Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters

Publication year range
1.
Stroke ; 54(7): 1875-1887, 2023 07.
Article in English | MEDLINE | ID: mdl-37226775

ABSTRACT

BACKGROUND: Respiratory and urinary tract infections are frequent complications in patients with severe stroke. Stroke-associated infection is mainly due to opportunistic commensal bacteria of the microbiota that may translocate from the gut. We investigated the mechanisms underlying gut dysbiosis and poststroke infection. METHODS: Using a model of transient cerebral ischemia in mice, we explored the relationship between immunometabolic dysregulation, gut barrier dysfunction, gut microbial alterations, and bacterial colonization of organs, and we explored the effect of several drug treatments. RESULTS: Stroke-induced lymphocytopenia and widespread colonization of lung and other organs by opportunistic commensal bacteria. This effect correlated with reduced gut epithelial barrier resistance, and a proinflammatory sway in the gut illustrated by complement and nuclear factor-κB activation, reduced number of gut regulatory T cells, and a shift of gut lymphocytes to γδT cells and T helper 1/T helper 17 phenotypes. Stroke increased conjugated bile acids in the liver but decreased bile acids and short-chain fatty acids in the gut. Gut fermenting anaerobic bacteria decreased while opportunistic facultative anaerobes, notably Enterobacteriaceae, suffered an expansion. Anti-inflammatory treatment with a nuclear factor-κB inhibitor fully abrogated the Enterobacteriaceae overgrowth in the gut microbiota induced by stroke, whereas inhibitors of the neural or humoral arms of the stress response were ineffective at the doses used in this study. Conversely, the anti-inflammatory treatment did not prevent poststroke lung colonization by Enterobacteriaceae. CONCLUSIONS: Stroke perturbs homeostatic neuro-immuno-metabolic networks facilitating a bloom of opportunistic commensals in the gut microbiota. However, this bacterial expansion in the gut does not mediate poststroke infection.


Subject(s)
Gastrointestinal Microbiome , Pneumonia , Stroke , Mice , Animals , NF-kappa B , Bacteria/genetics , Stroke/complications , Lung
2.
Am J Physiol Gastrointest Liver Physiol ; 310(7): G487-96, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26797397

ABSTRACT

Impaired esophageal mucosal integrity may be an important contributor in the pathophysiology of gastroesophageal reflux disease (GERD). Nevertheless, the effect of potentially harmful agents on epithelial integrity is mainly evaluated in vitro for a short period of time and the possible induction of epithelial apoptosis has been neglected. Our objective was to assess the effect of an acidic and weakly acidic solution containing deoxycholic acid (DCA) on the esophageal epithelium in an in vivo rabbit model of esophageal perfusion and to evaluate the role of the epithelial apoptosis. The esophagus of 55 anesthetized rabbits was perfused for 30 min with different solutions at pH 7.2, pH 5.0, pH 1.0, and pH 5.0 containing 200 and 500 µM DCA. Thereafter, animals were euthanized immediately or at 24 or 48 h after the perfusion. Transepithelial electrical resistance, epithelial dilated intercellular spaces, and apoptosis were assessed in Ussing chambers, by transmission electron microscopy, and by TUNEL staining, respectively. No macroscopic or major microscopic alterations were observed after the esophageal perfusions. The acidic and weakly acidic solution containing DCA induced similar long-lasting functional impairment of the epithelial integrity but different ultrastructural morphological changes. Only the solution containing DCA induced epithelial apoptosis in vivo and in vitro in rabbit and human tissue. In contrast to acid, a weakly acidic solution containing DCA induces epithelial apoptosis and a long-lasting impaired mucosal integrity. The presence of apoptotic cells in the esophageal epithelium may be used as a marker of impaired integrity and/or bile reflux exposure.


Subject(s)
Apoptosis/drug effects , Deoxycholic Acid/toxicity , Esophageal Mucosa/drug effects , Animals , Electric Impedance , Esophageal Mucosa/metabolism , Esophageal Mucosa/ultrastructure , Extracellular Space/drug effects , Gastroesophageal Reflux/etiology , Gastroesophageal Reflux/metabolism , Gastroesophageal Reflux/pathology , Humans , Hydrogen-Ion Concentration , Male , Middle Aged , Models, Animal , Perfusion , Rabbits , Time Factors
3.
Rev Esp Enferm Dig ; 108(11): 721-731, 2016 Nov.
Article in English | MEDLINE | ID: mdl-26938735

ABSTRACT

The enteric nervous system (ENS) is responsible for the genesis of motor patterns ensuring an appropriate intestinal transit. Enteric neurons are classified into afferent, interneuron, and motoneuron types, with the latter two being further categorized as excitatory or inhibitory, which cause smooth muscle contraction or inhibition, respectively. Muscle relaxation mechanisms are key for the understanding of physiological processes such as sphincter relaxation, gastric accommodation, or descending peristaltic reflex. Nitric oxide (NO) and ATP or a related purine represent the primary inhibitory neurotransmitters. Nitrergic neurons synthesize NO through nNOS enzyme activity. NO diffuses across the cell membrane to bind its receptor, namely, guanylyl cyclase, and then activates a number of intracellular mechanisms that ultimately result in muscle relaxation. ATP acts as an inhibitory neurotransmitter together with NO, and the purinergic P2Y1 membrane receptor has been identified as a key item in order to understand how ATP may relax intestinal smooth muscle. Although, probably, no clinician doubts the significance of NO in the pathophysiology of digestive motility, the relevance of purinergic neurotransmission is apparently much lower, as ATP has not been associated with any specific motor dysfunction yet. The goal of this review is to discuss the function of both relaxation mechanisms in order to establish the physiological grounds of potential motor dysfunctions arising from impaired intestinal relaxation.


Subject(s)
Gastrointestinal Tract/physiology , Muscle Relaxation/physiology , Animals , Enteric Nervous System/physiology , Humans , Muscle, Smooth , Neurotransmitter Agents/physiology , Synaptic Transmission
4.
Pflugers Arch ; 466(12): 2305-21, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24658973

ABSTRACT

Interaction of different neuromyogenic mechanisms determines colonic motility. In rats, cyclic depolarizations and slow waves generate myogenic contractions of low frequency (LF) and high frequency (HF), respectively. Interstitial cells of Cajal (ICC) located near the submuscular plexus (SMP) generate slow waves. Inhibitory junction potential (IJP) consists on a purinergic fast (IJPf) followed by a nitrergic slow (IJPs) component leading to relaxation. In the present study, we characterized (1) the dynamics of purinergic-nitrergic inhibitory co-transmission and (2) its contribution on prolonged inhibition of myogenic activity. Different protocols of electrical field stimulation (EFS) under different pharmacological conditions were performed to characterize electrophysiological and mechanical responses. Smooth muscle cells (SMCs) in tissue devoid of ICC-SMP had a resting membrane potential (RMP) of -40.7 ± 0.7 mV. Single pulse protocols increased purinergic and nitrergic IJP amplitude in a voltage-dependent manner (IJPfMAX = -26.4 ± 0.6 mV, IJPsMAX = -6.7 ± 0.3 mV). Trains at increasing frequencies enhanced nitrergic (k = 0.8 ± 0.2 s, IJPs∞ = -15 ± 0.5 mV) whereas they attenuated purinergic responses (k = 3.4 ± 0.6 s,IJPf∞ = -8.9 ± 0.6 mV). In tissues with intact ICC-SMP, the RMP was -50.0 ± 0.9 mV and nifedipine insensitive slow waves (10.1 ± 2.0 mV, 10.3 ± 0.5 cpm) were recorded. In these cells, (1) nitrergic and purinergic responses were reduced and (2) slow waves maintained their intrinsic frequency and increased their amplitude under nerve-mediated hyperpolarization. Based on the co-transmission process and consistent with the expected results on RMP, prolonged EFS caused a progressive reduction of LF contractions whereas HF contractions were partially insensitive. In conclusion, inhibitory neurons modulate colonic spontaneous motility and the principles determining post-junctional responses are (1) the frequency of firing that determines the neurotransmitter/receptor involved, (2) the transwall gradient and (3) the origin and nature of each myogenic activity


Subject(s)
Action Potentials , Colon/physiology , Gastrointestinal Motility , Myocytes, Smooth Muscle/physiology , Animals , Colon/cytology , Interstitial Cells of Cajal/physiology , Male , Myocytes, Smooth Muscle/drug effects , Nitric Oxide Synthase/antagonists & inhibitors , Periodicity , Purinergic Agonists/pharmacology , Rats , Rats, Sprague-Dawley
5.
Am J Physiol Gastrointest Liver Physiol ; 307(1): G98-106, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24833707

ABSTRACT

Nitric oxide (NO) is a major inhibitory neurotransmitter in the gastrointestinal (GI) tract. Its main effector, NO-sensitive guanylyl cyclase (NO-GC), is expressed in several GI cell types, including smooth muscle cells (SMC), interstitial cells of Cajal (ICC), and fibroblast-like cells. Up to date, the interplay between neurons and these cells to initiate a nitrergic inhibitory junction potential (IJP) is unclear. Here, we investigate the origin of the nitrergic IJP in murine fundus and colon. IJPs were determined in fundus and colon SMC of mice lacking NO-GC globally (GCKO) and specifically in SMC (SM-GCKO), ICC (ICC-GCKO), and both SMC/ICC (SM/ICC-GCKO). Nitrergic IJP was abolished in ICC-GCKO fundus and reduced in SM-GCKO fundus. In the colon, the amplitude of nitrergic IJP was reduced in ICC-GCKO, whereas nitrergic IJP in SM-GCKO was reduced in duration. These results were corroborated by loss of the nitrergic IJP in global GCKO. In conclusion, our results prove the obligatory role of NO-GC in ICC for the initiation of an IJP. NO-GC in SMC appears to enhance the nitrergic IJP, resulting in a stronger and prolonged hyperpolarization in fundus and colon SMC, respectively. Thus NO-GC in both cell types is mandatory to induce a full nitrergic IJP. Our data from the colon clearly reveal the nitrergic IJP to be biphasic, resulting from individual inputs of ICC and SMC.


Subject(s)
Colon/innervation , Gastric Fundus/innervation , Interstitial Cells of Cajal/metabolism , Neural Inhibition , Nitrergic Neurons/metabolism , Nitric Oxide/metabolism , Synaptic Transmission , Animals , Guanylate Cyclase/genetics , Guanylate Cyclase/metabolism , Inhibitory Postsynaptic Potentials , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Smooth Muscle/metabolism , Time Factors
6.
ScientificWorldJournal ; 2014: 184526, 2014.
Article in English | MEDLINE | ID: mdl-24688365

ABSTRACT

PURPOSE: TRPV1 is a multimodal channel mainly expressed in sensory neurons. We aimed to explore the pharmacodynamics of the TRPV1 agonists, capsaicin, natural capsaicinoids, and piperine in an in vitro bioassay using human PC-3 cells and to examine desensitization and the effect of the specific antagonist SB366791. METHODS: PC-3 cells expressing TRPV1 were incubated with Fluo-4. Fluorescence emission changes following exposition to agonists with and without preincubation with antagonists were assessed and referred to maximal fluorescence following the addition of ionomycin. Concentration-response curves were fitted to the Hill equation. RESULTS: Capsaicin and piperine had similar pharmacodynamics (E max 204.8 ± 184.3% piperine versus 176.6 ± 35.83% capsaicin, P = 0.8814, Hill coefficient 0.70 ± 0.50 piperine versus 1.59 ± 0.86 capsaicin, P = 0.3752). In contrast, capsaicinoids had lower E max (40.99 ± 6.14% capsaicinoids versus 176.6 ± 35.83% capsaicin, P < 0.001). All the TRPV1 agonists showed significant desensitization after the second exposition and their effects were strongly inhibited by SB366791. CONCLUSION: TRPV1 receptor is successfully stimulated by capsaicin, piperine, and natural capsaicinoids. These agonists present desensitization and their effect is significantly reduced by a TRPV1-specific antagonist. In addition, PC-3 cell bioassays proved useful in the study of TRPV1 pharmacodynamics.


Subject(s)
Alkaloids/administration & dosage , Alkaloids/pharmacokinetics , Benzodioxoles/administration & dosage , Benzodioxoles/pharmacokinetics , Capsaicin/administration & dosage , Capsaicin/pharmacokinetics , Piperidines/administration & dosage , Piperidines/pharmacokinetics , Polyunsaturated Alkamides/administration & dosage , Polyunsaturated Alkamides/pharmacokinetics , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , TRPV Cation Channels/agonists , Apoptosis/drug effects , Biological Assay/methods , Cell Line, Tumor , Cell Survival/drug effects , Humans , Male , Metabolic Clearance Rate
7.
Neurogastroenterol Motil ; : e14921, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39344996

ABSTRACT

BACKGROUND: Inhibitory neuromuscular transmission in the gastrointestinal tract is mediated by intrinsic nitrergic and purinergic neurons. Purines activate G protein-coupled receptor P2Y1 receptors, increasing intracellular Ca2+ that activates small conductance calcium-activated potassium (SKCa) channels. Little is known about the effect of adrenergic receptor activation on intestinal smooth muscle. In vascular tissue, stimulation of α-adrenoceptors causes smooth muscle contraction, while their effect on intestinal tissue is poorly understood. This study aimed to pharmacologically characterize the effect of α-adrenoceptor activation in the rat colon, which shares similar inhibitory pathways to the human colon. METHODS: Muscle bath experiments were performed with the rat proximal, mid, and distal colon oriented both circularly and longitudinally. RESULTS: The α1-adrenoceptor agonist phenylephrine (PE) (10-8-10-5 M) evoked concentration-dependent relaxations of the intestinal smooth muscle from all regions and orientations. However, in the mid-circular colon at low PE concentrations, a contraction sensitive to 10-5 M phentolamine (non-selective α-adrenoceptor blocker), the neural blocker tetrodotoxin (TTX; 10-6 M), and atropine (10-6 M) was recorded. PE-induced relaxations were insensitive to TTX (10-6 M) and the nonselective ß-adrenoceptor blocker propranolol (10-6 M). In contrast, PE-induced relaxations were blocked by phentolamine (10-5 M), prazosin (10-6 M) (α1-adrenoceptor blocker), and RS17053 (10-6 M) (α1A-blocker), but not by yohimbine (10-6 M) (α2-adrenoceptor blocker). Apamin (10-6 M), a SKCa channel blocker, abolished PE-induced relaxations. CONCLUSIONS: Contractile responses in the circular muscle of the mid colon could be attributed to α-adrenoceptors located on enteric cholinergic neurons. Stimulation of α1A-adrenoreceptors activates SKCa channels to cause smooth muscle relaxation, which constitutes a signaling pathway that shares similarities with P2Y1 receptors.

8.
Life Sci ; 336: 122286, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38007144

ABSTRACT

AIMS: Transient receptor potential vanilloid 2 (TRPV2) channels are expressed in both smooth muscle and endothelial cells and participate in vascular mechanotransduction and sensing of high temperatures and lipids. Nevertheless, the impact of TRPV2 channel activation by agonists on the coordinated and cell-type specific modulation of vasoreactivity is unknown. MAIN METHODS: Aorta from 2- to 4-months-old male Oncins France 1 mice was dissected and mounted in tissue baths for isometric tension measurements. TRPV2 channel expression was assessed by immunofluorescence and western blot in mice aortas and in cultured A7r5 rat aortic smooth muscle cells. KEY FINDINGS: TRPV2 channels were expressed in all three mouse aorta layers. Activation of TRPV2 channels with probenecid evoked endothelium-dependent relaxations through a mechanism that involved activation of smooth muscle Kir and Kv channels. In addition, TRPV2 channel inhibition with tranilast increased endothelium-independent relaxations to probenecid and this effect was abrogated by the KATP channel blocker glibenclamide, revealing that smooth muscle TRPV2 channels induce negative feedback on probenecid relaxations mediated via KATP channel inhibition. Exposure to the NO donor sodium nitroprusside increased TRPV2 channel translocation to the plasma membrane in cultured smooth muscle cells and enhanced negative feedback on probenecid relaxations. SIGNIFICANCE: In conclusion, we present the first evidence that TRPV2 channels may modulate vascular tone through a balance of opposed inputs from the endothelium and the smooth muscle leading to net vasodilation. The fact that TRPV2 channel-induced activity can be amplified by NO emphasizes the pathophysiological relevance of these findings.


Subject(s)
Endothelial Cells , Probenecid , Mice , Rats , Male , Animals , Probenecid/pharmacology , Mechanotransduction, Cellular , Aorta/metabolism , Vasodilation , Adenosine Triphosphate/metabolism , Endothelium, Vascular/physiology
9.
Eur J Pharmacol ; 972: 176550, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38570081

ABSTRACT

INTRODUCTION: Hyoscine butylbromide (HBB) is one of the most used antispasmodics in clinical practice. Recent translational consensus has demonstrated a similarity between human colonic motor patterns studied ex vivo and in vivo, suggesting ex vivo can predict in vivo results. It is unclear whether the mechanism of action of antispasmodics can predict different use in clinical practice. The aim of the present study is to bridge this gap dissecting HBB's role in excitatory and inhibitory neural pathways. METHODS: 309 colon samples from 48 patients were studied in muscle bath experiments. HBB was tested on: 1-spontaneous phasic contractions (SPCs); 2-carbachol-induced contractility; electrical field stimulation (EFS)-induced selective stimulation of 3-excitatory and 4-inhibitory pathways and 5- SPCs and EFS-induced contractions enhanced by neostigmine. Atropine, AF-DX116 (M2 blocker) and DAU-5884 (M3 blocker) were used as comparators. RESULTS: In the presence of tetrodotoxin (TTX), HBB and atropine 1 µM reduced SPCs. HBB and atropine concentration-dependently reduced carbachol- and EFS-induced contractions. Inhibitory effects of DAU-5884 on EFS-induced contractions were more potent than of AF-DX116. HBB did not affect the off-response associated to neural inhibitory responses. Neostigmine enhanced both SPCs and EFS-induced contractions. In the presence of TTX and ω-conotoxin (GVIA), neostigmine still enhanced SPCs. Addition of HBB and atropine reduced these responses. CONCLUSIONS: This study demonstrates that HBB inhibits neural cholinergic contractions associated to muscarinic (mainly M3) receptors. HBB has a potential role in reducing colonic spasm induced by the release of acetylcholine from enteric motor neurons and from an atypical source including a potential non-neuronal origin.


Subject(s)
Butylscopolammonium Bromide , Colon , Muscle Contraction , Humans , Butylscopolammonium Bromide/pharmacology , Colon/drug effects , Colon/physiology , Male , Female , Muscle Contraction/drug effects , Middle Aged , Aged , Electric Stimulation , Adult , Carbachol/pharmacology , Parasympatholytics/pharmacology , Aged, 80 and over , In Vitro Techniques
10.
Front Pharmacol ; 15: 1384070, 2024.
Article in English | MEDLINE | ID: mdl-39050750

ABSTRACT

Introduction: Drotaverine, paracetamol, and peppermint oil are often prescribed for the treatment of gastrointestinal spasm and pain. This study aimed to evaluate the effect of these drugs alone and combined with the well-known antispasmodic hyoscine butylbromide on the human colon. Methods: Colon samples were obtained from macroscopically normal regions of 68 patients undergoing surgery and studied in muscle bath. Drotaverine, paracetamol, and peppermint oil were tested alone and in combination with hyoscine butylbromide on (1) spontaneous contractility induced by isometric stretch (in the presence of 1 µM tetrodotoxin) and (2) contractility induced by 10-5 M carbachol and after (3) electrical field stimulation-induced selective stimulation of excitatory (in the presence of 1 mM Nω-nitro-L-arginine and 10 µM MRS2179) and (4) inhibitory (under non-adrenergic, non-cholinergic conditions) pathways. (5) Drotaverine alone was also tested on cAMP-dependent pathway activated by forskolin. Results: Compared with the vehicle, drotaverine and paracetamol (10-9-10-5 M) did not modify spontaneous contractions, carbachol-induced contractions, and responses attributed to selective activation of excitatory pathways. The addition of hyoscine butylbromide (10-7-10-5 M), concentration-dependently reduced myogenic contractions and carbachol- and electrical field stimulation-induced contractile responses. The association of paracetamol (10-4 M) and hyoscine butylbromide (10-7-10-5 M) was not different from hyoscine butylbromide alone (10-7-10-5 M). At higher concentrations (10-3M-3*10-3 M), paracetamol decreased myogenic and carbachol-induced contractions. The adenylate cyclase activator, forskolin, concentration-dependently reduced contractility, leading to smooth muscle relaxation. The effect of forskolin 10-7 M was concentration-dependently enhanced by drotaverine (10-6M-10-5M). Discussion: Peppermint oil reduced myogenic activity and carbachol- and electrical field stimulation-induced contractions. The association of hyoscine butylbromide and peppermint oil was synergistic since the interaction index measured with the isobologram was lower than 1. No effect was seen on the neural-mediated inhibitory responses with any of the drugs studied although peppermint oil reduced the subsequent off-contraction. Drotaverine and hyoscine butylbromide have a complementary effect on human colon motility as one stimulates the cAMP inhibitory pathway and the other inhibits the excitatory pathway. Peppermint oil is synergic with hyoscine butylbromide suggesting that a combination therapy may be more effective in treating patients. In contrast, at therapeutic concentrations, paracetamol does not modify colonic contractility, suggesting that the association of paracetamol and hyoscine butylbromide has independent analgesic and antispasmodic properties.

11.
Int J Colorectal Dis ; 28(10): 1413-22, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23702821

ABSTRACT

PURPOSE: The underlying mechanism responsible for motility changes in colonic diverticular disease (DD) is still unknown. In the present study, our aim was to investigate the structural and in vitro motor changes in the sigmoid colon of patients with DD. METHODS: Muscle bath, microelectrodes and immunohistochemical techniques were performed with samples obtained from the left and sigmoid colon of patients with DD and compared with those of patients without DD. RESULTS: The amplitude and area under the curve of the spontaneous rhythmic phasic contractions were greatly reduced in patients with DD whereas their frequency and tone remained unaltered. Electrical field stimulation induced a neurally mediated, enhanced ON-contraction (amplitude) in patients with DD and increased the duration of latency of OFF-contractions. The resting membrane potential of smooth muscle cells was hyperpolarized and the amplitude of the inhibitory junction potential was increased in patients with DD. In contrast, no significant histological differences were observed in patients with DD as smooth muscle (circular and longitudinal layers), interstitial cells of Cajal, glial cells and myenteric neurons densities remained unaltered. CONCLUSIONS: Sigmoid strips from patients with asymptomatic DD showed an altered motor pattern with reduced spontaneous motility and enhanced neurally mediated colonic responses involving both excitatory and inhibitory motor pathways. No major neural and muscular structural elements were detected at this stage of the disease. These findings could be valuable in understanding the pathophysiology of this prevalent digestive disease.


Subject(s)
Diverticulosis, Colonic/physiopathology , Electrophysiological Phenomena , Motor Activity/physiology , Adult , Aged , Aged, 80 and over , Case-Control Studies , Diverticulosis, Colonic/pathology , Electric Stimulation , Female , Humans , In Vitro Techniques , Male , Membrane Potentials/physiology , Middle Aged , Muscle Contraction/physiology , Myenteric Plexus/physiopathology
12.
Neurogastroenterol Motil ; 35(4): e14451, 2023 04.
Article in English | MEDLINE | ID: mdl-35972266

ABSTRACT

BACKGROUND: Hyoscine butylbromide (HBB) has been available for use as an antispasmodic since 1951 and is indicated for the treatment of abdominal pain associated with cramps. A previous review in 2007 summarized the evidence on the mode of action of HBB in vitro and in vivo in both animal and human studies. However, since then, novel publications have appeared within the literature and also our knowledge of what represents normal motility in humans has evolved. PURPOSE: This review is the result of the collaboration between a basic scientist and clinicians with the aim of providing an updated overview of the mechanisms of action of HBB and its clinical efficacy to guide not only use in clinical practice, but also future research.


Subject(s)
Butylscopolammonium Bromide , Scopolamine , Animals , Humans , Butylscopolammonium Bromide/pharmacology , Butylscopolammonium Bromide/therapeutic use , Parasympatholytics/pharmacology , Parasympatholytics/therapeutic use , Abdominal Pain/drug therapy
13.
Front Physiol ; 14: 1170822, 2023.
Article in English | MEDLINE | ID: mdl-37334046

ABSTRACT

This study aims to assess the barrier integrity and possible activation of enteric neural pathways associated with secretion and motility in the pig colon induced by an enterotoxigenic Escherichia coli (ETEC) challenge. 50 Danbred male piglets were used for this study. 16 were challenged with an oral dose of the ETEC strain F4+ 1.5 × 109 colony-forming unit. Colonic samples were studied 4- and 9-days post-challenge using both a muscle bath and Ussing chamber. Colonic mast cells were stained with methylene blue. In control animals, electrical field stimulation induced neurosecretory responses that were abolished by tetrodotoxin (10-6M) and reduced by the combination of atropine (10-4M) and α-chymotrypsin (10U/mL). Exogenous addition of carbachol, vasoactive intestinal peptide, forskolin, 5-HT, nicotine, and histamine produced epithelial Cl- secretion. At day 4 post-challenge, ETEC increased the colonic permeability. The basal electrogenic ion transport remained increased until day 9 post-challenge and was decreased by tetrodotoxin (10-6M), atropine (10-4M), hexamethonium (10-5M), and ondansetron (10-5M). In the muscle, electrical field stimulation produced frequency-dependent contractile responses that were abolished with tetrodotoxin (10-6M) and atropine (10-6M). Electrical field stimulation and carbachol responses were not altered in ETEC animals in comparison with control animals at day 9 post-challenge. An increase in mast cells, stained with methylene blue, was observed in the mucosa and submucosa but not in the muscle layer of ETEC-infected animals on day 9 post-challenge. ETEC increased the response of intrinsic secretory reflexes and produced an impairment of the colonic barrier that was restored on day 9 post-challenge but did not modify neuromuscular function.

14.
J Basic Clin Physiol Pharmacol ; 34(4): 495-507, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-34624185

ABSTRACT

OBJECTIVES: Reactive oxygen and nitrogen species may be produced during inflammation leading to the formation of NO, H2S or HNO. Enzymes such as iNOS, CSE and CBS might also be responsible for polysulfide production. Since these signalling molecules might have an impact on colonic motility, the aim of this study was to compare their effect on rat colonic slow phasic contractions (SPC). METHODS: Organ bath measurements with strips obtained from rat proximal colon were performed using the polysulfide Na2S3, sodium nitroprusside (NaNP), sodium hydrogen sulfide (NaHS), Angeli's salt as NO, H2S, and HNO donors, respectively. TTX (1 µM) was used to block neuronal activity. RESULTS: All four molecules, concentration-dependently, inhibited the amplitude and frequency of SPC both in the circular and longitudinal muscle layer. The relative potency was NaNP>Angeli's salt>NaHS>Na2S3. The inhibitory response induced by NaNP (1 µM) and Angeli's salt (50 µM) was reversed by ODQ (10 µM) whereas the inhibitory effect of NaHS (1 mM) was reversed by apamin (1 µM) and glibenclamide (10 µM). Na2S3 (1 mM) response was partially reversed by apamin (1 µM) and glibenclamide (10 µM). High concentrations of Na2S3 caused an increase in tone. Low concentrations of NaHS or Na2S3 did not potentiate NaNP responses. CONCLUSIONS: All signalling molecules inhibit SPC in both muscle layers. The effect is independent of neural activity and involves guanylyl cyclase (NO and HNO) and SKCa and KATP channels (NaHS or Na2S3). Other pathways might also be involved in Na2S3 responses. Accordingly, complementary mechanisms of inhibition might be attributable to these signalling molecules.

15.
Vet Sci ; 10(12)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38133218

ABSTRACT

The gastrointestinal (GI) mucosal barrier is often exposed to inflammatory and erosive insults, resulting in gastric lesions. Glycosaminoglycans (GAGs), such as hyaluronic acid (HA), chondroitin sulfate (CS), and N-acetylglucosamine (NAG) have shown potential beneficial effects as GI protectants. This study aimed to evaluate the gastroprotective effects of oral GAGs in rats with indomethacin-induced GI lesions. Forty-five Sprague-Dawley rats (8-9 weeks-old, 228 ± 7 g) were included in the study, divided into five study groups, and given, administered orally, either sucralfate (positive control group; PC), NAG (G group), sodium alginate plus HA and CS (AHC group), sodium alginate plus HA, CS, and NAG (AHCG group), or no treatment (negative control group; NC). Animals were administered 12.5 mg/kg indomethacin orally 15 min after receiving the assigned treatment. After 4 h, stomach samples were obtained and used to perform a macroscopic evaluation of gastric lesions and to allow histological assessment of the gastric wall (via H/E staining) and mucous (via PAS staining). The AHCG group showed significant gastroprotective improvements compared to the NC group, and a similar efficacy to the PC group. This combination of sodium alginate with GAGs might, therefore, become a safe and effective alternative to prescription drugs for gastric lesions, such as sucralfate, and have potential usefulness in companion animals.

16.
17.
J Physiol ; 590(8): 1943-56, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22371472

ABSTRACT

Purinergic and nitrergic co-transmission is the dominant mechanism responsible for neural-mediated smooth muscle relaxation in the gastrointestinal tract. The aim of the present paper was to test whether or not P2Y(1) receptors are involved in purinergic neurotransmission using P2Y(1)(−/−) knock-out mice. Tension and microelectrode recordings were performed on colonic strips. In wild type (WT) animals, electrical field stimulation (EFS) caused an inhibitory junction potential (IJP) that consisted of a fast IJP (MRS2500 sensitive, 1 µm) followed by a sustained IJP (N(ω)-nitro-L-arginine (L-NNA) sensitive, 1 mm). The fast component of the IJP was absent in P2Y(1)(−/−) mice whereas the sustained IJP (L-NNA sensitive) was recorded. In WT animals, EFS-induced inhibition of spontaneous motility was blocked by the consecutive addition of L-NNA and MRS2500. In P2Y(1)(−/−) mice, EFS responses were completely blocked by L-NNA. In WT and P2Y(1)(−/−) animals, L-NNA induced a smooth muscle depolarization but 'spontaneous' IJP (MRS2500 sensitive) could be recorded in WT but not in P2Y(1)(−/−) animals. Finally, in WT animals, 1 µm MRS2365 caused a smooth muscle hyperpolarization that was blocked by 1 µm MRS2500. In contrast, 1 µm MRS2365 did not modify smooth muscle resting membrane potential in P2Y(1)(−/−) mice. ß-Nicotinamide adenine dinucleotide (ß-NAD, 1 mm) partially mimicked the effect of MRS2365. We conclude that P2Y(1) receptors mediate purinergic neurotransmission in the gastrointestinal tract and ß-NAD partially fulfils the criteria to participate in rodent purinergic neurotransmission. The P2Y(1)(−/−) mouse is a useful animal model to study the selective loss of purinergic neurotransmission.


Subject(s)
Colon/physiology , Neuromuscular Junction/physiology , Receptors, Purinergic P2Y1/deficiency , Synaptic Transmission/physiology , Animals , Colon/drug effects , Electric Stimulation/methods , Gastrointestinal Motility/drug effects , Gastrointestinal Motility/physiology , Male , Membrane Potentials/drug effects , Membrane Potentials/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle Relaxation/drug effects , Muscle Relaxation/physiology , Muscle, Smooth/drug effects , Muscle, Smooth/physiology , Neuromuscular Junction/drug effects , Receptors, Purinergic P2Y1/genetics , Receptors, Purinergic P2Y1/metabolism , Synaptic Transmission/drug effects
18.
Gut ; 60(7): 885-92, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21303918

ABSTRACT

BACKGROUND: Oesophageal intraluminal impedance is currently used for assessment of reflux in gastro-oesophageal reflux disease (GORD). Oesophageal mucosa integrity may have a key role in heartburn perception in non-erosive reflux disease (NERD). Severe erosive oesophagitis is associated with low impedance baseline. We hypothesised that impedance baseline measurements could be used to evaluate changes in oesophageal mucosa integrity in man. METHODS: We measured oesophageal impedance baseline before, during and after acid perfusion in rabbits and healthy subjects. Transepithelial resistance (TER) was determined and dilated intercellular spaces (DIS) were assessed in isolated rabbit oesophageal mucosa. Impedance baseline was measured retrospectively at different levels of the oesophagus in impedance-pH recordings from asymptomatic volunteers and patients with GORD. RESULTS: In healthy subjects and rabbits, impedance baseline dropped dramatically during perfusion of control solution (pH 7.2) but after perfusion, impedance recovered. In rabbits, after perfusion with saline pH 1.5 and 1.0 impedance values remained a 39.1 ± 7.0% and 63.9 ± 6.5% (p < 0.05) lower respectively. There was a positive correlation between in vivo basal impedance and in vitro TER values (r = 0.72, p = 0.0021). Tissue showed no erosions but both acidic solutions induced DIS. In healthy subjects, after perfusion with saline pH 2.0 and 1.0 the impedance baseline remained lower a 21.9 ± 6.5% and 52.7 ± 5.0%, (p < 0.0001) respectively. Patients with GORD have a lower impedance baseline than healthy volunteers at the distal oesophagus. CONCLUSIONS: Impedance baseline measurements might be used to evaluate the status of the oesophageal mucosa and to study the role of the impaired mucosal integrity in acid-induced heartburn in healthy volunteers and in patients with GORD.


Subject(s)
Esophagus/physiopathology , Gastroesophageal Reflux/physiopathology , Adult , Animals , Electric Impedance , Esophagus/ultrastructure , Extracellular Space/physiology , Female , Gastroesophageal Reflux/pathology , Humans , Hydrogen-Ion Concentration , Male , Microscopy, Electron , Mucous Membrane/physiopathology , Mucous Membrane/ultrastructure , Rabbits , Retrospective Studies , Young Adult
19.
Biomedicines ; 10(7)2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35885069

ABSTRACT

A hallmark of atrial fibrillation is an excess of spontaneous calcium release events, which can be mimicked by ß1- or ß2-adrenergic stimulation. Because ß1-adrenergic receptor blockers (ß1-blockers) are primarily used in clinical practice, we here examined the impact of ß2-adrenergic stimulation on spontaneous calcium release and assessed whether the R- and S-enantiomers of the non-selective ß- blocker carvedilol could reverse these effects. For this purpose, human atrial myocytes were isolated from patients undergoing cardiovascular surgery and subjected to confocal calcium imaging or immunofluorescent labeling of the ryanodine receptor (RyR2). Interestingly, the ß2-adrenergic agonist fenoterol increased the incidence of calcium sparks and waves to levels observed with the non-specific ß-adrenergic agonist isoproterenol. Moreover, fenoterol increased both the amplitude and duration of the sparks, facilitating their fusion into calcium waves. Subsequent application of the non ß-blocking R-Carvedilol enantiomer reversed these effects of fenoterol in a dose-dependent manner. R-Carvedilol also reversed the fenoterol-induced phosphorylation of the RyR2 at Ser-2808 dose-dependently, and 1 µM of either R- or S-Carvedilol fully reversed the effect of fenoterol. Together, these findings demonstrate that ß2-adrenergic stimulation alone stimulates RyR2 phosphorylation at Ser-2808 and spontaneous calcium release maximally, and points to carvedilol as a tool to attenuate the pathological activation of ß2-receptors.

20.
Int J Exp Pathol ; 92(6): 400-12, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22050417

ABSTRACT

The pathogenetic mechanisms underlying gastrointestinal dysmotility in diabetic patients remain poorly understood, although enteric neuropathy, damage to interstitial cells of Cajal (ICC) and smooth muscle cell injury are believed to play a role. The aim of this study was to investigate the morphological and functional changes underlying intestinal dysmotility in RIP-I/hIFNß transgenic mice treated with multiple very low doses of streptozotocin (20 mg/kg, i.p., 5 days). Compared with vehicle-treated mice, streptozotocin-treated animals developed type 1 diabetes mellitus, with sustained hyperglycaemia for 3.5 months, polyphagia, polydipsia and increased faecal output without changes in faecal water content (metabolic cages). Diabetic mice had a longer intestine, longer ileal villi and wider colonic crypts (conventional microscopy) and displayed faster gastric emptying and intestinal transit. Contractility studies showed selective impaired neurotransmission in the ileum and mid-colon of diabetic mice. Compared with controls, the ileal and colonic myenteric plexus of diabetic mice revealed ultrastructural features of neuronal degeneration and HuD immunohistochemistry on whole-mount preparations showed 15% reduction in neuronal numbers. However, no immunohistochemical changes in apoptosis-related markers were noted. Lower absolute numbers of neuronal nitric oxide synthase- and choline acetyltransferase-immunopositive neurons and enhanced vasoactive intestinal polypeptide and substance P immunopositivity were observed. Ultrastructural and immunohistochemical analyses did not reveal changes in the enteric glial or ICC networks. In conclusion, this model of diabetic enteropathy shows enhanced intestinal transit associated with intestinal remodelling, including neuroplastic changes, and overt myenteric neuropathy. Such abnormalities are likely to reflect neuroadaptive and neuropathological changes occurring in this diabetic model.


Subject(s)
Colon/pathology , Colon/physiopathology , Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Type 1/physiopathology , Gastrointestinal Motility/physiology , Ileum/pathology , Ileum/physiopathology , Animals , Choline O-Acetyltransferase/metabolism , Colon/metabolism , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/pathology , Diabetic Neuropathies/metabolism , Diabetic Neuropathies/pathology , Diabetic Neuropathies/physiopathology , Disease Models, Animal , Gastric Emptying/physiology , Ileum/metabolism , Interferon-beta/genetics , Interferon-beta/metabolism , Male , Mice , Mice, Transgenic , Myenteric Plexus/metabolism , Myenteric Plexus/pathology , Myenteric Plexus/physiopathology , Nitric Oxide Synthase Type I/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Streptozocin/adverse effects , Substance P/metabolism , Vasoactive Intestinal Peptide/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL