocytes exposed to hypoxia/reoxygenation injury. Furthermore, inhibition of p53 significantly blunted the proapoptotic activity and detrimental effects of ASPP1 both in vitro and in vivo. CONCLUSIONS: Binding of ASPP1 to p53 triggers their nuclear cotranslocation via importin-ß1 that eventually exacerbates cardiac I/R injury. The findings imply that interfering the expression of ASPP1 or the interaction between ASPP1 and p53 to block their nuclear trafficking represents an important therapeutic strategy for cardiac I/R injury.
Subject(s)
Adaptor Proteins, Signal Transducing , Reperfusion Injury , Tumor Suppressor Protein p53 , Animals , Mice , Apoptosis/physiology , Hypoxia/metabolism , Ischemia/metabolism , Karyopherins , Myocytes, Cardiac/metabolism , Reperfusion Injury/metabolism , Tumor Suppressor Protein p53/genetics , Adaptor Proteins, Signal Transducing/geneticsABSTRACT
Exploration of a stably expressed gene as a reference is critical for the accurate evaluation of miRNAs isolated from small extracellular vesicles (sEVs). In this study, we analyzed small RNA sequencing on plasma sEV miRNAs in the training dataset (n = 104) and found that miR-140-3p was the most stably expressed candidate reference for sEV miRNAs. We further demonstrated that miR-140-3p expressed most stably in the validation cohort (n = 46) when compared to two other reference miRNAs, miR-451a and miR-1228-3p, and the commonly-used miRNA reference U6. Finally, we compared the capability of miR-140-3p and U6 as the internal reference for sEV miRNA expression by evaluating key miRNAs expression in lung cancer patients and found that miR-140-3p was more suitable as a sEV miRNA reference gene. Taken together, our data indicated miR-140-3p as a stable internal reference miRNA of plasma sEVs to evaluate miRNA expression profiles in lung cancer patients.
Subject(s)
Extracellular Vesicles , Lung Neoplasms , MicroRNAs , Humans , MicroRNAs/blood , MicroRNAs/genetics , Lung Neoplasms/genetics , Lung Neoplasms/blood , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Female , Male , Reference Standards , Real-Time Polymerase Chain Reaction/standards , Middle Aged , Biomarkers, Tumor/blood , Biomarkers, Tumor/geneticsABSTRACT
The placenta plays a pivotal role in the maintenance of normal pregnancy, but how it forms, matures, and performs its function remains poorly understood. Here, we describe a novel mouse line (Prl3d1-iCre) that expresses iCre recombinase under the control of the endogenous prl3d1 promoter. Prl3d1 has been proposed as a marker for distinguishing trophoblast giant cells (TGCs) from other trophoblast cells in the placenta. The in vivo efficiency and specificity of the Cre line were analyzed by interbreeding Prl3d1-iCre mice with B6-G/R reporter mice. Through anatomical studies of the placenta and other tissues of Prl3d1-iCre/+; B6-G/R mouse mice, we found that the tdTomato signal was expressed in parietal trophoblast giant cells (P-TGCs). Thus, we report a mouse line with ectopic Cre expression in P-TGCs, which provides a valuable tool for studying human pathological pregnancies caused by implantation failure or abnormal trophoblast secretion due to aberrant gene regulation.
Subject(s)
Placenta , Red Fluorescent Protein , Trophoblasts , Animals , Female , Mice , Pregnancy , Giant Cells/metabolism , Integrases/genetics , Integrases/metabolism , Mice, Transgenic , Placenta/metabolismABSTRACT
The mitogen-activated protein kinase kinase kinase 18 (MAPKKK18) has been reported to play a role in abiotic stress priming in long-term abscisic acid (ABA) response including drought tolerance and leaf senescence. However, the upstream transcriptional regulators of MAPKKK18 remain to be determined. Here, we report ABA-responsive element binding factors (ABFs) as upstream transcription factors of MAPKKK18 expression. Mutants of abf2, abf3, abf4, and abf2abf3abf4 dramatically reduced the transcription of MAPKKK18. Our electrophoresis mobility shift assay and dual-luciferase reporter assay demonstrated that ABF2, ABF3, and ABF4 bound to ABA-responsive element cis-elements within the promoter of MAPKKK18 to transactivate its expression. Furthermore, enrichments of the promoter region of MAPKKK18 by ABF2, ABF3, and ABF4 were confirmed by in vivo chromatin immunoprecipitation coupled with quantitative PCR. In addition, we found that mutants of mapkkk18 exhibited obvious delayed leaf senescence. Moreover, a genetic study showed that overexpression of ABF2, ABF3, and ABF4 in the background of mapkkk18 mostly phenocopied the stay-green phenotype of mapkkk18 and, expression levels of five target genes of ABFs, that is, NYE1, NYE2, NYC1, PAO, and SAG29, were attenuated as a result of MAPKKK18 mutation. These findings demonstrate that ABF2, ABF3, and ABF4 act as transcription regulators of MAPKKK18 and also suggest that, at least in part, ABA acts in priming leaf senescence via ABF-induced expression of MAPKKK18.
Subject(s)
Abscisic Acid , Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Plant Leaves , Plant Senescence , Regulatory Elements, Transcriptional , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , MAP Kinase Kinase Kinases/metabolism , Plant Senescence/genetics , Plant Senescence/physiology , Plants, Genetically Modified/metabolism , Transcription Factors/metabolism , Plant Leaves/genetics , Plant Leaves/physiologyABSTRACT
Host specialization plays a critical role in the ecology and evolution of plant-microbe symbiosis. Theory predicts that host specialization is associated with microbial genome streamlining and is influenced by the abundance of host species, both of which can vary across latitudes, leading to a latitudinal gradient in host specificity. Here, we quantified the host specificity and composition of plant-bacteria symbioses on leaves across 329 tree species spanning a latitudinal gradient. Our analysis revealed a predominance of host-specialized leaf bacteria. The degree of host specificity was negatively correlated with bacterial genome size and the local abundance of host plants. Additionally, we found an increased host specificity at lower latitudes, aligning with the high prevalence of small bacterial genomes and rare host species in the tropics. These findings underscore the importance of genome streamlining and host abundance in the evolution of host specificity in plant-associated bacteria along the latitudinal gradient.
Subject(s)
Genome Size , Host Specificity , Plant Leaves , Symbiosis , Plant Leaves/microbiology , Bacteria/genetics , Bacteria/classification , Genome, Bacterial , Trees/microbiologyABSTRACT
BACKGROUND & AIMS: Dysregulation of alternative splicing is implicated in many human diseases, and understanding the genetic variation underlying transcript splicing is essential to dissect the molecular mechanisms of cancers. We aimed to provide a comprehensive functional dissection of splicing quantitative trait loci (sQTLs) in cancer and focus on elucidating its distinct role in colorectal cancer (CRC) mechanisms. METHODS: We performed a comprehensive sQTL analysis to identify genetic variants that control messenger RNA splicing across 33 cancer types from The Cancer Genome Atlas and independently validated in our 154 CRC tissues. Then, large-scale, multicenter, multi-ethnic case-control studies (34,585 cases and 76,023 controls) were conducted to examine the association of these sQTLs with CRC risk. A series of biological experiments in vitro and in vivo were performed to investigate the potential mechanisms of the candidate sQTLs and target genes. RESULTS: The molecular characterization of sQTL revealed its distinct role in cancer susceptibility. Tumor-specific sQTL further showed better response to cancer development. In addition, functionally informed polygenic risk score highlighted the potentiality of sQTLs in the CRC prediction. Complemented by large-scale population studies, we identified that the risk allele (T) of a multi-ancestry-associated sQTL rs61746794 significantly increased the risk of CRC in Chinese (odds ratio, 1.20; 95% CI, 1.12-1.29; P = 8.82 × 10-7) and European (odds ratio, 1.11; 95% CI, 1.07-1.16; P = 1.13 × 10-7) populations. rs61746794-T facilitated PRMT7 exon 16 splicing mediated by the RNA-binding protein PRPF8, thus increasing the level of canonical PRMT7 isoform (PRMT7-V2). Overexpression of PRMT7-V2 significantly enhanced the growth of CRC cells and xenograft tumors compared with PRMT7-V1. Mechanistically, PRMT7-V2 functions as an epigenetic writer that catalyzes the arginine methylation of H4R3 and H3R2, subsequently regulating diverse biological processes, including YAP, AKT, and KRAS pathway. A selective PRMT7 inhibitor, SGC3027, exhibited antitumor effects on human CRC cells. CONCLUSIONS: Our study provides an informative sQTLs resource and insights into the regulatory mechanisms linking splicing variants to cancer risk and serving as biomarkers and therapeutic targets.
ABSTRACT
BACKGROUND: The hippocampus, with its complex subfields, is linked to numerous neuropsychiatric traits. While most research has focused on its global structure or a few specific subfields, a comprehensive analysis of hippocampal substructures and their genetic correlations across a wide range of neuropsychiatric traits remains underexplored. Given the hippocampus's high heritability, considering hippocampal and subfield volumes (HASV) as endophenotypes for neuropsychiatric conditions is essential. METHODS: We analyzed MRI-derived volumetric data of hippocampal and subfield structures from 41,525 UK Biobank participants. Genome-wide association studies (GWAS) on 24 HASV traits were conducted, followed by genetic correlation, overlap, and Mendelian randomization (MR) analyses with 10 common neuropsychiatric traits. Polygenic risk scores (PRS) based on HASV traits were also evaluated for predicting these traits. RESULTS: Our analysis identified 352 independent genetic variants surpassing a significance threshold of 2.1 × 10-9 within the 24 HASV traits, located across 93 chromosomal regions. Notably, the regions 12q14.3, 17q21.31, 12q24.22, 6q21, 9q33.1, 6q25.1, and 2q24.2 were found to influence multiple HASVs. Gene set analysis revealed enrichment of neural differentiation and signaling pathways, as well as protein binding and degradation. Of 240 HASV-neuropsychiatric trait pairs, 75 demonstrated significant genetic correlations (P < 0.05/240), revealing 433 pleiotropic loci. Particularly, genes like ACBD4, ARHGAP27, KANSL1, MAPT, ARL17A, and ARL17B were involved in over 50 HASV-neuropsychiatric pairs. Leveraging Mendelian randomization analysis, we further confirmed that atrophy in the left hippocampus, right hippocampus, right hippocampal body, and right CA1-3 region were associated with an increased risk of developing Parkinson's disease (PD). Furthermore, PRS for all four HASVs were significantly linked to a higher risk of Parkinson's disease (PD), with the highest hazard ratio (HR) of 1.30 (95% CI 1.18-1.43, P = 6.15 × 10â»8) for right hippocampal volume. CONCLUSIONS: These findings highlight the extensive distribution of pleiotropic genetic determinants between HASVs and neuropsychiatric traits. Moreover, they suggest a significant potential for effectively managing and intervening in these diseases during their early stages.
Subject(s)
Genome-Wide Association Study , Hippocampus , Humans , Female , Male , Magnetic Resonance Imaging , Multifactorial Inheritance/genetics , Mental Disorders/genetics , Mendelian Randomization Analysis , Middle Aged , Genetic Predisposition to Disease , AgedABSTRACT
Maneuver of conducting polymers (CPs) into lightweight hydrogels can improve their functional performances in energy devices, chemical sensing, pollutant removal, drug delivery, etc. Current approaches for the manipulation of CP hydrogels are limited, and they are mostly accompanied by harsh conditions, tedious processing, compositing with other constituents, or using unusual chemicals. Herein, a two-step route is introduced for the controllable fabrication of CP hydrogels in ambient conditions, where gelation of the shape-anisotropic nano-oxidants followed by in-situ oxidative polymerization leads to the formation of polyaniline (PANI) and polypyrrole hydrogels. The method is readily coupled with different approaches for materials processing of PANI hydrogels into varied shapes, including spherical beads, continuous wires, patterned films, and free-standing objects. In comparison with their bulky counterparts, lightweight PANI items exhibit improved properties when those with specific shapes are used as electrodes for supercapacitors, gas sensors, or dye adsorbents. The current study therefore provides a general and controllable approach for the implementation of CP into hydrogels of varied external shapes, which can pave the way for the integration of lightweight CP structures with emerging functional devices.
ABSTRACT
BACKGROUND: While multiple sclerosis (MS) affects less than 1 % of the general population, immune mediated inflammatory diseases (IMIDs) collectively influence 5-10 % of the population. Understanding familial co-aggregation of MS and other IMIDs carries important clinical and public health implications that will enable early detection and personalized treatment. OBJECTIVE: To estimate the familial association between MS and other IMIDs and to quantify their shared genetic basis. DESIGN: Register-based multi-generational nested case-control familial co-aggregation study and genetic correlation study. SETTING: Sweden. PARTICIPANTS: 24,995 individuals with MS matched with 253,870 controls and 1,283,502 first-degree relatives (mothers, fathers, full siblings, and offspring) for familial co-aggregation analysis; population of European ancestry for genetic correlation analysis. MEASUREMENTS: Logistic regressions with adjustment for covariates were used to estimate the odds ratios (ORs) of developing MS in individuals with first-degree relatives diagnosed with IMIDs compared to those without such family history. Pairwise genome-wide genetic correlations were estimated with linkage-disequilibrium score regression. RESULTS: We observed an OR for familial co-aggregation of MS of 1.09 (95 % confidence interval (95%CI) = 1.07-1.11) in families with IMIDs history compared to families without. The association remained broadly consistent after stratification by sex concordance of relative pairs and by kinships. 18 IMID subtypes showed a familial association with MS, 7 of which including other acute widespread myelin destruction, encephalitis or myelitis or encephalomyelitis, inflammatory bowel disease, autoimmune thyroid diseases, systemic lupus erythematosus, other inflammatory system diseases, and sarcoidosis withstood multiple correction. Genetic correlations further revealed a shared genetic basis between 7 IMID subtypes with MS. CONCLUSION: We demonstrated a modest familial co-aggregation of MS with several IMIDs, and such association is likely due to shared genetic factors.
Subject(s)
Genetic Predisposition to Disease , Multiple Sclerosis , Humans , Sweden/epidemiology , Multiple Sclerosis/genetics , Multiple Sclerosis/epidemiology , Multiple Sclerosis/etiology , Female , Male , Adult , Case-Control Studies , Middle Aged , Registries , Genome-Wide Association Study , Odds Ratio , Inflammation/geneticsABSTRACT
Wide variation in amenability to transformation and regeneration (TR) among many plant species and genotypes presents a challenge to the use of genetic engineering in research and breeding. To help understand the causes of this variation, we performed association mapping and network analysis using a population of 1204 wild trees of Populus trichocarpa (black cottonwood). To enable precise and high-throughput phenotyping of callus and shoot TR, we developed a computer vision system that cross-referenced complementary red, green, and blue (RGB) and fluorescent-hyperspectral images. We performed association mapping using single-marker and combined variant methods, followed by statistical tests for epistasis and integration of published multi-omic datasets to identify likely regulatory hubs. We report 409 candidate genes implicated by associations within 5 kb of coding sequences, and epistasis tests implicated 81 of these candidate genes as regulators of one another. Gene ontology terms related to protein-protein interactions and transcriptional regulation are overrepresented, among others. In addition to auxin and cytokinin pathways long established as critical to TR, our results highlight the importance of stress and wounding pathways. Potential regulatory hubs of signaling within and across these pathways include GROWTH REGULATORY FACTOR 1 (GRF1), PHOSPHATIDYLINOSITOL 4-KINASE ß1 (PI-4Kß1), and OBF-BINDING PROTEIN 1 (OBP1).
Subject(s)
Genome-Wide Association Study , Plant Growth Regulators , Populus , Populus/genetics , Plant Growth Regulators/metabolism , Gene Regulatory Networks , Epistasis, Genetic , Genes, Plant , Gene Expression Regulation, Plant , Phenotype , Signal Transduction/geneticsABSTRACT
BACKGROUND: Cancer cachexia is associated with impaired functional and nutritional status and worse clinical outcomes. Global Leadership Initiative in Malnutrition (GLIM) consensus recommended the application of GLIM criteria to diagnose malnutrition in patients with cachexia. However, few previous study has applied the GLIM criteria in patients with cancer cachexia. METHODS: From July 2014 to May 2019, patients who were diagnosed with cancer cachexia and underwent radical gastrectomy for gastric cancer were included in this study. Malnutrition was diagnosed using the GLIM criteria. Skeletal muscle index was measured using abdominal computed tomography (CT) images at the third lumbar vertebra (L3) level. Hand-grip strength and 6-meters gait speed were measured before surgery. RESULTS: A total of 356 patients with cancer cachexia were included in the present study, in which 269 (75.56%) were identified as having malnutrition based on the GLIM criteria. GLIM-defined malnutrition alone did not show significant association with short-term postoperative outcomes, including complications, costs or length of postoperative hospital stays. The combination of low hand-grip strength or low gait speed with GLIM-defined malnutrition led to a significant predictive value for these outcomes. Moreover, low hand-grip strength plus GLIM-defined malnutrition was independently associated with postoperative complications (OR 1.912, 95% CI 1.151-3.178, P = 0.012). GLIM-defined malnutrition was an independent predictive factor for worse OS (HR 2.310, 95% CI 1.421-3.754, P = 0.001) and DFS (HR 1.815, 95% CI 1.186-2.779, P = 0.006) after surgery. The addition of low hand-grip strength or low gait speed to GLIM-defined malnutrition did not increase its predictive value for survival. CONCLUSION: GLIM-defined malnutrition predicted worse long-term survival in gastric cancer patients with cachexia. Gait speed and hand-grip strength added prognostic value to GLIM-defined malnutrition for the prediction of short-term postoperative outcomes, which could be incorporated into preoperative assessment protocols in patients with cancer cachexia.
Subject(s)
Malnutrition , Stomach Neoplasms , Humans , Cachexia/diagnosis , Cachexia/etiology , Prognosis , Stomach Neoplasms/complications , Stomach Neoplasms/surgery , Leadership , Walking Speed , Malnutrition/complications , Malnutrition/diagnosis , Nutritional Status , Hand Strength , Nutrition AssessmentABSTRACT
BACKGROUND: Our study aims to investigate an intrinsic link underlying sex hormone-binding globulin (SHBG) and rheumatoid arthritis (RA), which remains inconclusive in observational settings. METHODS: Summary statistics were collected from the largest GWAS(s) on SHBG adjusted for BMI (SHBGadjBMI; Noverall = 368,929; Nmen = 180,094; Nwomen = 188,908), crude SHBG (Noverall = 370,125; Nmen = 180,726; Nwomen = 189,473), and RA (Ncase = 22,350; Ncontrol = 74,823). A genome-wide cross-trait design was performed to quantify global and local genetic correlation, identify pleiotropic loci, and infer a causal relationship. RESULTS: Among the overall population, a significant global genetic correlation was observed for SHBGadjBMI and RA ([Formula: see text] = 0.11, P = 1.0 × 10-4) which was further supported by local signal (1q25.2). A total of 18 independent pleiotropic SNPs were identified, of which three were highly likely causal variants and four were found to have effects on both traits through gene expression mediation. A putative causal association of SHBGadjBMI on RA was demonstrated (OR = 1.20, 95% CI = 1.01-1.43) without evidence of reverse causality (OR = 0.999, 95% CI = 0.997-1.000). Sex-specific analyses revealed distinct shared genetic regions (men: 1q32.1-q32.2 and 5p13.1; women: 1q25.2 and 22q11.21-q11.22) and diverse pleiotropic SNPs (16 in men and 18 in women, nearly half were sex-specific) underlying SHBGadjBMI and RA, demonstrating biological disparities between sexes. Replacing SHBGadjBMI with crude SHBG, a largely similar yet less significant pattern of results was observed. CONCLUSION: Our cross-trait analysis suggests an intrinsic, as well as a sex-specific, link underlying SHBG and RA, providing novel insights into disease etiology.
Subject(s)
Arthritis, Rheumatoid , Sex Hormone-Binding Globulin , Male , Female , Humans , Sex Hormone-Binding Globulin/genetics , Genomics , Arthritis, Rheumatoid/genetics , Phenotype , Polymorphism, Single Nucleotide/geneticsABSTRACT
BACKGROUND: Women have a higher risk of developing multiple sclerosis (MS), potentially due to hormonal factors. Elevated testosterone levels, common in polycystic ovary syndrome (PCOS), might influence MS risk. OBJECTIVE: To investigate the relationship between PCOS, as a proxy for elevated testosterone levels, and MS risk through phenotypic and genomic analysis. METHODS: Cox regression models analysed the association between PCOS and MS risk. The genome-wide cross-trait analysis examined the genetic architecture. RESULTS: In a Swedish cohort of 1,374,529 women, 77 (0.3%) with PCOS and 3,654 (0.3%) without PCOS were diagnosed with MS. After adjusting for birth year and obesity, no association was found between PCOS and MS (HR = 0.91, 95% CI = 0.72-1.15), which was confirmed by Mendelian randomization analysis, where genetically predicted PCOS propensity, sex hormone-binding globulin (SHBG), or testosterone levels did not causally affect MS risk (all p-values > 0.05). By exploring horizontal pleiotropy, we identified shared genetic regions and 19 independent pleiotropic SNPs for SHBG with MS and 11 for testosterone with MS. CONCLUSION: We did not find evidence for a causal role of PCOS, as a proxy of elevated testosterone, in reducing the risk of MS in women. The shared genetic loci between testosterone, SHBG, and MS provide biological insights.
ABSTRACT
PURPOSE: To evaluate predictive factors of increasing intravesical recurrence (IVR) rate in patients with upper tract urothelial carcinoma (UTUC) after receiving radical nephroureterectomy (RNUx) with bladder cuff excision (BCE). MATERIALS AND METHODS: A total of 2114 patients were included from the updated data of the Taiwan UTUC Collaboration Group. It was divided into two groups: IVR-free and IVR after RNUx, with 1527 and 587 patients, respectively. To determine the factors affecting IVR, TNM stage, the usage of pre-operative ureteroscopy, and pathological outcomes were evaluated. The Kaplan-Meier estimator was used to estimate the rates of prognostic outcomes in overall survival (OS), cancer-specific survival (CSS), disease-free survival (DFS), and bladder recurrence-free survival (BRFS), and the survival curves were compared using the stratified log-rank test. RESULTS: Based on our research, ureter tumor, female, smoking history, age (< 70 years old), multifocal tumor, history of bladder cancer were determined to increase the risk of IVR after univariate analysis. The multivariable analysis revealed that female (BRFS for male: HR 0.566, 95% CI 0.469-0.681, p < 0.001), ureter tumor (BRFS: HR 1.359, 95% CI 1.133-1.631, p = 0.001), multifocal (BRFS: HR 1.200, 95% CI 1.001-1.439, p = 0.049), history of bladder cancer (BRFS: HR 1.480, 95% CI 1.118-1.959, p = 0.006) were the prognostic factors for IVR. Patients who ever received ureterorenoscopy (URS) did not increase the risk of IVR. CONCLUSION: Patients with ureter tumor and previous bladder UC history are important factors to increase the risk of IVR after RNUx. Pre-operative URS manipulation is not associated with higher risk of IVR and diagnostic URS is feasible especially for insufficient information of image study. More frequent surveillance regimen may be needed for these patients.
Subject(s)
Carcinoma, Transitional Cell , Ureteral Neoplasms , Urinary Bladder Neoplasms , Humans , Female , Male , Aged , Carcinoma, Transitional Cell/surgery , Nephroureterectomy , Prognosis , Ureteral Neoplasms/surgeryABSTRACT
Multiple testing has been a prominent topic in statistical research. Despite extensive work in this area, controlling false discoveries remains a challenging task, especially when the test statistics exhibit dependence. Various methods have been proposed to estimate the false discovery proportion (FDP) under arbitrary dependencies among the test statistics. One key approach is to transform arbitrary dependence into weak dependence and subsequently establish the strong consistency of FDP and false discovery rate under weak dependence. As a result, FDPs converge to the same asymptotic limit within the framework of weak dependence. However, we have observed that the asymptotic variance of FDP can be significantly influenced by the dependence structure of the test statistics, even when they exhibit only weak dependence. Quantifying this variability is of great practical importance, as it serves as an indicator of the quality of FDP estimation from the data. To the best of our knowledge, there is limited research on this aspect in the literature. In this paper, we aim to fill in this gap by quantifying the variation of FDP, assuming that the test statistics exhibit weak dependence and follow normal distributions. We begin by deriving the asymptotic expansion of the FDP and subsequently investigate how the asymptotic variance of the FDP is influenced by different dependence structures. Based on the insights gained from this study, we recommend that in multiple testing procedures utilizing FDP, reporting both the mean and variance estimates of FDP can provide a more comprehensive assessment of the study's outcomes.
Subject(s)
Uncertainty , Normal DistributionABSTRACT
Flavin-dependent catalysts are widely applied to aerobic monooxygenation/oxidation reactions. In contrast, flavin-catalyzed aerobic dioxygenation reactions exhibit higher atomic economy but are less reported, not to mention the relevant mechanistic studies. Herein, a density functional theory study on flavin-catalyzed aerobic epoxidation-oxygenolysis of alkenyl thioesters was performed for the first time. Different from the previous mechanistic proposal, a pathway featuring two catalytic stages, monoanionic flavin-C(4a)-peroxide/oxide intermediates, and a reverse reaction sequence (epoxidation goes prior to oxygenolysis) was revealed. In comparison, the pathways involving dianionic flavin catalysts, monoanionic flavin-N(5)-(hydro)peroxide/C(10a)-peroxide, or neutral flavin-C(4a)-hydroperoxide/hydroxide/N(5)-oxide, and the pathways where oxygenolysis goes prior to epoxidation are less favored. Epoxidation goes through intramolecular substitution of the O-O bond of anionic flavin-C(4a)-peroxide by ß-carbon, while the resulting flavin-C(4a)-oxide accomplishes the oxygenolysis. Furthermore, two other reaction modes, i.e., concerted O-O cleavage/1,2-shift of α-substituents and dyotropic rearrangement were discovered for the decomposition of other anionic peroxides, and preliminary rules were summarized for understanding the chemoselectivity for this process. This study sheds light on the different reaction features of numerous flavin-dioxygen derivatives, providing deeper insights into flavin-catalyzed dioxygenation reactions, and is expected to inspire experimental design based on unconventional anionic peroxides.
ABSTRACT
The WRKY transcription factor (TF) genes form a large family in higher plants, with 72 members in Arabidopsis (Arabidopsis thaliana). The gaseous phytohormone ethylene (ET) regulates multiple physiological processes in plants. It is known that 1-aminocyclopropane-1-carboxylic acid (ACC) synthases (ACSs, EC 4.4.1.14) limit the enzymatic reaction rate of ethylene synthesis. However, whether WRKY TFs regulate the expression of ACSs and/or ACC oxidases (ACOs, EC 1.14.17.4) remains largely elusive. Here, we demonstrated that Arabidopsis WRKY22 positively regulated the expression of a few ACS and ACO genes, thus promoting ethylene production. Inducible overexpression of WRKY22 caused shorter hypocotyls without ACC treatment. A qRT-PCR screening demonstrated that overexpression of WRKY22 activates the expression of several ACS and ACO genes. The promoter regions of ACS5, ACS11, and ACO5 were also activated by WRKY22, which was revealed by a dual luciferase reporter assay. A follow-up chromatin immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) and electrophoretic mobility shift assay (EMSA) showed that the promoter regions of ACS5 and ACO5 could be bound by WRKY22 directly. Moreover, wrky22 mutants had longer primary roots and more lateral roots than wild type, while WRKY22-overexpressing lines showed the opposite phenotype. In conclusion, this study revealed that WRKY22 acts as a novel TF activating, at least, the expression of ACS5 and ACO5 to increase ethylene synthesis and modulate root development.
Subject(s)
Arabidopsis Proteins , Arabidopsis , Ethylenes , Gene Expression Regulation, Plant , Lyases , Plant Roots , Transcription Factors , Amino Acid Oxidoreductases/genetics , Amino Acid Oxidoreductases/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Carbon-Carbon Lyases/metabolism , Carbon-Carbon Lyases/genetics , Ethylenes/metabolism , Ethylenes/biosynthesis , Lyases/genetics , Lyases/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Promoter Regions, Genetic/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Transcriptional Activation/geneticsABSTRACT
Interstitial cystitis/bladder pain syndrome with Hunner's lesion (HIC) is characterized by chronic inflammation and nerve hyperplasia; however, the pathogenesis of HIC remains a mystery. In this study, we detected both Epstein-Barr virus (EBV) latency infection genes EBNA-1 and LMP-1 and EBV lytic infection BZLF-1 and BRLF-1 expression in the HIC bladders, indicating the coexistence of EBV persistence and reactivation in the B cells in HIC bladders. Upregulation of EBV-associated inflammatory genes in HIC bladders, such as TNF-α and IL-6, suggests EBV infection is implicated in the pathogenesis of bladder inflammation. Nerve hyperplasia and upregulation of brain-derived neurotrophic factor (BDNF) were noted in the HIC bladders. Double immunochemical staining and flow cytometry revealed the origin of BDNF to be EBV-infected B cells. Inducible BDNF expression was noted in B cells upon EBV infection, but not in the T cells. A chromatin immunoprecipitation study revealed BDNF transcription could be promoted by cooperation between EBV nuclear antigens, chromatin modifiers, and B-cell-specific transcription. Knockdown of BDNF in EBV-infected B cells resulted in the inhibition of cell proliferation and viability. Downregulation of phosphorylated SMAD2 and STAT3 after BDNF knockdown may play a role in the mechanism. Implantation of latent EBV-infected B cells into rat bladder walls resulted in a higher expression level of CD45 and PGP9.5, suggesting tissue inflammation and nerve hyperplasia. In contrast, implantation of BDNF depleted EBV-infected B cells abrogated these effects. This is the first study to provide insights into the mechanisms underlying the involvement of EBV-infected B cells in HIC pathogenesis. © 2022 The Pathological Society of Great Britain and Ireland.
Subject(s)
Cystitis, Interstitial , Cystitis , Epstein-Barr Virus Infections , Animals , Rats , Cystitis, Interstitial/genetics , Cystitis, Interstitial/complications , Cystitis, Interstitial/metabolism , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/genetics , Brain-Derived Neurotrophic Factor/genetics , Hyperplasia , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/metabolism , Cystitis/complications , Epstein-Barr Virus Nuclear Antigens/metabolism , Viral Proteins/metabolism , Inflammation/complicationsABSTRACT
AIM: Antimuscarinics and the ß3-adrenoreceptor agonist, mirabegron, are commonly used for treating patients with overactive bladder (OAB) and α1 -adrenoreceptor antagonists (α1 -blockers) are the main pharmacological agents used for treating lower urinary tract symptoms (LUTS) secondary to benign prostatic hyperplasia (BPH). As these conditions commonly occur together, the aim of this systematic review was to identify publications that compared the use of an α1 -blocker plus mirabegron with an α1 -blocker plus antimuscarinic in men with LUTS secondary to BPH and OAB. A meta-analysis was subsequently conducted to explore the safety and efficacy of these combinations. METHODS: Included records had to be from a parallel-group, randomized clinical trial that was ≥8 weeks in duration. Participants were male with LUTS secondary to BPH and OAB. The indirect analyses that were identified compared an α1 -blocker plus OAB agent with an α1 -blocker plus placebo. The PubMed/Medical Literature Analysis and Retrieval System Online, the Excerpta Medica Database, the Cochrane Central Register of Controlled Trials, and the ClinicalTrials.gov registry were searched for relevant records up until March 5, 2020. Safety outcomes included incidences of overall treatment-emergent adverse events (TEAEs) and urinary retention, postvoid residual volume, and maximum urinary flow (Qmax ). Primary efficacy outcomes were micturitions/day, incontinence episodes/day, and urgency episodes/day, and secondary outcomes were Overactive Bladder Symptom Score and International Prostate Symptom Score. A Bayesian network meta-analysis approach was used for the meta-analysis. RESULTS: Out of a total of 1039 records identified, 24 were eligible for inclusion in the meta-analysis. There were no statistically significant differences between the α1 -blocker plus mirabegron and α1 -blocker plus antimuscarinic groups in terms of the comparisons identified for all the safety and efficacy analyses conducted. Numerically superior results were frequently observed for the α1 -blocker plus mirabegron group compared with the α1 -blocker plus antimuscarinic group for the safety parameters, including TEAEs, urinary retention, and Qmax . For some of the efficacy parameters, most notably micturitions/day, numerically superior results were noted for the α1 -blocker plus antimuscarinic group. Inconsistency in reporting and study variability were noted in the included records, which hindered data interpretation. CONCLUSION: This systematic review and meta-analysis showed that an α1 -blocker plus mirabegron and an α1 -blocker plus antimuscarinic have similar safety and efficacy profiles in male patients with LUTS secondary to BPH and OAB. Patients may, therefore, benefit from the use of either combination within the clinical setting.