Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Ecol ; 33(3): e17235, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38063481

ABSTRACT

Studying the functional heterogeneity of soil microorganisms at different spatial scales and linking it to soil carbon mineralization is crucial for predicting the response of soil carbon stability to environmental changes and human disturbance. Here, a total of 429 soil samples were collected from typical paddy fields in China, and the bacterial and fungal communities as well as functional genes related to carbon mineralization in the soil were analysed using MiSeq sequencing and GeoChip gene microarray technology. We postulate that CO2 emissions resulting from bacterial and fungal carbon mineralization are contingent upon their respective carbon consumption strategies, which rely on the regulation of interactions between biodiversity and functional genes. Our results showed that the spatial turnover of the fungal community was 2-4 times that of the bacterial community from hundreds of meters to thousands of kilometres. The effect of spatial scale exerted a greater impact on the composition rather than the functional characteristics of the microbial community. Furthermore, based on the establishment of functional networks at different spatial scales, we observed that both bacteria and fungi within the top 10 taxa associated with carbon mineralization exhibited a prevalence of generalist species at the regional scale. This study emphasizes the significance of spatial scaling patterns in soil bacterial and fungal carbon degradation functions, deepening our understanding of how the relationship between microbial decomposers and soil heterogeneity impacts carbon mineralization and subsequent greenhouse gas emissions.


Subject(s)
Carbon , Soil Microbiology , Humans , Carbon/analysis , Fungi , Bacteria , Soil/chemistry
2.
Mol Ecol ; 33(4): e17241, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38078555

ABSTRACT

Across ecology, and particularly within microbial ecology, there is limited understanding how the generation and maintenance of diversity. Although recent work has shown that both local assembly processes and species pools are important in structuring microbial communities, the relative contributions of these mechanisms remain an important question. Moreover, the roles of local assembly processes and species pools are drastically different when explicitly considering the potential for saturation or unsaturation, yet this issue is rarely addressed. Thus, we established a conceptual model that incorporated saturation theory into the microbiological domain to advance the understanding of mechanisms controlling soil bacterial diversity during forest secondary succession. Conceptual model hypotheses were tested by coupling soil bacterial diversity, local assembly processes and species pools using six different forest successional chronosequences distributed across multiple climate zones. Consistent with the unsaturated case proposed in our conceptual framework, we found that species pool consistently affected α-diversity, even while local assembly processes on local richness operate. In contrast, the effects of species pool on ß-diversity disappeared once local assembly processes were taken into account, and changes in environmental conditions during secondary succession led to shifts in ß-diversity through mediation of the strength of heterogeneous selection. Overall, this study represents one of the first to demonstrate that most local bacterial communities might be unsaturated, where the effect of species pool on α-diversity is robust to the consideration of multiple environmental influences, but ß-diversity is constrained by environmental selection.


Subject(s)
Biodiversity , Microbiota , Forests , Ecology , Bacteria/genetics , Soil , Ecosystem
3.
Glob Chang Biol ; 30(1): e16996, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37916454

ABSTRACT

A central aim of community ecology is to understand how local species diversity is shaped. Agricultural activities are reshaping and filtering soil biodiversity and communities; however, ecological processes that structure agricultural communities have often overlooked the role of the regional species pool, mainly owing to the lack of large datasets across several regions. Here, we conducted a soil survey of 941 plots of agricultural and adjacent natural ecosystems (e.g., forest, wetland, grassland, and desert) in 38 regions across diverse climatic and soil gradients to evaluate whether the regional species pool of soil microbes from adjacent natural ecosystems is important in shaping agricultural soil microbial diversity and completeness. Using a framework of multiscales community assembly, we revealed that the regional species pool was an important predictor of agricultural bacterial diversity and explained a unique variation that cannot be predicted by historical legacy, large-scale environmental factors, and local community assembly processes. Moreover, the species pool effects were associated with microbial dormancy potential, where taxa with higher dormancy potential exhibited stronger species pool effects. Bacterial diversity in regions with higher agricultural intensity was more influenced by species pool effects than that in regions with low intensity, indicating that the maintenance of agricultural biodiversity in high-intensity regions strongly depends on species present in the surrounding landscape. Models for community completeness indicated the positive effect of regional species pool, further implying the community unsaturation and increased potential in bacterial diversity of agricultural ecosystems. Overall, our study reveals the indubitable role of regional species pool from adjacent natural ecosystems in predicting bacterial diversity, which has useful implication for biodiversity management and conservation in agricultural systems.


Subject(s)
Bacteria , Ecosystem , Biodiversity , Soil/chemistry , Forests , Soil Microbiology
4.
Glob Chang Biol ; 30(1): e17028, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37955302

ABSTRACT

Microbes inhabiting deep soil layers are known to be different from their counterpart in topsoil yet remain under investigation in terms of their structure, function, and how their diversity is shaped. The microbiome of deep soils (>1 m) is expected to be relatively stable and highly independent from climatic conditions. Much less is known, however, on how these microbial communities vary along climate gradients. Here, we used amplicon sequencing to investigate bacteria, archaea, and fungi along fifteen 18-m depth profiles at 20-50-cm intervals across contrasting aridity conditions in semi-arid forest ecosystems of China's Loess Plateau. Our results showed that bacterial and fungal α diversity and bacterial and archaeal community similarity declined dramatically in topsoil and remained relatively stable in deep soil. Nevertheless, deep soil microbiome still showed the functional potential of N cycling, plant-derived organic matter degradation, resource exchange, and water coordination. The deep soil microbiome had closer taxa-taxa and bacteria-fungi associations and more influence of dispersal limitation than topsoil microbiome. Geographic distance was more influential in deep soil bacteria and archaea than in topsoil. We further showed that aridity was negatively correlated with deep-soil archaeal and fungal richness, archaeal community similarity, relative abundance of plant saprotroph, and bacteria-fungi associations, but increased the relative abundance of aerobic ammonia oxidation, manganese oxidation, and arbuscular mycorrhizal in the deep soils. Root depth, complexity, soil volumetric moisture, and clay play bridging roles in the indirect effects of aridity on microbes in deep soils. Our work indicates that, even microbial communities and nutrient cycling in deep soil are susceptible to changes in water availability, with consequences for understanding the sustainability of dryland ecosystems and the whole-soil in response to aridification. Moreover, we propose that neglecting soil depth may underestimate the role of soil moisture in dryland ecosystems under future climate scenarios.


Subject(s)
Bacteria , Microbiota , Bacteria/metabolism , Archaea , Soil/chemistry , Water/metabolism , Soil Microbiology
5.
Plant Cell Environ ; 46(11): 3542-3557, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37564021

ABSTRACT

Rhizosphere microbes play key roles in plant growth and productivity in agricultural systems. One of the critical issues is revealing the interaction of agricultural management (M) and rhizosphere selection effects (R) on soil microbial communities, root exudates and plant productivity. Through a field management experiment, we found that bacteria were more sensitive to the M × R interaction effect than fungi, and the positive effect of rhizosphere bacterial diversity on plant biomass existed in the bacterial three two-tillage system. In addition, inoculation experiments demonstrated that the nitrogen cycle-related isolate Stenotrophomonas could promote plant growth and alter the activities of extracellular enzymes N-acetyl- d-glucosaminidase and leucine aminopeptidase in rhizosphere soil. Microbe-metabolites network analysis revealed that hubnodes Burkholderia-Caballeronia-Paraburkholderia and Pseudomonas were recruited by specific root metabolites under the M × R interaction effect, and the inoculation of 10 rhizosphere-matched isolates further proved that these microbes could promote the growth of soybean seedlings. Kyoto Encyclopaedia of Genes and Genomes pathway analysis indicated that the growth-promoting mechanisms of these beneficial genera were closely related to metabolic pathways such as amino acid metabolism, melatonin biosynthesis, aerobactin biosynthesis and so on. This study provides field observation and experimental evidence to reveal the close relationship between beneficial rhizosphere microbes and plant productivity under the M × R interaction effect.

6.
Microb Ecol ; 85(2): 383-399, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35298685

ABSTRACT

Bacteria play an important role in regulating carbon (C), nitrogen (N), and sulfur (S) in estuarine intertidal wetlands. To gain insights into the ecological and metabolic modes possessed by bacteria in estuarine intertidal wetlands, a total of 78 surface soil samples were collected from China's coastal intertidal wetlands to examine the spatial and seasonal variations of bacterial taxonomic composition, assembly processes, and ecological system functions through shotgun metagenomic and 16S rRNA gene sequencing. Obvious spatiotemporal dynamic patterns in the bacterial community structure were identified, with more pronounced seasonal rather than spatial variations. Dispersion limitation was observed to act as a critical factor affecting community assembly, explaining approximately half of the total variation in the bacterial community. Functional bacterial community structure exhibited a more significant latitudinal change than seasonal variability, highlighting that functional stability of the bacterial communities differed with their taxonomic variability. Identification of biogeochemically related links between C, N, and S cycles in the soils showed the adaptive routed metabolism of the bacterial communities and the strong interactions between coupled metabolic pathways. Our study broadens the insights into the taxonomic and functional profiles of bacteria in China's estuarine intertidal soils and helps us understand the effects exerted by environmental factors on the ecological health and microbial diversity of estuarine intertidal flats.


Subject(s)
Ecosystem , Soil , RNA, Ribosomal, 16S/genetics , Wetlands , Bacteria , China
7.
Glob Chang Biol ; 28(3): 1038-1047, 2022 02.
Article in English | MEDLINE | ID: mdl-34862696

ABSTRACT

Revealing the ecological roles of core microbiota in the maintenance of the functional stability of soil microbiomes is crucial for sustainable ecosystem functioning; however, there is a dearth of whole-soil profile studies on the fundamental topic in microbial ecology, especially in the context of ecological restoration. Here, we explored whether core microbiota influence the temporal changes in the functional stability of soil microbiomes throughout the soil profile (i.e., soil depths of 0-300 cm) during natural succession in restored ex-arable ecosystems, via high-throughput amplicon and metagenomic sequencing. We revealed that core microbiota were essential for the maintenance of the functional stability of soil microbiomes in reforestation ecosystems. Specifically, the core taxa within one cluster of soil network, which had similar ecological preferences, had major contributions to functional stability. Reforestation significantly decreased the functional stability of soil microbiomes, which exhibited significant variations along the vertical soil profile in the reforested soils. Overall, the findings enhance our understanding of the factors driving functional stability in soil microbiomes, and suggests that core microbiota should be considered a key factor and integrated in policy and management activities targeting the enhancement and maintenance of functional stability and ecosystem sustainability in ecological restoration programs.


Subject(s)
Microbiota , Soil , Metagenomics , Soil Microbiology
8.
Glob Chang Biol ; 28(1): 140-153, 2022 01.
Article in English | MEDLINE | ID: mdl-34610173

ABSTRACT

Belowground biodiversity supports multiple ecosystem functions and services that humans rely on. However, there is a dearth of studies exploring the determinants of the biodiversity-ecosystem function (BEF) relationships, particularly in intensely managed agricultural ecosystems. Here, we reported significant and positive relationships between soil biodiversity of multiple organism groups and multiple ecosystem functions in 228 agricultural fields, relating to crop yield, nutrient provisioning, element cycling, and pathogen control. The relationships were influenced by the types of organisms that soil phylotypes with larger sizes or at higher trophic levels, for example, invertebrates or protist predators, appeared to exhibit weaker or no BEF relationships when compared to those with smaller sizes or at lower trophic levels, for example, archaea, bacteria, fungi, and protist phototrophs. Particularly, we highlighted the role of soil network complexity, reflected by co-occurrence patterns among multitrophic-level organisms, in enhancing the link between soil biodiversity and ecosystem functions. Our results represent a significant advance in forecasting the impacts of belowground multitrophic organisms on ecosystem functions in agricultural systems, and suggest that soil multitrophic network complexity should be considered a key factor in enhancing ecosystem productivity and sustainability under land-use intensification.


Subject(s)
Ecosystem , Soil , Agriculture , Biodiversity , Fungi , Humans
9.
Glob Chang Biol ; 28(20): 6086-6101, 2022 10.
Article in English | MEDLINE | ID: mdl-35808859

ABSTRACT

Afforestation is an effective approach to rehabilitate degraded ecosystems, but often depletes deep soil moisture. Presently, it is not known how an afforestation-induced decrease in moisture affects soil microbial community and functionality, hindering our ability to understand the sustainability of the rehabilitated ecosystems. To address this issue, we examined the impacts of 20 years of afforestation on soil bacterial community, co-occurrence pattern, and functionalities along vertical profile (0-500 cm depth) in a semiarid region of China's Loess Plateau. We showed that the effects of afforestation with a deep-rooted legume tree on cropland were greater in deep than that of in top layers, resulting in decreased bacterial beta diversity, more responsive bacterial taxa and functional groups, increased homogeneous selection, and decreased network robustness in deep soils (120-500 cm). Organic carbon and nitrogen decomposition rates and multifunctionality also significantly decreased by afforestation, and microbial carbon limitation significantly increased in deep soils. Moreover, changes in microbial community and functionality in deep layer was largely related to changes in soil moisture. Such negative impacts on deep soils should be fully considered for assessing afforestation's eco-environment effects and for the sustainability of ecosystems because deep soils have important influence on forest ecosystems in semiarid and arid climates.


Subject(s)
Ecosystem , Soil , Bacteria/metabolism , Carbon/analysis , China , Forests , Nitrogen/analysis , Soil Microbiology
10.
Glob Chang Biol ; 28(22): 6653-6664, 2022 11.
Article in English | MEDLINE | ID: mdl-36002985

ABSTRACT

Agricultural ecosystems are facing increasing environmental changes. Revealing ecological stability of belowground organisms is key to developing management strategies that maintain agricultural ecosystem services in a changing world. Here, we collected soils from adjacent pairs of maize and rice fields along large spatial scale across Eastern and Southeast China to investigate the importance of core microbiota as a predictor of resistance of soil microbiome (e.g. bacteria, fungi and protist) to climate changes and nutrient fertilization, and their effect on multiple ecosystem functions, representing key services for crop growth and health in agro-ecosystems. Soil microbiome in maize soils exhibited stronger resistance than that in rice soils, by considering multiple aspects of the resistance index, for example, community, phylogenetic conservation and network complexity. Community resistance of soil microbiome showed a geographic pattern, with higher resistance at lower latitudes, suggesting their stronger resistance in warmer regions. Particularly, we highlighted the role of core phylotypes in enhancing the community resistance of soil microbiome, which was essential for the maintenance of multifunctionality in agricultural ecosystems. Our results represent a significant advance in linking core phylotypes to community resistance and ecosystem functions, and therefore forecasting agro-ecosystems dynamics in response to ongoing environmental changes. These suggest that core phylotypes should be considered a key factor in enhancing agricultural sustainability and crop productivity under global change scenarios.


Subject(s)
Microbiota , Oryza , Agriculture , Ecosystem , Phylogeny , Soil , Soil Microbiology , Zea mays
11.
Environ Microbiol ; 23(2): 949-964, 2021 02.
Article in English | MEDLINE | ID: mdl-32893947

ABSTRACT

Although studies of biogeography in soil bacterial communities have attracted considerable attention, the generality of these patterns along with assembly processes and underlying drivers is poorly understood in the inner tissues of plants. Plant tissues provide unique ecological habitats for microorganisms, which play an essential role in plant performance. Here, we compared core bacterial communities among five soil-plant associated compartments of common bean across five sampling sites in China. Neutral and null modelling consistently suggested that stochastic processes dominated the core community assembly processes and escalated from the belowground compartments to the inner tissues of aerial plant parts. The multiple distance-decay relationships also varied and had flattened patterns in the stem endosphere, which were shaped by distinct environmental factors in each compartment. Coexistence patterns also varied in topological features, in addition with the sparsest networks in the stem endosphere resulted from the interaction with the stochastic processes. This study considerably expanded our understanding of various biogeographic patterns, assembly processes, and the underlying mechanisms of core bacterial communities between aerial and belowground compartments of common bean. That will provide a scientific basis for the reasonable regulation of core bacterial consortia to get better plant performance.


Subject(s)
Bacteria/isolation & purification , Microbiota , Phaseolus/microbiology , Soil Microbiology , Bacteria/classification , Bacteria/genetics , China , Ecosystem , Phaseolus/growth & development , Plant Components, Aerial/microbiology , Soil/chemistry , Stochastic Processes
12.
Environ Microbiol ; 23(1): 464-477, 2021 01.
Article in English | MEDLINE | ID: mdl-33215802

ABSTRACT

Soil functions and processes are driven by complex microbial interactions. It is, therefore, critical to understand the coexistence patterns of soil microbiota, especially in fragile alpine ecosystems. We identified biogeographic patterns in the network-level topological features of the soil microbial co-occurrence network in the Tibetan alpine grasslands, based on high-throughput sequencing. We verified that soil pH was the most important environmental variable for predicting network-level topological features of soil microbial co-occurrence networks. Associations among soil microbiota were enhanced with increasing pH (5.17-8.92), and the network was the most stable at neutral pH. Moreover, node-level topological features suggested that the archaeal operational taxonomic units, compared with bacterial operational taxonomic units, hold a central role in the co-occurrence network. Network-level topological features revealed closer connections among soil microbiota in the steppe ecosystem than in the meadow ecosystem. Therefore, our study demonstrated that soil pH served as a critical environmental filter that influenced the potential associations and ecological signature of soil microbiota in the Tibetan alpine grasslands. These findings provide a new perspective on the distinct biogeographic patterns of co-occurrence networks, to explore the ecological role of soil microbiota and thus help manage soil bacterial and archaeal communities for provisioning alpine ecosystem services.


Subject(s)
Archaea/physiology , Microbial Interactions , Soil/chemistry , Archaea/classification , Archaea/genetics , Archaea/isolation & purification , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Physiological Phenomena , Ecosystem , Grassland , Hydrogen-Ion Concentration , Soil Microbiology , Tibet
13.
Mol Ecol ; 30(17): 4338-4348, 2021 09.
Article in English | MEDLINE | ID: mdl-34185360

ABSTRACT

Uncovering the linkages between community assembly and species diversity is a fundamental issue in microbial ecology. In this study, a large-scale (transect intervals of 1257.6 km) cross-biome soil survey was conducted, which ranged over agricultural fields, forests, wetlands, grasslands and desert, in the arid regions of northwest China. The aim was to investigate the biogeographic distribution, community assembly and species co-occurrence of soil fungi. The fungal communities in agricultural soils exhibited a steeper distance-decay slope and wider niche breadths, and were more strongly affected by stochastic assembly processes, than fungi in other natural habitats. A strong relationship was revealed between soil fungal richness and community assembly in arid ecosystems, with the influence of stochastic assembly processes decreasing with increasing fungal richness. Moreover, aridity was the most important environmental factor influencing fungal richness, ß-diversity and species co-occurrence patterns. Specifically, the predicted increase in arid conditions will probably reduce fungal richness and network complexity. These findings represent a considerable advance in linking fungal richness to mechanisms underlying the biogeographic patterns and assembly processes of fungal communities in arid ecosystems. These results can thus be used to forecast species co-occurrence and diversities pattern of soil fungi under climate aridity and land-use change scenarios.


Subject(s)
Ecosystem , Soil , Desert Climate , Fungi/genetics , Soil Microbiology
14.
J Integr Plant Biol ; 63(12): 2093-2109, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34655272

ABSTRACT

Interactions between plant hosts and their microbiotas are becoming increasingly evident, while the effects of plant communities on microbial communities in different geographic environments are poorly understood. Here, the differentiation of licorice plant ecotypes and the distribution of root-associated microbiotas were investigated across five sampling sites in northwest China. The interactions between the environment, plant and microbial communities, and their effects on licorice root secondary metabolites, were elucidated. The plant community was clearly differentiated into distinct ecotypes based on genotyping-by-sequencing and was primarily driven by geographic distance and available soil nitrogen. The bulk soil and root-associated microbiotas (rhizosphere soil and root endosphere) partially correlated with plant community, but all were significantly discriminated by plant clade. Moreover, these microbiotas were explained to different extents by distinct combinations of environment, geography, and plant community. Similarly, three structural equation models showed that licorice root secondary metabolites were complicatedly modulated by multiple abiotic and biotic factors, and were mostly explained by these factors in the rhizosphere model. Collectively, the results provide novel insights into the role of environment-plant-microbiota interactions in regulating root secondary metabolites. That should be accounted for when selecting appropriate licorice planting sites and management measures.


Subject(s)
Glycyrrhiza , Microbiota , Bacteria , Ecotype , Glycyrrhiza/metabolism , Microbiota/genetics , Plant Roots/metabolism , Rhizosphere , Soil Microbiology
15.
Environ Microbiol ; 22(3): 1052-1065, 2020 03.
Article in English | MEDLINE | ID: mdl-31599105

ABSTRACT

The factors determining stochastic and deterministic processes that drive microbial community structure, specifically the balance of abundant and rare bacterial taxa, remain underexplored. Here we examined biogeographic patterns of abundant and rare bacterial taxa and explored environmental factors influencing their community assembly processes in agricultural fields across eastern China. More phylogenetic turnover correlating with spatial distance was observed in abundant than rare sub-communities. Homogeneous selection was the main assembly process for both the abundant and rare sub-communities; however, the abundant sub-community was more tightly clustered phylogenetically and was more sensitive to dispersal limitations than the rare sub-community. Rare sub-community of rice fields and abundant sub-community of maize fields were more governed by stochastic assembly processes, which showed higher operational taxonomic unit richness. We propose a conceptual paradigm wherein soil pH and mean annual temperature mediate the assembly of the abundant and rare sub-communities respectively. A higher soil pH leads to deterministic assembly of the abundant sub-community. For the rare sub-community, the dominance of stochasticity in low-temperature regions indicates weaker niche-based exclusion and the arrival of more evolutionary lineages. These findings suggest that the community assembly processes for abundant and rare bacterial taxa are dependent on distinct environmental variables in agro-ecosystems.


Subject(s)
Agriculture , Microbiota , Soil Microbiology , Soil/chemistry , Temperature , Bacteria/classification , China , Hydrogen-Ion Concentration , Phylogeny , Stochastic Processes
16.
J Exp Bot ; 71(22): 7347-7363, 2020 12 31.
Article in English | MEDLINE | ID: mdl-32865563

ABSTRACT

Nodulation outer proteins secreted via type 3 secretion systems are involved in the process of symbiosis between legume plants and rhizobia. To study the function of NopT in symbiosis, we mutated nopT in Mesorhizobium amphore CCNWGS0123 (GS0123), which can nodulate black locust (Robinia pseudoacacia). The nopT mutant induced higher levels of jasmonic acid, salicylic acid, and hydrogen peroxide accumulation in the roots of R. pseudoacacia compared with wild-type GS0123. The ΔnopT mutant induced higher disease-resistant gene expression 72 hours post-inoculation (hpi), whereas GS0123 induced higher disease-resistant gene expression earlier, at 36 hpi. Compared with the nopT mutant, GS0123 induced the up-regulation of most genes at 36 hpi and the down-regulation of most genes at 72 hpi. Proteolytically active NopT_GS0123 induced hypersensitive responses when expressed transiently in tobacco leaves (Nicotiana benthamiana). Two NopT_GS0123 targets in R. pseudoacacia were identified, ATP-citrate synthase alpha chain protein 2 and hypersensitive-induced response protein. Their interactions with NopT_GS0123 triggered resistance by the plant immune system. In conclusion, NopT_GS0123 inhibited the host plant immune system and had minimal effect on nodulation in R. pseudoacacia. Our results reveal the underlying molecular mechanism of NopT function in plant-symbiont interactions.


Subject(s)
Mesorhizobium , Rhizobium , Robinia , Plant Roots , Robinia/genetics , Symbiosis
17.
Glob Chang Biol ; 26(8): 4506-4520, 2020 08.
Article in English | MEDLINE | ID: mdl-32324306

ABSTRACT

Soil communities are intricately linked to ecosystem functioning, and a predictive understanding of how communities assemble in response to environmental change is of great ecological importance. Little is known about the assembly processes governing abundant and rare fungal communities across agro-ecosystems, particularly with regard to their environmental adaptation. By considering abundant and rare taxa, we tested the environmental thresholds and phylogenetic signals for ecological preferences of fungal communities across complex environmental gradients to reflect their environmental adaptation, and explored the factors influencing their assembly based on the large-scale soil survey in agricultural fields across eastern China. We found that the abundant taxa exhibited remarkably broader response thresholds and stronger phylogenetic signals for the ecological preferences across environmental gradients compared to the rare taxa. Neutral processes played a key role in shaping the abundant subcommunity compared to the rare subcommunity. Null model analysis revealed that the abundant subcommunity was less clustered phylogenetically and governed primarily by dispersal limitation, while homogeneous selection was the major assembly process in the rare subcommunity. Soil available sulfur was the major factor mediating the balance between stochastic and deterministic processes of both the abundant and rare subcommunities, as indicated by an increase in stochasticity with higher available sulfur concentration. Based on macroecological spatial scale datasets, our study revealed the potential broader environmental adaptation of abundant fungal taxa compared to rare fungal taxa, and identified the factors mediating their distinct community assembly processes in agricultural fields. These results contribute to our understanding of the mechanisms underlying the generation and maintenance of fungal diversity in response to global environmental change.


Subject(s)
Ecosystem , Soil Microbiology , China , Fungi/genetics , Phylogeny
18.
Appl Environ Microbiol ; 85(6)2019 03 15.
Article in English | MEDLINE | ID: mdl-30658982

ABSTRACT

A lack of knowledge of the microbial responses to environmental change at the species and functional levels hinders our ability to understand the intrinsic mechanisms underlying the maintenance of microbial ecosystems. Here, we present results from temporal microcosms that introduced inorganic and organic contaminants into agro-soils for 90 days, with three common legume plants. Temporal dynamics and assemblage of soil microbial communities and functions in response to contamination under the influence of growth of different plants were explored via sequencing of the 16S rRNA amplicon and by shotgun metagenomics. Soil microbial alpha diversity and structure at the taxonomic and functional levels exhibited resilience patterns. Functional profiles showed greater resilience than did taxonomic ones. Different legume plants imposed stronger selection on taxonomic profiles than on functional ones. Network and random forest analyses revealed that the functional potential of soil microbial communities was fostered by various taxonomic groups. Betaproteobacteria were important predictors of key functional traits such as amino acid metabolism, nucleic acid metabolism, and hydrocarbon degradation. Our study reveals the strong resilience of the soil microbiome to chemical contamination and sensitive responses of taxonomic rather than functional profiles to selection processes induced by different legume plants. This is pivotal to develop approaches and policies for the protection of soil microbial diversity and functions in agro-ecosystems with different response strategies from global environmental drivers, such as soil contamination and plant invasion.IMPORTANCE Exploring the microbial responses to environmental disturbances is a central issue in microbial ecology. Understanding the dynamic responses of soil microbial communities to chemical contamination and the microbe-soil-plant interactions is essential for forecasting the long-term changes in soil ecosystems. Nevertheless, few studies have applied multi-omics approaches to assess the microbial responses to soil contamination and the microbe-soil-plant interactions at the taxonomic and functional levels simultaneously. Our study reveals clear succession and resilience patterns of soil microbial diversity and structure in response to chemical contamination. Different legume plants exerted stronger selection processes on taxonomic than on functional profiles in contaminated soils, which could benefit plant growth and fitness as well as foster the potential abilities of hydrocarbon degradation and metal tolerance. These results provide new insight into the resilience and assemblage of soil microbiome in response to environmental disturbances in agro-ecosystems at the species and functional levels.


Subject(s)
Bacteria/isolation & purification , Fabaceae/growth & development , Fabaceae/microbiology , Microbiota , Soil Pollutants/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Biodiversity , Metagenomics , Metals/analysis , Metals/metabolism , Phylogeny , Soil/chemistry , Soil Microbiology , Soil Pollutants/analysis
19.
PLoS Genet ; 12(10): e1006296, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27723779

ABSTRACT

Genome-wide association studies (GWAS) have identified many genetic susceptibility loci for colorectal cancer (CRC). However, variants in these loci explain only a small proportion of familial aggregation, and there are likely additional variants that are associated with CRC susceptibility. Genome-wide studies of gene-environment interactions may identify variants that are not detected in GWAS of marginal gene effects. To study this, we conducted a genome-wide analysis for interaction between genetic variants and alcohol consumption and cigarette smoking using data from the Colon Cancer Family Registry (CCFR) and the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO). Interactions were tested using logistic regression. We identified interaction between CRC risk and alcohol consumption and variants in the 9q22.32/HIATL1 (Pinteraction = 1.76×10-8; permuted p-value 3.51x10-8) region. Compared to non-/occasional drinking light to moderate alcohol consumption was associated with a lower risk of colorectal cancer among individuals with rs9409565 CT genotype (OR, 0.82 [95% CI, 0.74-0.91]; P = 2.1×10-4) and TT genotypes (OR,0.62 [95% CI, 0.51-0.75]; P = 1.3×10-6) but not associated among those with the CC genotype (p = 0.059). No genome-wide statistically significant interactions were observed for smoking. If replicated our suggestive finding of a genome-wide significant interaction between genetic variants and alcohol consumption might contribute to understanding colorectal cancer etiology and identifying subpopulations with differential susceptibility to the effect of alcohol on CRC risk.


Subject(s)
Alcohol Drinking/genetics , Colorectal Neoplasms/genetics , Membrane Transport Proteins/genetics , Smoking/genetics , Tumor Suppressor Proteins/genetics , Aged , Alcohol Drinking/pathology , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/pathology , Female , Gene-Environment Interaction , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Risk Factors , Smoking/pathology
20.
Am J Hum Genet ; 94(2): 233-45, 2014 Feb 06.
Article in English | MEDLINE | ID: mdl-24507775

ABSTRACT

Elevated low-density lipoprotein cholesterol (LDL-C) is a treatable, heritable risk factor for cardiovascular disease. Genome-wide association studies (GWASs) have identified 157 variants associated with lipid levels but are not well suited to assess the impact of rare and low-frequency variants. To determine whether rare or low-frequency coding variants are associated with LDL-C, we exome sequenced 2,005 individuals, including 554 individuals selected for extreme LDL-C (>98(th) or <2(nd) percentile). Follow-up analyses included sequencing of 1,302 additional individuals and genotype-based analysis of 52,221 individuals. We observed significant evidence of association between LDL-C and the burden of rare or low-frequency variants in PNPLA5, encoding a phospholipase-domain-containing protein, and both known and previously unidentified variants in PCSK9, LDLR and APOB, three known lipid-related genes. The effect sizes for the burden of rare variants for each associated gene were substantially higher than those observed for individual SNPs identified from GWASs. We replicated the PNPLA5 signal in an independent large-scale sequencing study of 2,084 individuals. In conclusion, this large whole-exome-sequencing study for LDL-C identified a gene not known to be implicated in LDL-C and provides unique insight into the design and analysis of similar experiments.


Subject(s)
Cholesterol, LDL/genetics , Exome , Gene Frequency , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Adult , Aged , Apolipoproteins E/blood , Apolipoproteins E/genetics , Cohort Studies , Dyslipidemias/blood , Dyslipidemias/genetics , Female , Follow-Up Studies , Genetic Code , Genotype , Humans , Lipase/genetics , Male , Middle Aged , Phenotype , Proprotein Convertase 9 , Proprotein Convertases/genetics , Receptors, LDL/genetics , Sequence Analysis, DNA , Serine Endopeptidases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL