Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Mol Ecol ; 33(5): e17268, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38230514

ABSTRACT

Ecological divergence due to habitat difference plays a prominent role in the formation of new species, but the genetic architecture during ecological speciation and the mechanism underlying phenotypic divergence remain less understood. Two wild ancestors of rice (Oryza rufipogon and Oryza nivara) are a progenitor-derivative species pair with ecological divergence and provide a unique system for studying ecological adaptation/speciation. Here, we constructed a high-resolution linkage map and conducted a quantitative trait locus (QTL) analysis of 19 phenotypic traits using an F2 population generated from a cross between the two Oryza species. We identified 113 QTLs associated with interspecific divergence of 16 quantitative traits, with effect sizes ranging from 1.61% to 34.1% in terms of the percentage of variation explained (PVE). The distribution of effect sizes of QTLs followed a negative exponential, suggesting that a few genes of large effect and many genes of small effect were responsible for the phenotypic divergence. We observed 18 clusters of QTLs (QTL hotspots) on 11 chromosomes, significantly more than that expected by chance, demonstrating the importance of coinheritance of loci/genes in ecological adaptation/speciation. Analysis of effect direction and v-test statistics revealed that interspecific differentiation of most traits was driven by divergent natural selection, supporting the argument that ecological adaptation/speciation would proceed rapidly under coordinated selection on multiple traits. Our findings provide new insights into the understanding of genetic architecture of ecological adaptation and speciation in plants and help effective manipulation of specific genes or gene cluster in rice breeding.


Subject(s)
Oryza , Oryza/genetics , Plant Breeding , Chromosome Mapping , Phenotype , Quantitative Trait Loci/genetics
2.
Nat Plants ; 9(8): 1221-1235, 2023 08.
Article in English | MEDLINE | ID: mdl-37550371

ABSTRACT

The origin of domesticated Asian rice (Oryza sativa L.) has been controversial for more than half a century. The debates have focused on two leading hypotheses: a single domestication event in China or multiple domestication events in geographically separate areas. These two hypotheses differ in their predicted history of genes/alleles selected during domestication. Here we amassed a dataset of 1,578 resequenced genomes, including an expanded sample of wild rice from throughout its geographic range. We identified 993 selected genes that generated phylogenetic trees on which japonica and indica formed a monophyletic group, suggesting that the domestication alleles of these genes originated only once in either japonica or indica. Importantly, the domestication alleles of most selected genes (~80%) stemmed from wild rice in China, but the domestication alleles of a substantial minority of selected genes (~20%) originated from wild rice in South and Southeast Asia, demonstrating separate domestication events of Asian rice.


Subject(s)
Domestication , Oryza , Phylogeny , Oryza/genetics , China , Alleles
SELECTION OF CITATIONS
SEARCH DETAIL