Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Development ; 151(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38369735

ABSTRACT

Malrotation of the intestine is a prevalent birth anomaly, the etiology of which remains poorly understood. Here, we show that late-stage exposure of Xenopus embryos to atrazine, a widely used herbicide that targets electron transport chain (ETC) reactions, elicits intestinal malrotation at high frequency. Interestingly, atrazine specifically inhibits the cellular morphogenetic events required for gut tube elongation, including cell rearrangement, differentiation and proliferation; insufficient gut lengthening consequently reorients the direction of intestine rotation. Transcriptome analyses of atrazine-exposed intestines reveal misexpression of genes associated with glycolysis and oxidative stress, and metabolomics shows that atrazine depletes key glycolytic and tricarboxylic acid cycle metabolites. Moreover, cellular bioenergetics assays indicate that atrazine blocks a crucial developmental transition from glycolytic ATP production toward oxidative phosphorylation. Atrazine-induced defects are phenocopied by rotenone, a known ETC Complex I inhibitor, accompanied by elevated reactive oxygen species, and rescued by antioxidant supplementation, suggesting that malrotation may be at least partly attributable to redox imbalance. These studies reveal roles for metabolism in gut morphogenesis and implicate defective gut tube elongation and/or metabolic perturbations in the etiology of intestinal malrotation.


Subject(s)
Atrazine , Herbicides , Rotation , Herbicides/toxicity , Oxidation-Reduction , Gene Expression Profiling
2.
Am J Hum Genet ; 109(9): 1638-1652, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36055212

ABSTRACT

Hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-PHIs) are currently under clinical development for treating anemia in chronic kidney disease (CKD), but it is important to monitor their cardiovascular safety. Genetic variants can be used as predictors to help inform the potential risk of adverse effects associated with drug treatments. We therefore aimed to use human genetics to help assess the risk of adverse cardiovascular events associated with therapeutically altered EPO levels to help inform clinical trials studying the safety of HIF-PHIs. By performing a genome-wide association meta-analysis of EPO (n = 6,127), we identified a cis-EPO variant (rs1617640) lying in the EPO promoter region. We validated this variant as most likely causal in controlling EPO levels by using genetic and functional approaches, including single-base gene editing. Using this variant as a partial predictor for therapeutic modulation of EPO and large genome-wide association data in Mendelian randomization tests, we found no evidence (at p < 0.05) that genetically predicted long-term rises in endogenous EPO, equivalent to a 2.2-unit increase, increased risk of coronary artery disease (CAD, OR [95% CI] = 1.01 [0.93, 1.07]), myocardial infarction (MI, OR [95% CI] = 0.99 [0.87, 1.15]), or stroke (OR [95% CI] = 0.97 [0.87, 1.07]). We could exclude increased odds of 1.15 for cardiovascular disease for a 2.2-unit EPO increase. A combination of genetic and functional studies provides a powerful approach to investigate the potential therapeutic profile of EPO-increasing therapies for treating anemia in CKD.


Subject(s)
Anemia , Coronary Artery Disease , Myocardial Infarction , Renal Insufficiency, Chronic , Anemia/drug therapy , Anemia/genetics , Coronary Artery Disease/genetics , Genome-Wide Association Study , Humans , Mendelian Randomization Analysis , Myocardial Infarction/genetics , Renal Insufficiency, Chronic/genetics
3.
Mol Psychiatry ; 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38052982

ABSTRACT

Maternal educational attainment (MEA) shapes offspring health through multiple potential pathways. Differential DNA methylation may provide a mechanistic understanding of these long-term associations. We aimed to quantify the associations of MEA with offspring DNA methylation levels at birth, in childhood and in adolescence. Using 37 studies from high-income countries, we performed meta-analysis of epigenome-wide association studies (EWAS) to quantify the associations of completed years of MEA at the time of pregnancy with offspring DNA methylation levels at birth (n = 9 881), in childhood (n = 2 017), and adolescence (n = 2 740), adjusting for relevant covariates. MEA was found to be associated with DNA methylation at 473 cytosine-phosphate-guanine sites at birth, one in childhood, and four in adolescence. We observed enrichment for findings from previous EWAS on maternal folate, vitamin-B12 concentrations, maternal smoking, and pre-pregnancy BMI. The associations were directionally consistent with MEA being inversely associated with behaviours including smoking and BMI. Our findings form a bridge between socio-economic factors and biology and highlight potential pathways underlying effects of maternal education. The results broaden our understanding of bio-social associations linked to differential DNA methylation in multiple early stages of life. The data generated also offers an important resource to help a more precise understanding of the social determinants of health.

4.
Hepatology ; 76(4): 1090-1104, 2022 10.
Article in English | MEDLINE | ID: mdl-35083765

ABSTRACT

BACKGROUND AND AIMS: Within the next decade, NAFLD is predicted to become the most prevalent cause of childhood liver failure in developed countries. Predisposition to juvenile NAFLD can be programmed during early life in response to maternal metabolic syndrome (MetS), but the underlying mechanisms are poorly understood. We hypothesized that imprinted genes, defined by expression from a single parental allele, play a key role in maternal MetS-induced NAFLD, due to their susceptibility to environmental stressors and their functions in liver homeostasis. We aimed to test this hypothesis and determine the critical periods of susceptibility to maternal MetS. APPROACH AND RESULTS: We established a mouse model to compare the effects of MetS during prenatal and postnatal development on NAFLD. Postnatal but not prenatal MetS exposure is associated with histological, biochemical, and molecular signatures of hepatic steatosis and fibrosis in juvenile mice. Using RNA sequencing, we show that the Imprinted Gene Network (IGN), including its regulator Zac1, is up-regulated and overrepresented among differentially expressed genes, consistent with a role in maternal MetS-induced NAFLD. In support of this, activation of the IGN in cultured hepatoma cells by overexpressing Zac1 is sufficient to induce signatures of profibrogenic transformation. Using chromatin immunoprecipitation, we demonstrate that Zac1 binds the TGF-ß1 and COL6A2 promoters, forming a direct pathway between imprinted genes and well-characterized pathophysiological mechanisms of NAFLD. Finally, we show that hepatocyte-specific overexpression of Zac1 is sufficient to drive fibrosis in vivo. CONCLUSIONS: Our findings identify a pathway linking maternal MetS exposure during postnatal development to the programming of juvenile NAFLD, and provide support for the hypothesis that imprinted genes play a central role in metabolic disease programming.


Subject(s)
Metabolic Syndrome , Non-alcoholic Fatty Liver Disease , Transcription Factors , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Disease Models, Animal , Gene Regulatory Networks/genetics , Gene Regulatory Networks/physiology , Genes, Tumor Suppressor/physiology , Metabolic Syndrome/complications , Metabolic Syndrome/genetics , Metabolic Syndrome/metabolism , Mice , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transforming Growth Factor beta1
5.
Appetite ; 191: 107086, 2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37844693

ABSTRACT

The etiology of childhood appetitive traits is poorly understood. Early-life epigenetic processes may be involved in the developmental programming of appetite regulation in childhood. One such process is DNA methylation (DNAm), whereby a methyl group is added to a specific part of DNA, where a cytosine base is next to a guanine base, a CpG site. We meta-analyzed epigenome-wide association studies (EWASs) of cord blood DNAm and early-childhood appetitive traits. Data were from two independent cohorts: the Generation R Study (n = 1,086, Rotterdam, the Netherlands) and the Healthy Start study (n = 236, Colorado, USA). DNAm at autosomal methylation sites in cord blood was measured using the Illumina Infinium HumanMethylation450 BeadChip. Parents reported on their child's food responsiveness, emotional undereating, satiety responsiveness and food fussiness using the Children's Eating Behaviour Questionnaire at age 4-5 years. Multiple regression models were used to examine the association of DNAm (predictor) at the individual site- and regional-level (using DMRff) with each appetitive trait (outcome), adjusting for covariates. Bonferroni-correction was applied to adjust for multiple testing. There were no associations of DNAm and any appetitive trait when examining individual CpG-sites. However, when examining multiple CpGs jointly in so-called differentially methylated regions, we identified 45 associations of DNAm with food responsiveness, 7 associations of DNAm with emotional undereating, 13 associations of DNAm with satiety responsiveness, and 9 associations of DNAm with food fussiness. This study shows that DNAm in the newborn may partially explain variation in appetitive traits expressed in early childhood and provides preliminary support for early programming of child appetitive traits through DNAm. Investigating differential DNAm associated with appetitive traits could be an important first step in identifying biological pathways underlying the development of these behaviors.

6.
J Allergy Clin Immunol ; 143(6): 2062-2074, 2019 06.
Article in English | MEDLINE | ID: mdl-30579849

ABSTRACT

BACKGROUND: Epigenetic mechanisms, including methylation, can contribute to childhood asthma. Identifying DNA methylation profiles in asthmatic patients can inform disease pathogenesis. OBJECTIVE: We sought to identify differential DNA methylation in newborns and children related to childhood asthma. METHODS: Within the Pregnancy And Childhood Epigenetics consortium, we performed epigenome-wide meta-analyses of school-age asthma in relation to CpG methylation (Illumina450K) in blood measured either in newborns, in prospective analyses, or cross-sectionally in school-aged children. We also identified differentially methylated regions. RESULTS: In newborns (8 cohorts, 668 cases), 9 CpGs (and 35 regions) were differentially methylated (epigenome-wide significance, false discovery rate < 0.05) in relation to asthma development. In a cross-sectional meta-analysis of asthma and methylation in children (9 cohorts, 631 cases), we identified 179 CpGs (false discovery rate < 0.05) and 36 differentially methylated regions. In replication studies of methylation in other tissues, most of the 179 CpGs discovered in blood replicated, despite smaller sample sizes, in studies of nasal respiratory epithelium or eosinophils. Pathway analyses highlighted enrichment for asthma-relevant immune processes and overlap in pathways enriched both in newborns and children. Gene expression correlated with methylation at most loci. Functional annotation supports a regulatory effect on gene expression at many asthma-associated CpGs. Several implicated genes are targets for approved or experimental drugs, including IL5RA and KCNH2. CONCLUSION: Novel loci differentially methylated in newborns represent potential biomarkers of risk of asthma by school age. Cross-sectional associations in children can reflect both risk for and effects of disease. Asthma-related differential methylation in blood in children was substantially replicated in eosinophils and respiratory epithelium.


Subject(s)
Asthma/genetics , CpG Islands/genetics , ERG1 Potassium Channel/genetics , Epigenome/genetics , Interleukin-5 Receptor alpha Subunit/genetics , Child , Cross-Sectional Studies , DNA Methylation , Epigenesis, Genetic , Genome-Wide Association Study , Humans , Infant, Newborn
7.
Carcinogenesis ; 40(9): 1099-1109, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-30698678

ABSTRACT

p53 is activated by DNA damage and oncogenic stimuli to regulate senescence, apoptosis and cell-cycle arrest, which are essential to prevent cancer. Here, we utilized UVB radiation, a potent inducer of DNA damage, p53, apoptosis and skin cancer to investigate the mechanism of CCAAT/enhancer binding protein-ß (C/EBPß) in regulating p53-mediated apoptosis in keratinocytes and to test whether the deletion of C/EBPß in epidermis can protect mice from UVB-induced skin cancer. UVB-treatment of C/EBPß skin conditional knockout (CKOß) mice increased p53 protein levels in epidermis and enhanced p53-dependent apoptotic activity 3-fold compared with UVB-treated control mice. UVB increased C/EBPß levels through a p53-dependent pathway and stimulated the formation of a C/EBPß-p53 protein complex; knockdown of C/EBPß increased p53 protein stability in keratinocytes. These results suggest a p53-C/EBPß feedback loop, whereby C/EBPß, a transcriptional target of a p53 pathway, functions as a survival factor by negatively regulating p53 apoptotic activity in response to DNA damage. RNAseq analysis of UVB-treated CKOß epidermis unexpectedly revealed that type 1 interferon (IFN) pathway was the most highly enriched pathway. Numerous pro-apoptotic interferon stimulated genes were upregulated including some known to enhance p53 apoptosis. Our results indicate that p53 and IFN pathways function together in response to DNA damage to result in the activation of extrinsic apoptosis pathways and caspase 8 cleavage. Last, we observed CKOß mice were resistant to UVB-induced skin cancer. Our results suggest that C/EBPß represses apoptosis through keratinocyte autonomous suppression of the type 1 IFN response and p53 to increase cell survival and susceptibility to UVB-induced skin cancer.

8.
BMC Bioinformatics ; 19(1): 95, 2018 03 09.
Article in English | MEDLINE | ID: mdl-29523079

ABSTRACT

BACKGROUND: Expression quantitative trait loci (eQTL) analysis identifies genetic markers associated with the expression of a gene. Most existing eQTL analyses and methods investigate association in a single, readily available tissue, such as blood. Joint analysis of eQTL in multiple tissues has the potential to improve, and expand the scope of, single-tissue analyses. Large-scale collaborative efforts such as the Genotype-Tissue Expression (GTEx) program are currently generating high quality data in a large number of tissues. However, computational constraints limit genome-wide multi-tissue eQTL analysis. RESULTS: We develop an integrative method under a hierarchical Bayesian framework for eQTL analysis in a large number of tissues. The model fitting procedure is highly scalable, and the computing time is a polynomial function of the number of tissues. Multi-tissue eQTLs are identified through a local false discovery rate approach, which rigorously controls the false discovery rate. Using simulation and GTEx real data studies, we show that the proposed method has superior performance to existing methods in terms of computing time and the power of eQTL discovery. CONCLUSIONS: We provide a scalable method for eQTL analysis in a large number of tissues. The method enables the identification of eQTL with different configurations and facilitates the characterization of tissue specificity.


Subject(s)
Gene Expression Regulation , Organ Specificity/genetics , Quantitative Trait Loci/genetics , Algorithms , Bayes Theorem , Computer Simulation , Genome-Wide Association Study , Genotype , Humans , Polymorphism, Single Nucleotide/genetics , ROC Curve
9.
Appl Environ Microbiol ; 83(21)2017 11 01.
Article in English | MEDLINE | ID: mdl-28842547

ABSTRACT

In the foodborne pathogen Listeria monocytogenes, arsenic resistance is encountered primarily in serotype 4b clones considered to have enhanced virulence and is associated with an arsenic resistance gene cluster within a 35-kb chromosomal region, Listeria genomic island 2 (LGI2). LGI2 was first identified in strain Scott A and includes genes putatively involved in arsenic and cadmium resistance, DNA integration, conjugation, and pathogenicity. However, the genomic localization and sequence content of LGI2 remain poorly characterized. Here we investigated 85 arsenic-resistant L. monocytogenes strains, mostly of serotype 4b. All but one of the 70 serotype 4b strains belonged to clonal complex 1 (CC1), CC2, and CC4, three major clones associated with enhanced virulence. PCR analysis suggested that 53 strains (62.4%) harbored an island highly similar to LGI2 of Scott A, frequently (42/53) in the same location as Scott A (LMOf2365_2257 homolog). Random-primed PCR and whole-genome sequencing revealed seven novel insertion sites, mostly internal to chromosomal coding sequences, among strains harboring LGI2 outside the LMOf2365_2257 homolog. Interestingly, many CC1 strains harbored a noticeably diversified LGI2 (LGI2-1) in a unique location (LMOf2365_0902 homolog) and with a novel additional gene. With few exceptions, the tested LGI2 genes were not detected in arsenic-resistant strains of serogroup 1/2, which instead often harbored a Tn554-associated arsenic resistance determinant not encountered in serotype 4b. These findings indicate that in L. monocytogenes, LGI2 has a propensity for certain serotype 4b clones, exhibits content diversity, and is highly promiscuous, suggesting an ability to mobilize various accessory genes into diverse chromosomal loci.IMPORTANCEListeria monocytogenes is widely distributed in the environment and causes listeriosis, a foodborne disease with high mortality and morbidity. Arsenic and other heavy metals can powerfully shape the populations of human pathogens with pronounced environmental lifestyles such as L. monocytogenes Arsenic resistance is encountered primarily in certain serotype 4b clones considered to have enhanced virulence and is associated with a large chromosomal island, Listeria genomic island 2 (LGI2). LGI2 also harbors a cadmium resistance cassette and genes putatively involved in DNA integration, conjugation, and pathogenicity. Our findings indicate that LGI2 exhibits pronounced content plasticity and is capable of transferring various accessory genes into diverse chromosomal locations. LGI2 may serve as a paradigm on how exposure to a potent environmental toxicant such as arsenic may have dynamically selected for arsenic-resistant subpopulations in certain clones of L. monocytogenes which also contribute significantly to disease.


Subject(s)
Arsenic/metabolism , Genomic Islands , Listeria monocytogenes/genetics , Listeria monocytogenes/pathogenicity , Listeriosis/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Genetic Variation , Humans , Listeria monocytogenes/metabolism , Virulence
10.
Blood ; 123(19): 2988-96, 2014 May 08.
Article in English | MEDLINE | ID: mdl-24682267

ABSTRACT

In this study, we define the genetic landscape of mantle cell lymphoma (MCL) through exome sequencing of 56 cases of MCL. We identified recurrent mutations in ATM, CCND1, MLL2, and TP53. We further identified a number of novel genes recurrently mutated in patients with MCL including RB1, WHSC1, POT1, and SMARCA4. We noted that MCLs have a distinct mutational profile compared with lymphomas from other B-cell stages. The ENCODE project has defined the chromatin structure of many cell types. However, a similar characterization of primary human mature B cells has been lacking. We defined, for the first time, the chromatin structure of primary human naïve, germinal center, and memory B cells through chromatin immunoprecipitation and sequencing for H3K4me1, H3K4me3, H3Ac, H3K36me3, H3K27me3, and PolII. We found that somatic mutations that occur more frequently in either MCLs or Burkitt lymphomas were associated with open chromatin in their respective B cells of origin, naïve B cells, and germinal center B cells. Our work thus elucidates the landscape of gene-coding mutations in MCL and the critical interplay between epigenetic alterations associated with B-cell differentiation and the acquisition of somatic mutations in cancer.


Subject(s)
B-Lymphocytes/metabolism , Chromatin/genetics , Genomics , Lymphoma, Mantle-Cell/genetics , Mutation , Ataxia Telangiectasia Mutated Proteins/genetics , Burkitt Lymphoma/genetics , Burkitt Lymphoma/pathology , Chromatin/metabolism , Cyclin D1/genetics , DNA Helicases/genetics , DNA-Binding Proteins/genetics , Epigenesis, Genetic , Exome/genetics , Gene Regulatory Networks , Germinal Center/metabolism , Germinal Center/pathology , Histone-Lysine N-Methyltransferase/genetics , Histones/genetics , Histones/metabolism , Humans , Lymphoma, Mantle-Cell/pathology , Methylation , Neoplasm Proteins/genetics , Nuclear Proteins/genetics , Repressor Proteins/genetics , Retinoblastoma Protein/genetics , Sequence Analysis, DNA , Shelterin Complex , Telomere-Binding Proteins/genetics , Transcription Factors/genetics , Tumor Suppressor Protein p53/genetics
11.
Int J Syst Evol Microbiol ; 66(11): 4512-4517, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27506201

ABSTRACT

A novel rickettsial agent, 'Candidatus Rickettsia asembonensis' strain NMRCiiT, was isolated from cat fleas, Ctenocephalides felis, from Kenya. Genotypic characterization of the new isolate based on sequence analysis of five rickettsial genes, rrs, gltA, ompA, ompB and sca4, indicated that this isolate clustered with Rickettsia felis URRWXCal2. The degree of nucleotide similarity demonstrated that isolate NMRCiiT belongs within the genus Rickettsia and fulfils the criteria for classification as a representative of a novel species. The name Rickettsia asembonensis sp. nov. is proposed, with NMRCiiT (=DSM 100172T=CDC CRIRC RAS001T=ATCC VR-1827T) as the type strain.


Subject(s)
Ctenocephalides/microbiology , Phylogeny , Rickettsia/classification , Animals , Bacterial Typing Techniques , Cats , DNA, Bacterial/genetics , Genes, Bacterial , Kenya , RNA, Ribosomal, 16S/genetics , Rickettsia/genetics , Rickettsia/isolation & purification , Sequence Analysis, DNA
12.
Proc Natl Acad Sci U S A ; 110(4): 1398-403, 2013 Jan 22.
Article in English | MEDLINE | ID: mdl-23292937

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) is the most common form of lymphoma in adults. The disease exhibits a striking heterogeneity in gene expression profiles and clinical outcomes, but its genetic causes remain to be fully defined. Through whole genome and exome sequencing, we characterized the genetic diversity of DLBCL. In all, we sequenced 73 DLBCL primary tumors (34 with matched normal DNA). Separately, we sequenced the exomes of 21 DLBCL cell lines. We identified 322 DLBCL cancer genes that were recurrently mutated in primary DLBCLs. We identified recurrent mutations implicating a number of known and not previously identified genes and pathways in DLBCL including those related to chromatin modification (ARID1A and MEF2B), NF-κB (CARD11 and TNFAIP3), PI3 kinase (PIK3CD, PIK3R1, and MTOR), B-cell lineage (IRF8, POU2F2, and GNA13), and WNT signaling (WIF1). We also experimentally validated a mutation in PIK3CD, a gene not previously implicated in lymphomas. The patterns of mutation demonstrated a classic long tail distribution with substantial variation of mutated genes from patient to patient and also between published studies. Thus, our study reveals the tremendous genetic heterogeneity that underlies lymphomas and highlights the need for personalized medicine approaches to treating these patients.


Subject(s)
Genetic Heterogeneity , Lymphoma, Large B-Cell, Diffuse/genetics , Adult , Base Sequence , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases , DNA Mutational Analysis , DNA, Neoplasm/genetics , Exome , Gene Expression , Genetic Variation , Humans , Lymphoma, Large B-Cell, Diffuse/drug therapy , Models, Molecular , Molecular Sequence Data , Molecular Targeted Therapy , Mutation , Oncogenes , Phosphatidylinositol 3-Kinases/chemistry , Phosphatidylinositol 3-Kinases/genetics , Protein Conformation , Proto-Oncogene Proteins c-kit/genetics , Receptor, Platelet-Derived Growth Factor alpha/genetics , Sequence Homology, Nucleic Acid , Signal Transduction/genetics
13.
BMC Bioinformatics ; 16: 416, 2015 Dec 29.
Article in English | MEDLINE | ID: mdl-26714571

ABSTRACT

BACKGROUND: The detection of pathogens in complex sample backgrounds has been revolutionized by wide access to next-generation sequencing (NGS) platforms. However, analytical methods to support NGS platforms are not as uniformly available. Pathosphere (found at Pathosphere.org) is a cloud - based open - sourced community tool that allows for communication, collaboration and sharing of NGS analytical tools and data amongst scientists working in academia, industry and government. The architecture allows for users to upload data and run available bioinformatics pipelines without the need for onsite processing hardware or technical support. RESULTS: The pathogen detection capabilities hosted on Pathosphere were tested by analyzing pathogen-containing samples sequenced by NGS with both spiked human samples as well as human and zoonotic host backgrounds. Pathosphere analytical pipelines developed by Edgewood Chemical Biological Center (ECBC) identified spiked pathogens within a common sample analyzed by 454, Ion Torrent, and Illumina sequencing platforms. ECBC pipelines also correctly identified pathogens in human samples containing arenavirus in addition to animal samples containing flavivirus and coronavirus. These analytical methods were limited in the detection of sequences with limited homology to previous annotations within NCBI databases, such as parvovirus. Utilizing the pipeline-hosting adaptability of Pathosphere, the analytical suite was supplemented by analytical pipelines designed by the United States Army Medical Research Insititute of Infectious Diseases and Walter Reed Army Institute of Research (USAMRIID-WRAIR). These pipelines were implemented and detected parvovirus sequence in the sample that the ECBC iterative analysis previously failed to identify. CONCLUSIONS: By accurately detecting pathogens in a variety of samples, this work demonstrates the utility of Pathosphere and provides a platform for utilizing, modifying and creating pipelines for a variety of NGS technologies developed to detect pathogens in complex sample backgrounds. These results serve as an exhibition for the existing pipelines and web-based interface of Pathosphere as well as the plug-in adaptability that allows for integration of newer NGS analytical software as it becomes available.


Subject(s)
User-Computer Interface , Algorithms , Animals , Arenavirus/genetics , Arenavirus/isolation & purification , Computational Biology , Coronavirus/genetics , Coronavirus/isolation & purification , Databases, Factual , Flavivirus/genetics , Flavivirus/isolation & purification , High-Throughput Nucleotide Sequencing , Humans , Internet , RNA, Viral/chemistry , RNA, Viral/metabolism , Sequence Analysis, RNA
14.
BMC Genomics ; 16: 952, 2015 Nov 16.
Article in English | MEDLINE | ID: mdl-26573221

ABSTRACT

BACKGROUND: Human erythrocytes are terminally differentiated, anucleate cells long thought to lack RNAs. However, previous studies have shown the persistence of many small-sized RNAs in erythrocytes. To comprehensively define the erythrocyte transcriptome, we used high-throughput sequencing to identify both short (18-24 nt) and long (>200 nt) RNAs in mature erythrocytes. RESULTS: Analysis of the short RNA transcriptome with miRDeep identified 287 known and 72 putative novel microRNAs. Unexpectedly, we also uncover an extensive repertoire of long erythrocyte RNAs that encode many proteins critical for erythrocyte differentiation and function. Additionally, the erythrocyte long RNA transcriptome is significantly enriched in the erythroid progenitor transcriptome. Joint analysis of both short and long RNAs identified several loci with co-expression of both microRNAs and long RNAs spanning microRNA precursor regions. Within the miR-144/451 locus previously implicated in erythroid development, we observed unique co-expression of several primate-specific noncoding RNAs, including a lncRNA, and miR-4732-5p/-3p. We show that miR-4732-3p targets both SMAD2 and SMAD4, two critical components of the TGF-ß pathway implicated in erythropoiesis. Furthermore, miR-4732-3p represses SMAD2/4-dependent TGF-ß signaling, thereby promoting cell proliferation during erythroid differentiation. CONCLUSIONS: Our study presents the most extensive profiling of erythrocyte RNAs to date, and describes primate-specific interactions between the key modulator miR-4732-3p and TGF-ß signaling during human erythropoiesis.


Subject(s)
Erythrocytes/metabolism , Gene Expression Profiling , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Base Sequence , Cell Differentiation/genetics , Erythrocytes/cytology , Genetic Loci/genetics , Humans , Signal Transduction/genetics , Smad2 Protein/biosynthesis , Smad4 Protein/biosynthesis , Transforming Growth Factor beta/metabolism
15.
Clin Epigenetics ; 16(1): 58, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38658973

ABSTRACT

Alzheimer's disease (AD) prevalence is twice as high in non-Hispanic Blacks (NHBs) as in non-Hispanic Whites (NHWs). The objective of this study was to determine whether aberrant methylation at imprint control regions (ICRs) is associated with AD. Differentially methylated regions (DMRs) were bioinformatically identified from whole-genome bisulfite sequenced DNA derived from brain tissue of 9 AD (5 NHBs and 4 NHWs) and 8 controls (4 NHBs and 4 NHWs). We identified DMRs located within 120 regions defined as candidate ICRs in the human imprintome ( https://genome.ucsc.edu/s/imprintome/hg38.AD.Brain_track ). Eighty-one ICRs were differentially methylated in NHB-AD, and 27 ICRs were differentially methylated in NHW-AD, with two regions common to both populations that are proximal to the inflammasome gene, NLRP1, and a known imprinted gene, MEST/MESTIT1. These findings indicate that early developmental alterations in DNA methylation of regions regulating genomic imprinting may contribute to AD risk and that this epigenetic risk differs between NHBs and NHWs.


Subject(s)
Alzheimer Disease , DNA Methylation , Aged , Aged, 80 and over , Female , Humans , Male , Alzheimer Disease/genetics , Alzheimer Disease/ethnology , Black or African American/genetics , Case-Control Studies , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Genomic Imprinting/genetics , NLR Proteins/genetics , White/genetics
16.
bioRxiv ; 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38293193

ABSTRACT

Background: Differentially methylated imprint control regions (ICRs) regulate the monoallelic expression of imprinted genes. Their epigenetic dysregulation by environmental exposures throughout life results in the formation of common chronic diseases. Unfortunately, existing Infinium methylation arrays lack the ability to profile these regions adequately. Whole genome bisulfite sequencing (WGBS) is the unique method able to profile these regions, but it is very expensive and it requires not only a high coverage but it is also computationally intensive to assess those regions. Findings: To address this deficiency, we developed a custom methylation array containing 22,819 probes. Among them, 9,757 probes map to 1,088 out of the 1,488 candidate ICRs recently described. To assess the performance of the array, we created matched samples processed with the Human Imprintome array and WGBS, which is the current standard method for assessing the methylation of the Human Imprintome. We compared the methylation levels from the shared CpG sites and obtained a mean R 2 = 0.569. We also created matched samples processed with the Human Imprintome array and the Infinium Methylation EPIC v2 array and obtained a mean R 2 = 0.796. Furthermore, replication experiments demonstrated high reliability (ICC: 0.799-0.945). Conclusions: Our custom array will be useful for replicable and accurate assessment, mechanistic insight, and targeted investigation of ICRs. This tool should accelerate the discovery of ICRs associated with a wide range of diseases and exposures, and advance our understanding of genomic imprinting and its relevance in development and disease formation throughout the life course.

17.
J Virol ; 86(12): 6889-98, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22496226

ABSTRACT

Epstein-Barr virus (EBV) infection of primary human B cells drives their indefinite proliferation into lymphoblastoid cell lines (LCLs). B cell immortalization depends on expression of viral latency genes, as well as the regulation of host genes. Given the important role of microRNAs (miRNAs) in regulating fundamental cellular processes, in this study, we assayed changes in host miRNA expression during primary B cell infection by EBV. We observed and validated dynamic changes in several miRNAs from early proliferation through immortalization; oncogenic miRNAs were induced, and tumor suppressor miRNAs were largely repressed. However, one miRNA described as a p53-targeted tumor suppressor, miR-34a, was strongly induced by EBV infection and expressed in many EBV and Kaposi's sarcoma-associated herpesvirus (KSHV)-infected lymphoma cell lines. EBV latent membrane protein 1 (LMP1) was sufficient to induce miR-34a requiring downstream NF-κB activation but independent of functional p53. Furthermore, overexpression of miR-34a was not toxic in several B lymphoma cell lines, and inhibition of miR-34a impaired the growth of EBV-transformed cells. This study identifies a progrowth role for a tumor-suppressive miRNA in oncogenic-virus-mediated transformation, highlighting the importance of studying miRNA function in different cellular contexts.


Subject(s)
B-Lymphocytes/cytology , Cell Proliferation , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/physiopathology , Herpesvirus 4, Human/physiology , MicroRNAs/genetics , B-Lymphocytes/metabolism , B-Lymphocytes/virology , Cell Line, Tumor , Epstein-Barr Virus Infections/metabolism , Epstein-Barr Virus Infections/virology , Herpesvirus 4, Human/genetics , Humans , MicroRNAs/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Up-Regulation , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism
18.
Toxicol Sci ; 195(1): 103-122, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37399109

ABSTRACT

Toxicogenomics is a critical area of inquiry for hazard identification and to identify both mechanisms of action and potential markers of exposure to toxic compounds. However, data generated by these experiments are highly dimensional and present challenges to standard statistical approaches, requiring strict correction for multiple comparisons. This stringency often fails to detect meaningful changes to low expression genes and/or eliminate genes with small but consistent changes particularly in tissues where slight changes in expression can have important functional differences, such as brain. Machine learning offers an alternative analytical approach for "omics" data that effectively sidesteps the challenges of analyzing highly dimensional data. Using 3 rat RNA transcriptome sets, we utilized an ensemble machine learning approach to predict developmental exposure to a mixture of organophosphate esters (OPEs) in brain (newborn cortex and day 10 hippocampus) and late gestation placenta of male and female rats, and identified genes that informed predictor performance. OPE exposure had sex specific effects on hippocampal transcriptome, and significantly impacted genes associated with mitochondrial transcriptional regulation and cation transport in females, including voltage-gated potassium and calcium channels and subunits. To establish if this holds for other tissues, RNAseq data from cortex and placenta, both previously published and analyzed via a more traditional pipeline, were reanalyzed with the ensemble machine learning methodology. Significant enrichment for pathways of oxidative phosphorylation and electron transport chain was found, suggesting a transcriptomic signature of OPE exposure impacting mitochondrial metabolism across tissue types and developmental epoch. Here we show how machine learning can complement more traditional analytical approaches to identify vulnerable "signature" pathways disrupted by chemical exposures and biomarkers of exposure.


Subject(s)
Flame Retardants , Transcriptome , Male , Pregnancy , Female , Animals , Rats , Flame Retardants/toxicity , Plasticizers , Placenta/metabolism , Organophosphates/toxicity , Brain/metabolism , Esters
19.
Environ Pollut ; 316(Pt 2): 120609, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36368556

ABSTRACT

Ecologists have observed declines in the biodiversity of sensitive freshwater organisms in response to increasing concentrations of major ions (salinization). Yet, how changing salinities physiologically challenge aquatic organisms, such as mayflies, remains remarkably understudied. Moreover, it is not well understood the degree to which species respond and acclimate to salinity changes. Our lab is developing the Baetid mayfly, N. triangulifer, as a model organism for physiological research. We have previously described acclimatory changes in both ion flux rates and altered mRNA transcript levels in response to chronic exposures to elevated major ion concentrations at the whole animal level. In the present study, we use shotgun proteomics to identify the specific proteins associated with apical ion transport and how their abundance changes in response to chronic salinity exposures in gills. Gills were isolated from the penultimate nymphal stage of N. triangulifer reared under control culture conditions, elevated NaCl (157 mg L-1 Na), elevated CaCl2 (121 mg L-1 Ca), elevated Ca/MgSO4 (735 mg L-1 SO4). These conditions mirrored those from previously published physiological work. We also acutely exposed nymphs to dilute (50% dilution of culture water with deionized water) to explore proteomic changes in the gills in response to dilute conditions. We report 710 unique peptide sequences among treatment groups, including important apical ion transporters such as Ca-ATPase, Na/K ATPase, and V-ATPase. Treatment with elevated NaCl and Ca/MgSO4 appeared to cause more significant differential protein expression (452 and 345, respectively) compared to CaCl2 and dilute groups (134 and 17, respectively). Finally, we demonstrated the breadth of physiological functions in gills by exploring non-transport related pathways found in our dataset, including ATP synthesis, calcium signaling, and oxidative stress response. We discuss our results in the context of freshwater salinization and the challenges of working with non-model species without fully sequenced and annotated genomes.


Subject(s)
Ephemeroptera , Water Pollutants, Chemical , Animals , Gills/metabolism , Salinity , Proteome/metabolism , Sodium Chloride/metabolism , Proteomics , Calcium Chloride , Water Pollutants, Chemical/metabolism , Aquatic Organisms/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Ions/metabolism , Water/metabolism
20.
Front Cell Dev Biol ; 11: 1151108, 2023.
Article in English | MEDLINE | ID: mdl-37325564

ABSTRACT

Cadmium (Cd) is a toxic heavy metal found throughout the environment and one of the top ten toxicants of major public health concern identified by the World Health Organization. In utero Cd exposure causes fetal growth restriction, malformation, and spontaneous abortion; however, the mechanisms by which Cd impacts these outcomes are poorly understood. Cd accumulates in the placenta, suggesting that these negative outcomes may be a consequence of disrupted placental function and placental insufficiency. To understand the impact of Cd on gene expression within the placenta, we developed a mouse model of Cd-induced fetal growth restriction through maternal consumption of CdCl2 and performed RNA-seq on control and CdCl2 exposed placentae. The top differentially expressed transcript was the Tcl1 Upstream Neuron-Associated (Tuna) long non-coding RNA, which was upregulated over 25-fold in CdCl2 exposed placentae. Tuna has been shown to be critical for neural stem cell differentiation. However, within the placenta, there is no evidence that Tuna is normally expressed or functional at any developmental stage. To determine the spatial expression of Cd-activated Tuna within the placenta, we used in situ hybridization as well as placental layer-specific RNA isolation and analysis. Both methods confirmed the absence of Tuna expression in control samples and determined that Cd-induced Tuna expression is specific to the junctional zone. Since many lncRNAs regulate gene expression, we hypothesized that Tuna forms part of the mechanism of Cd-induced transcriptomic changes. To test this, we over-expressed Tuna in cultured choriocarcinoma cells and compared gene expression profiles to those of control and CdCl2 exposed cells. We demonstrate significant overlap between genes activated by Tuna overexpression and genes activated by CdCl2 exposure, with enrichment in the NRF2-mediated oxidative stress response. Herein we analyze the NRF2 pathway and show that Tuna increases NRF2/NRF2 both at the transcript and protein levels. Tuna drives increased NRF2 target gene expression, a result that is abrogated with the use of an NRF2 inhibitor, confirming that Tuna activates oxidative stress response genes through this pathway. This work identifies the lncRNA Tuna as a potential novel player in Cd-induced placental insufficiency.

SELECTION OF CITATIONS
SEARCH DETAIL