Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 241
Filter
Add more filters

Country/Region as subject
Publication year range
1.
BMC Biol ; 22(1): 49, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38413944

ABSTRACT

BACKGROUND: Resolving the phylogeny of rapidly radiating lineages presents a challenge when building the Tree of Life. An Old World avian family Prunellidae (Accentors) comprises twelve species that rapidly diversified at the Pliocene-Pleistocene boundary. RESULTS: Here we investigate the phylogenetic relationships of all species of Prunellidae using a chromosome-level de novo assembly of Prunella strophiata and 36 high-coverage resequenced genomes. We use homologous alignments of thousands of exonic and intronic loci to build the coalescent and concatenated phylogenies and recover four different species trees. Topology tests show a large degree of gene tree-species tree discordance but only 40-54% of intronic gene trees and 36-75% of exonic genic trees can be explained by incomplete lineage sorting and gene tree estimation errors. Estimated branch lengths for three successive internal branches in the inferred species trees suggest the existence of an empirical anomaly zone. The most common topology recovered for species in this anomaly zone was not similar to any coalescent or concatenated inference phylogenies, suggesting presence of anomalous gene trees. However, this interpretation is complicated by the presence of gene flow because extensive introgression was detected among these species. When exploring tree topology distributions, introgression, and regional variation in recombination rate, we find that many autosomal regions contain signatures of introgression and thus may mislead phylogenetic inference. Conversely, the phylogenetic signal is concentrated to regions with low-recombination rate, such as the Z chromosome, which are also more resistant to interspecific introgression. CONCLUSIONS: Collectively, our results suggest that phylogenomic inference should consider the underlying genomic architecture to maximize the consistency of phylogenomic signal.


Subject(s)
Gene Flow , Genomics , Songbirds , Phylogeny , Genomics/methods , Genome
2.
J Am Chem Soc ; 146(12): 8372-8380, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38499472

ABSTRACT

Here we present a highly enantioselective [2π + 2σ] photocycloaddition of bicyclo[1.1.0]butanes (BCBs). The reaction uses a variety of vinylazaarenes as partners and is catalyzed by a polycyclic aromatic hydrocarbon (PAH)-containing chiral phosphoric acid as a bifunctional chiral photosensitizer. A wide array of pharmaceutically important bicyclo[2.1.1]hexane (BCH) derivatives have been synthesized with high yields, enantioselectivity, and diastereoselectivity. In addition to the diverse 1-ketocarbonyl-3-substituted BCBs, α/ß-substituted vinylazaarenes are compatible with such an unprecedented photoredox catalytic pathway, resulting in the successful assembly of an all-carbon quaternary stereocenter or two adjacent tertiary stereocenters on the product.

3.
Acc Chem Res ; 56(3): 258-269, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36652599

ABSTRACT

Some important biological species and microenvironments maintain a complex and delicate dynamic balance in life systems, participating in the regulation of various physiological processes and playing indispensable roles in maintaining the healthy development of living bodies. Disruption of their homeostasis in living organisms can cause various diseases and even death. Therefore, real time monitoring of these biological species and microenvironments during different physiological and pathological processes is of great significance. Fluorescent-probe-based techniques have been recognized as one of the most powerful tools for real time imaging in biological samples. In this Account, we introduce the representative works from our group in the field of fluorescent probes for biological imaging capable of detecting metal ions, small bioactive molecules, and the microenvironment. The design strategies of small molecule fluorescent probes and their applications in biological imaging will be discussed. By regulating the design strategy and mechanism (e.g., ICT, PeT, and FRET) of the electronic and spectral characteristics of the fluorescent platforms, these chemical probes show high selectivity and diverse functions, which can be used for imaging of various physiological and pathological processes. Through the exploration of the rational response mechanism and design strategy, combined with a variety of imaging techniques, such as super-resolution imaging, photoacoustic (PA) imaging, etc., we have realized multimode imaging of the important biological analytes from the subcellular level to the in vivo level, which provides powerful means to study the physiological and pathological functions of these species and microenvironments. This Account aims to offer insights and inspiration for the development of novel fluorescent probes for biological imaging, which could provide powerful tools for the study of chemical biology. Overall, we represent a series of turn-on/turn-off/ratiometric fluorescent/PA probes to visually and dynamically trace biological species and microenvironments in cells and even in vivo that seek higher resolution and depth molecular imaging to improve diagnostic methods and clarify new discoveries related to chemical biology. Our future efforts will be devoted to developing multiorganelle targeted fluorescent probes to study the mechanism of subcellular organelle interaction and employing various dual-mode probes of NIR II and PA imaging to investigate the development of related diseases and treat the related diseases at subcellular and in vivo levels.


Subject(s)
Fluorescent Dyes , Organelles , Fluorescent Dyes/chemistry , Metals , Molecular Imaging/methods
4.
BMC Med Imaging ; 24(1): 88, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38615005

ABSTRACT

PURPOSE: This study investigated and compared the effects of Gd enhancement on brain tumours with a half-dose of contrast medium at 5.0 T and with a full dose at 3.0 T. METHODS: Twelve subjects diagnosed with brain tumours were included in this study and underwent MRI after contrast agent injection at 3.0 T (full dose) or 5.0 T (half dose) with a 3D T1-weighted gradient echo sequence. The postcontrast images were compared by two independent neuroradiologists in terms of the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and subjective image quality score on a ten-point Likert scale. Quantitative indices and subjective quality ratings were compared with paired Student's t tests, and interreader agreement was assessed with the intraclass correlation coefficient (ICC). RESULTS: A total of 16 enhanced tumour lesions were detected. The SNR was significantly greater at 5.0 T than at 3.0 T in grey matter, white matter and enhanced lesions (p < 0.001). The CNR was also significantly greater at 5.0 T than at 3.0 T for grey matter/tumour lesions, white matter/tumour lesions, and grey matter/white matter (p < 0.001). Subjective evaluation revealed that the internal structure and outline of the tumour lesions were more clearly displayed with a half-dose at 5.0 T (Likert scale 8.1 ± 0.3 at 3.0 T, 8.9 ± 0.3 at 5.0 T, p < 0.001), and the effects of enhancement in the lesions were comparable to those with a full dose at 3.0 T (7.8 ± 0.3 at 3.0 T, 8.7 ± 0.4 at 5.0 T, p < 0.001). All subjective scores were good to excellent at both 5.0 T and 3.0 T. CONCLUSION: Both quantitative and subjective evaluation parameters suggested that half-dose enhanced scanning via 5.0 T MRI might be feasible for meeting clinical diagnostic requirements, as the image quality remains optimal. Enhanced scanning at 5.0 T with a half-dose of contrast agents might benefit patients with conditions that require less intravenous contrast agent, such as renal dysfunction.


Subject(s)
Brain Neoplasms , Contrast Media , Humans , Feasibility Studies , Brain Neoplasms/diagnostic imaging , Gray Matter , Radiologists
5.
Angew Chem Int Ed Engl ; : e202406845, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687326

ABSTRACT

Consecutive photoinduced electron transfer (ConPET) is a powerful and atom-economical protocol to overcome the limitations of the intrinsic redox potential of visible light-absorbing photosensitizers, thereby considerably improving the substrate and reaction types. Likely because such an exothermic single-electron transfer (SET) process usually does not require the aid of chiral catalysts, resulting in an inevitable racemic background reaction, notably, no enantioselective manifolds have been reported. Herein, we report on the viability of cooperative ConPET and chiral hydrogen-bonding catalysis for the [3+2] photocycloaddition of cyclopropyl ketones with vinylazaarenes. In addition to enabling the first use of olefins that preferentially interact with chiral catalysts, this catalysis platform paves the way for the efficient synthesis of pharmaceutically and synthetically important cyclopentyl ketones functionalized by azaarenes with high yields, ees and dr. The robust capacity of the method can be further highlighted by the low loading of the chiral catalyst (1.0 mol %), the good compatibility of both 2-azaarene and 3-pyridine-based olefins, and the successful concurrent construction of three stereocenters on cyclopentane rings involving an elusive but important all-carbon quaternary.

6.
Angew Chem Int Ed Engl ; 63(13): e202318340, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38303099

ABSTRACT

Copper dysmetabolism is associated with various neurodegenerative disorders, making high-spatiotemporal-resolution imaging of Cu2+ in the brain essential for understanding the underlying pathophysiological processes. Nevertheless, the current probes encounter obstacles in crossing the blood-brain barrier (BBB) and providing high-spatial-resolution in deep tissues. Herein, we present a photoacoustic probe capable of imaging Cu2+ dynamics in the mouse brain with high-spatiotemporal-resolution. The probe demonstrates selective ratiometric and reversible responses to Cu2+ , while also efficiently crossing the BBB. Using the probe as the imaging agent, we successfully visualized Cu2+ in the brain of Parkinson's disease (PD) model mouse with a remarkable micron-level resolution. The imaging results revealed a significant increase in Cu2+ levels in the cerebral cortex as PD progresses, highlighting the close association between Cu2+ alternations in the region and the disease. We also demonstrated that the probe can be used to monitor changes in Cu2+ distribution in the PD model mouse brain during L-dopa intervention. Mechanism studies suggest that the copper dyshomeostasis in the PD mouse brain was dominated by the expression levels of divalent metal transporter 1. The application of our probe in imaging Cu2+ dynamics in the mouse brain offers valuable insights into the copper-related molecular mechanisms underlying neurodegenerative diseases.


Subject(s)
Copper , Neurodegenerative Diseases , Animals , Mice , Copper/metabolism , Brain/diagnostic imaging , Brain/metabolism , Blood-Brain Barrier/metabolism , Spectrometry, Fluorescence , Diagnostic Imaging , Neurodegenerative Diseases/metabolism , Fluorescent Dyes/metabolism
7.
Angew Chem Int Ed Engl ; 63(19): e202320072, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38466238

ABSTRACT

Nitric oxide (NO) exhibits both pro- and anti-tumor effects. Therefore, real-time in vivo imaging and quantification of tumor NO dynamics are essential for understanding the conflicting roles of NO played in pathophysiology. The current molecular probes, however, cannot provide high-resolution imaging in deep tissues, making them unsuitable for these purposes. Herein, we designed a photoacoustic probe with an absorption maximum beyond 1000 nm for high spatial quantitative imaging of in vivo tumor NO dynamics. The probe exhibits remarkable sensitivity, selective ratiometric response behavior, and good tumor-targeting abilities, facilitating ratiometric imaging of tumor NO throughout tumor progression in a micron-resolution level. Using the probe as the imaging agent, we successfully quantified NO dynamics in tumor, liver and kidney. We have pinpointed an essential concentration threshold of around 80 nmol/cm3 for NO, which plays a crucial role in the "double-edged-sword" function of NO in tumors. Furthermore, we revealed a reciprocal relationship between the NO concentration in tumors and that in the liver, providing initial insights into the possible NO-mediated communication between tumor and the liver. We believe that the probe will help resolve conflicting aspects of NO biology and guide the design of imaging agents for tumor diagnosis and anti-cancer drug screening.


Subject(s)
Nitric Oxide , Photoacoustic Techniques , Nitric Oxide/analysis , Nitric Oxide/metabolism , Photoacoustic Techniques/methods , Animals , Mice , Humans , Neoplasms/diagnostic imaging , Infrared Rays , Molecular Probes/chemistry , Cell Line, Tumor
8.
J Am Chem Soc ; 145(36): 20141-20148, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37639692

ABSTRACT

Chemodivergent synthesis has been achieved in asymmetric photocatalysis. Under a dual catalyst system consisting of a chiral phosphoric acid and DPZ as a photosensitizer, different inorganic bases enabled the formation of two sets of valuable products from the three-component radical tandem transformations of 2-bromo-1-arylenthan-1-ones, styrenes, and quinoxalin-2(1H)-ones. The key to success was the distinct pKa environment, in which the radicals that formed on the quinoxalin-2(1H)-one rings after two radical addition processes underwent either single-electron oxidation or single-electron reduction. In addition, this work represents the first use of quinoxalin-2(1H)-ones in asymmetric photoredox catalysis.

9.
J Am Chem Soc ; 145(33): 18307-18315, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37552539

ABSTRACT

Asymmetric olefin isomerization can be appreciated as an ideal synthetic approach to access valuable enantioenriched C═C-containing molecules due to the excellent atom economy. Nonetheless, its occurrence usually requires a thermodynamic advantage, namely, a higher stability of the product to the substrate. It has thus led to rather limited examples of success. Herein, we report a photoredox catalytic hydrogen atom transfer (HAT) and enantioselective protonation strategy for the challenging asymmetric olefin isomerization. As a paradigm, by establishing a dual catalyst system involving a visible light photosensitizer DPZ and a chiral phosphoric acid, with the assistance of N-hydroxyimide to perform HAT, a wide array of allylic azaarene derivatives, featuring α-tertiary carbon stereocenters and ß-C═C bonds, was synthesized with high yields, ees, and E/Z ratios starting from the conjugated α-substituted alkenylazaarene E/Z-mixtures. The good compatibility of assembling deuterium on stereocenters by using inexpensive D2O as a deuterium source further underscores the broad applicability and promising utility of this strategy. Moreover, mechanistic studies have provided clear insights into its challenges in terms of reactivity and enantioselectivity. The exploration will robustly inspire the development of thermodynamically unfavorable asymmetric olefin isomerizations.

10.
J Am Chem Soc ; 145(14): 7952-7961, 2023 04 12.
Article in English | MEDLINE | ID: mdl-37000012

ABSTRACT

Alternations in the brain nitric oxide (NO) homeostasis are associated with a variety of neurodegeneration diseases; therefore, high-resolution imaging of NO in the brain is essential for understanding pathophysiological processes. However, currently available NO probes are unsuitable for this purpose due to their poor ability to cross the blood-brain barrier (BBB) or to image in deep tissues with spatial resolution. Herein, we developed a photoacoustic (PA) probe with BBB crossing ability to overcome this obstacle. The probe shows a highly selective ratiometric response toward NO, which enables the probe to image NO with micron resolution in the whole brain of living mice. Using three-dimensional PA imaging, we demonstrated that the probe could be used to visualize the detailed NO distribution in varying depth cross-sections (0-8 mm) of the living Parkinson's disease (PD) mouse brain. We also investigated the therapeutic properties of natural polyphenols in the PD mouse brain using the probe as an imaging agent and suggested the potential of the probe for screening therapeutic agents. This study provides a promising imaging agent for imaging of NO in the mouse brain with high resolution. We anticipate that these findings may open up new possibilities for understanding the biological functions of NO in the brain and the development of new imaging agents for the diagnosis and treatment of brain diseases.


Subject(s)
Blood-Brain Barrier , Nitric Oxide , Animals , Mice , Brain , Spectrum Analysis , Imaging, Three-Dimensional
11.
Br J Haematol ; 200(6): 776-791, 2023 03.
Article in English | MEDLINE | ID: mdl-36341698

ABSTRACT

Kawasaki disease (KD) is an acute systemic vasculitis primarily affecting infants and children. Activated platelets predispose patients to coronary artery structural lesions that may lead to thrombotic cardiovascular events. To discover potential proteins underlying platelet activation in KD, we conducted a protein chip assay of 34 cytokines and discovered thymic stromal lymphopoietin (TSLP) was aberrantly expressed, which remained elevated after intravenous immunoglobulin G (IVIG) treatment and during convalescence in KD patients in comparison to healthy controls. Enzyme-linked immunosorbent assay (ELISA) corroborated the upregulation of TSLP in KD patients, which was exacerbated in convalescent patients complicated with thrombosis. TSLP receptors on platelets were also significantly upregulated in KD patients complicated with thrombosis. Platelet activation, apoptosis, and mitochondrial autophagy (mitophagy) were increased in convalescence KD patients complicated with thrombosis. In vitro, TSLP induced platelet activation and platelet mitophagy in healthy blood donors, as observed in KD patients. TSLP, similar to mitophagy agonist carbonyl cyanide 3-chlorophenyl hydrazone (CCCP), promoted thrombosis, which was attenuated by the mitophagy inhibitor Mdivi-1. Co-immunoprecipitation in TSLP-treated platelets revealed TSLP receptor (TSLPR) bound to mitophagy regulators, Parkin and Voltage Dependent Anion Channel Protein 1 (VDAC1).Thus, our results demonstrated that TSLP induced platelet mitophagy via a novel TSLPR/Parkin/VDAC1 pathway that promoted thrombosis in KD. These results suggest TSLP as a novel therapeutic target against KD-associated thrombosis.


Subject(s)
Blood Platelets , Mucocutaneous Lymph Node Syndrome , Infant , Child , Humans , Blood Platelets/metabolism , Thymic Stromal Lymphopoietin , Mitophagy , Mucocutaneous Lymph Node Syndrome/therapy , Convalescence , Cytokines/metabolism , Ubiquitin-Protein Ligases/metabolism
12.
Chemistry ; 29(29): e202204029, 2023 May 22.
Article in English | MEDLINE | ID: mdl-36973185

ABSTRACT

Asymmetric catalysis has long been recognized as a powerful tool for the synthesis of enantioenriched molecules. In addition to precise enantiocontrol, high-atom economy, which is crucial for practicality, has always been pursued by chemists in the development of methodologies. Consequently, deracemization, the direct conversion of a racemic compound to one of its enantiomers, and thus characterized by a 100 % atom efficiency, has attracted increasing interest. Recently, visible-light-driven photocatalysis has been demonstrated to be a promising platform for the development of deracemization. Central to its success is its ability to efficiently overcome the prevailing kinetic issues in chemical transformations and the intrinsic thermodynamic challenges, which typically require the use of additional stoichiometric reagents, thus undermining the original advantages. In this review, the advances in this attractive area are systematically summarized and discussed, with examples organized according to the different modalities of energy transfer and single-electron transfer in photocatalysis.

13.
Chemistry ; 29(45): e202301180, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37263982

ABSTRACT

Biocatalysis has emerged as a valuable and reliable tool for industrial and academic societies, particularly in fields related to bioredox reactions. The cost of cofactors, especially those needed to be replenished at stoichiometric amounts or more, is the chief economic concern for bioredox reactions. In this study, a readily accessible, inexpensive, and bench-stable Hantzsch ester is verified as the viable and efficient NAD(P)H mimic by four enzymatic redox transformations, including two non-heme diiron N-oxygenases and two flavin-dependent reductases. This finding provides the potential to significantly reduce the costs of NAD(P)H-relying bioredox reactions.


Subject(s)
NAD , NAD/metabolism , Oxidation-Reduction , Biocatalysis
14.
Chem Rec ; 23(10): e202300122, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37276383

ABSTRACT

α-Amino acids have been widely recognized as environmental-benign and non-fossil carbon sources both in biological and synthetic chemistry. In recent years, with the remarkable development of visible-light photocatalysis in organic synthesis, α-amino acid and its derivatives have received tremendous attention as radical precursors via photocatalyzed decarboxylation, thus realizing diverse aminoalkylated transformations or constructions of novel N-bearing heterocyclic motifs by taking advantage of N-atoms from α-amino acid. This review aims to provide a comprehensive update on the recent exploitation of α-amino acids in visible light photocatalysis, with particular emphasis on the types of α-amino acids employed and their distinct mechanisms applied wherein.

15.
J Org Chem ; 88(13): 9459-9468, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37229619

ABSTRACT

An intramolecular amination of allylic alcohols is developed as an efficient and general access to biologically important multisubstituted indolizines and their variants. Two metal-free synthetic platforms including using aqueous hydrochloric acid solution as the solvent and p-toluenesulfonic acid as the catalyst have been established, enabling the divergent synthesis of these valuable compounds in high yields.


Subject(s)
Palladium , Propanols , Amination , Catalysis
16.
J Nat Prod ; 86(1): 199-208, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36635870

ABSTRACT

Fifteen compounds including nine new diterpenes were isolated from the roots of Croton yunnanensis. By HRESIMS, NMR, ECD data, and X-ray diffraction analysis, the new compounds were characterized as eight neo-clerodane diterpenes (compounds 1-8) and one 15,16-dinor-ent-pimarane diterpene (9). All diterpenes were assayed for their hypoglycemic activities. Compounds 1-4, 6, 7, and 10 promoted glucose uptake activity in insulin-resistant 3T3-L1 adipocytes. Compounds 1 and 6 showed insulin sensitizing activity, potentiating conspicuously their glucose uptake activity at a concentration of 20 µM when treated synergistically with low-concentration insulin at 1 nM.


Subject(s)
Croton , Diterpenes, Clerodane , Diterpenes , Insulins , Croton/chemistry , Hypoglycemic Agents/pharmacology , Diterpenes/pharmacology , Diterpenes/chemistry , Diterpenes, Clerodane/chemistry , Glucose , Molecular Structure
17.
Water Sci Technol ; 88(6): 1374-1393, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37768742

ABSTRACT

Pumped-storage power stations (PSPSs) have higher requirements for anti-seepage compared with regular power stations. As a result, investigating the seepage distributions of PSPSs is particularly important. However, existing researches remain limited in assessing engineering needs such as ensuring the efficiency of a power station. Taking the Qingyuan PSPS as a typical case, this study aims to investigate the large-scale seepage field distribution while exploring the efficiency of the anti-seepage system. Considering the geological characteristics and structural location, a 3D finite element model is established. Based on the continuous medium model while combined with seepage control measures, the change in leakage while the anti-seepage system failed is further assessed. It is concluded that the operation status of anti-seepage measures will have a certain impact on the leakage volumes of each part. Using a comprehensive assessment, anti-seepage measures can effectively prevent seepage. When failure occurs on anti-seepage curtains, the leakage volume at the corresponding position will show an obvious growth. In summary, the findings of this study highlight the significance of avoiding excessive leakage caused by anti-seepage structure failure, the effective operation of anti-seepage measures must be ensured. The abovementioned results can provide scientific support for the seepage optimization design of PSPSs.


Subject(s)
Geology , China
18.
Yi Chuan ; 45(12): 1100-1113, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38764274

ABSTRACT

Mycobacterium infection can affect the host's immune function by secreting extracellular effector proteins. ESX (or type VII) system plays an important role in the secretion of effector proteins. ESX system is the protein export system in mycobacteria and many actinomycetes. However, how ESX system secretes and underlying mechanism of action remain unclear. In this review, we introduce the components, function, classification of ESX system and the process of substrates transfer to the peripheral space via this system, and discuss the roles of ESX system in antibiotics resistance, persistence, host-phage interaction, new drug targets. We hope to provide insights into the discovery of new drugs and vaccine antigens for tuberculosis.


Subject(s)
Bacterial Proteins , Mycobacterium , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Humans , Type VII Secretion Systems/genetics , Type VII Secretion Systems/metabolism , Type VII Secretion Systems/physiology , Tuberculosis/microbiology
19.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5817-5821, 2023 Nov.
Article in Zh | MEDLINE | ID: mdl-38114177

ABSTRACT

Eight compounds were isolated from ethyl acetate fraction of 80% ethanol extract of the hulls of Garcinia mangostana by silica gel, Sephadex LH-20 column chromatography, as well as prep-HPLC methods. By HR-ESI-MS, MS, 1D and 2D NMR spectral analyses, the structures of the eight compounds were identified as 16-en mangostenone E(1), α-mangostin(2), 1,7-dihydroxy-2-(3-methy-lbut-2-enyl)-3-methoxyxanthone(3), cratoxyxanthone(4), 2,6-dimethoxy-para-benzoquinone(5), methyl orselinate(6), ficusol(7), and 4-(4-carboxy-2-methoxyphenoxy)-3,5-dimethoxybenzoic acid(8). Compound 1 was a new xanthone, and compound 4 was a xanthone dimer, compound 5 was a naphthoquinone. All compounds were isolated from this plant for the first time except compounds 2 and 3. Cytotoxic bioassay suggested that compounds 1, 2 and 4 possessed moderate cytotoxicity, suppressing HeLa cell line with IC_(50) va-lues of 24.3, 35.5 and 17.1 µmol·L~(-1), respectively. Compound 4 also could suppress K562 cells with an IC_(50) value of 39.8 µmol·L~(-1).


Subject(s)
Antineoplastic Agents , Garcinia mangostana , Garcinia , Xanthones , Humans , Garcinia mangostana/chemistry , HeLa Cells , Magnetic Resonance Spectroscopy , Xanthones/pharmacology , Garcinia/chemistry , Plant Extracts/chemistry , Molecular Structure
20.
Zhongguo Zhong Yao Za Zhi ; 48(24): 6676-6681, 2023 Dec.
Article in Zh | MEDLINE | ID: mdl-38212027

ABSTRACT

Nine compounds were isolated from the 90% ethanol extract of Salacia polysperma by silica gel, Sephadex LH-20 column chromatography, together with preparative HPLC methods. Based on HR-ESI-MS, MS, 1D and 2D NMR spectral analyses, the structures of the nine compounds were identified as 28-hydroxy wilforlide B(1), wilforlide A(2), 1ß,3ß-dihydroxyurs-9(11),12-diene(3),(-)-epicatechin(4),(+)-catechin(5),(-)-4'-O-methyl-ent-galloepicatechin(6), 3-hydroxy-1-(4-hydroxy-3-methoxy-phenyl)propan-1-one(7),(-)-(7S,8R)-4-hydroxy-3,3',5'-trimethoxy-8',9'-dinor-8,4'-oxyneoligna-7,9-diol-7'-aldehyde(8), and vanillic acid(9). Compound 1 is a new oleanane-type triterpene lactone. Compounds 1, 3, 4, 7-9 were isolated from the Salacia genus for the first time. All compounds were assayed for their α-glucosidase inhibitory activity. The results suggested that compound 8 exhibited moderate α-glucosidase inhibitory activity, with an IC_(50) value of 37.2 µmol·L~(-1), and the other compounds showed no α-glucosidase inhibitory activity.


Subject(s)
Salacia , Triterpenes , Salacia/chemistry , alpha-Glucosidases , Triterpenes/pharmacology , Magnetic Resonance Spectroscopy , Ethanol , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL