Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Nature ; 622(7983): 611-618, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37699522

ABSTRACT

Clostridioides difficile infection (CDI) is a major cause of healthcare-associated gastrointestinal infections1,2. The exaggerated colonic inflammation caused by C. difficile toxins such as toxin B (TcdB) damages tissues and promotes C. difficile colonization3-6, but how TcdB causes inflammation is unclear. Here we report that TcdB induces neurogenic inflammation by targeting gut-innervating afferent neurons and pericytes through receptors, including the Frizzled receptors (FZD1, FZD2 and FZD7) in neurons and chondroitin sulfate proteoglycan 4 (CSPG4) in pericytes. TcdB stimulates the secretion of the neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) from neurons and pro-inflammatory cytokines from pericytes. Targeted delivery of the TcdB enzymatic domain, through fusion with a detoxified diphtheria toxin, into peptidergic sensory neurons that express exogeneous diphtheria toxin receptor (an approach we term toxogenetics) is sufficient to induce neurogenic inflammation and recapitulates major colonic histopathology associated with CDI. Conversely, mice lacking SP, CGRP or the SP receptor (neurokinin 1 receptor) show reduced pathology in both models of caecal TcdB injection and CDI. Blocking SP or CGRP signalling reduces tissue damage and C. difficile burden in mice infected with a standard C. difficile strain or with hypervirulent strains expressing the TcdB2 variant. Thus, targeting neurogenic inflammation provides a host-oriented therapeutic approach for treating CDI.


Subject(s)
Bacterial Toxins , Clostridioides difficile , Neurogenic Inflammation , Neurons, Afferent , Pericytes , Animals , Mice , Bacterial Toxins/administration & dosage , Bacterial Toxins/pharmacology , Calcitonin Gene-Related Peptide/antagonists & inhibitors , Calcitonin Gene-Related Peptide/metabolism , Clostridioides difficile/pathogenicity , Clostridium Infections/microbiology , Neurogenic Inflammation/chemically induced , Neurogenic Inflammation/microbiology , Neurogenic Inflammation/pathology , Pericytes/drug effects , Pericytes/microbiology , Pericytes/pathology , Receptors, Neurokinin-1/metabolism , Substance P/antagonists & inhibitors , Substance P/metabolism , Neurons, Afferent/drug effects , Neurons, Afferent/microbiology , Neurons, Afferent/pathology , Inflammation Mediators/metabolism , Cecum/drug effects , Cecum/metabolism , Signal Transduction/drug effects
2.
PLoS Biol ; 21(11): e3002353, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37943878

ABSTRACT

Wnt signaling pathways are transmitted via 10 homologous frizzled receptors (FZD1-10) in humans. Reagents broadly inhibiting Wnt signaling pathways reduce growth and metastasis of many tumors, but their therapeutic development has been hampered by the side effect. Inhibitors targeting specific Wnt-FZD pair(s) enriched in cancer cells may reduce side effect, but the therapeutic effect of narrow-spectrum Wnt-FZD inhibitors remains to be established in vivo. Here, we developed a fragment of C. difficile toxin B (TcdBFBD), which recognizes and inhibits a subclass of FZDs, FZD1/2/7, and examined whether targeting this FZD subgroup may offer therapeutic benefits for treating breast cancer models in mice. Utilizing 2 basal-like and 1 luminal-like breast cancer models, we found that TcdBFBD reduces tumor-initiating cells and attenuates growth of basal-like mammary tumor organoids and xenografted tumors, without damaging Wnt-sensitive tissues such as bones in vivo. Furthermore, FZD1/2/7-positive cells are enriched in chemotherapy-resistant cells in both basal-like and luminal mammary tumors treated with cisplatin, and TcdBFBD synergizes strongly with cisplatin in inhibiting both tumor types. These data demonstrate the therapeutic value of narrow-spectrum Wnt signaling inhibitor in treating breast cancers.


Subject(s)
Bacterial Toxins , Breast Neoplasms , Clostridioides difficile , Mammary Neoplasms, Animal , Humans , Animals , Mice , Female , Wnt Signaling Pathway , Breast Neoplasms/metabolism , Bacterial Toxins/metabolism , Clostridioides difficile/metabolism , Cisplatin
3.
PLoS Pathog ; 18(1): e1010169, 2022 01.
Article in English | MEDLINE | ID: mdl-34990480

ABSTRACT

Botulinum neurotoxins (BoNTs) are among the deadliest of bacterial toxins. BoNT serotype A and B in particular pose the most serious threat to humans because of their high potency and persistence. To date, there is no effective treatment for late post-exposure therapy of botulism patients. Here, we aim to develop single-domain variable heavy-chain (VHH) antibodies targeting the protease domains (also known as the light chain, LC) of BoNT/A and BoNT/B as antidotes for post-intoxication treatments. Using a combination of X-ray crystallography and biochemical assays, we investigated the structures and inhibition mechanisms of a dozen unique VHHs that recognize four and three non-overlapping epitopes on the LC of BoNT/A and BoNT/B, respectively. We show that the VHHs that inhibit the LC activity occupy the extended substrate-recognition exosites or the cleavage pocket of LC/A or LC/B and thus block substrate binding. Notably, we identified several VHHs that recognize highly conserved epitopes across BoNT/A or BoNT/B subtypes, suggesting that these VHHs exhibit broad subtype efficacy. Further, we identify two novel conformations of the full-length LC/A, that could aid future development of inhibitors against BoNT/A. Our studies lay the foundation for structure-based engineering of protein- or peptide-based BoNT inhibitors with enhanced potencies and cross-subtypes properties.


Subject(s)
Botulinum Toxins/antagonists & inhibitors , Peptide Hydrolases/chemistry , Single-Domain Antibodies , Animals , Botulinum Toxins/chemistry , Protease Inhibitors/pharmacology , Protein Domains/drug effects , Single-Domain Antibodies/pharmacology , Structure-Activity Relationship
4.
Nature ; 550(7674): 74-79, 2017 10 05.
Article in English | MEDLINE | ID: mdl-28953867

ABSTRACT

De novo protein design holds promise for creating small stable proteins with shapes customized to bind therapeutic targets. We describe a massively parallel approach for designing, manufacturing and screening mini-protein binders, integrating large-scale computational design, oligonucleotide synthesis, yeast display screening and next-generation sequencing. We designed and tested 22,660 mini-proteins of 37-43 residues that target influenza haemagglutinin and botulinum neurotoxin B, along with 6,286 control sequences to probe contributions to folding and binding, and identified 2,618 high-affinity binders. Comparison of the binding and non-binding design sets, which are two orders of magnitude larger than any previously investigated, enabled the evaluation and improvement of the computational model. Biophysical characterization of a subset of the binder designs showed that they are extremely stable and, unlike antibodies, do not lose activity after exposure to high temperatures. The designs elicit little or no immune response and provide potent prophylactic and therapeutic protection against influenza, even after extensive repeated dosing.


Subject(s)
Drug Design , Influenza, Human/drug therapy , Influenza, Human/prevention & control , Molecular Targeted Therapy/methods , Protein Engineering/methods , Proteins/chemistry , Proteins/therapeutic use , Botulinum Toxins/classification , Botulinum Toxins/metabolism , Computer Simulation , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Hot Temperature , Humans , Influenza, Human/metabolism , Molecular Dynamics Simulation , Protein Binding , Protein Stability , Proteins/immunology , Proteins/metabolism , Temperature
5.
BMC Biol ; 17(1): 34, 2019 04 17.
Article in English | MEDLINE | ID: mdl-30995910

ABSTRACT

BACKGROUND: Ionotropic receptors (IRs) are a large, divergent subfamily of ionotropic glutamate receptors (iGluRs) that are expressed in diverse peripheral sensory neurons and function in olfaction, taste, hygrosensation and thermosensation. Analogous to the cell biological properties of their synaptic iGluR ancestors, IRs are thought to form heteromeric complexes that localise to the ciliated dendrites of sensory neurons. IR complexes are composed of selectively expressed 'tuning' receptors and one of two broadly expressed co-receptors (IR8a or IR25a). While the extracellular ligand-binding domain (LBD) of tuning IRs is likely to define the stimulus specificity of the complex, the role of this domain in co-receptors is unclear. RESULTS: We identify a sequence in the co-receptor LBD, the 'co-receptor extra loop' (CREL), which is conserved across IR8a and IR25a orthologues but not present in either tuning IRs or iGluRs. The CREL contains a single predicted N-glycosylation site, which we show bears a sugar modification in recombinantly expressed IR8a. Using the Drosophila olfactory system as an in vivo model, we find that a transgenically encoded IR8a mutant in which the CREL cannot be N-glycosylated is impaired in localisation to cilia in some, though not all, populations of sensory neurons expressing different tuning IRs. This defect can be complemented by the presence of endogenous wild-type IR8a, indicating that IR complexes contain at least two IR8a subunits and that this post-translational modification is dispensable for protein folding or complex assembly. Analysis of the subcellular distribution of the mutant protein suggests that its absence from sensory cilia is due to a failure in exit from the endoplasmic reticulum. Protein modelling and in vivo analysis of tuning IR and co-receptor subunit interactions by a fluorescent protein fragment complementation assay reveal that the CREL N-glycosylation site is likely to be located on the external face of a heterotetrameric IR complex. CONCLUSIONS: Our data reveal an important role for the IR co-receptor LBD in control of intracellular transport, provide novel insights into the stoichiometry and assembly of IR complexes and uncover an unexpected heterogeneity in the trafficking regulation of this sensory receptor family.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Receptors, Ionotropic Glutamate/genetics , Amino Acid Sequence , Animals , Animals, Genetically Modified/genetics , Animals, Genetically Modified/metabolism , Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Protein Transport , Receptors, Ionotropic Glutamate/chemistry , Receptors, Ionotropic Glutamate/metabolism , Sequence Alignment
6.
Genes Dev ; 26(3): 247-58, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22302937

ABSTRACT

Synapses are the fundamental units of neural circuits that enable complex behaviors. The neuromuscular junction (NMJ), a synapse formed between a motoneuron and a muscle fiber, has contributed greatly to understanding of the general principles of synaptogenesis as well as of neuromuscular disorders. NMJ formation requires neural agrin, a motoneuron-derived protein, which interacts with LRP4 (low-density lipoprotein receptor-related protein 4) to activate the receptor tyrosine kinase MuSK (muscle-specific kinase). However, little is known of how signals are transduced from agrin to MuSK. Here, we present the first crystal structure of an agrin-LRP4 complex, consisting of two agrin-LRP4 heterodimers. Formation of the initial binary complex requires the z8 loop that is specifically present in neuronal, but not muscle, agrin and that promotes the synergistic formation of the tetramer through two additional interfaces. We show that the tetrameric complex is essential for neuronal agrin-induced acetylcholine receptor (AChR) clustering. Collectively, these results provide new insight into the agrin-LRP4-MuSK signaling cascade and NMJ formation and represent a novel mechanism for activation of receptor tyrosine kinases.


Subject(s)
Agrin/chemistry , Agrin/metabolism , Models, Molecular , Receptor Protein-Tyrosine Kinases/metabolism , Receptors, LDL/chemistry , Receptors, LDL/metabolism , Signal Transduction , Animals , Binding Sites , Cell Line , Enzyme Activation , Mice , Neurons/metabolism , Protein Structure, Quaternary , Rats
7.
Cell Microbiol ; 17(8): 1133-43, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25640773

ABSTRACT

Botulinum neurotoxins (BoNTs) are some of the most poisonous natural toxins. Botulinum neurotoxins associate with neurotoxin-associated proteins (NAPs) forming large complexes that are protected from the harsh environment of the gastrointestinal tract. However, it is still unclear how BoNT complexes as large as 900 kDa traverse the epithelial barrier and what role NAPs play in toxin translocation. In this study, we examined the transit of BoNT serotype A (BoNT/A) holotoxin, complex and recombinantly purified NAP complex through cultured and polarized Caco-2 cells and, for the first time, in the small mouse intestine. Botulinum neurotoxin serotype A and NAPs in the toxin complex were detectable inside intestinal cells beginning at 2 h post intoxication. Appearance of the BoNT/A holotoxin signal was slower, with detection starting at 4-6 h. This indicated that the holotoxin alone was sufficient for entry but the presence of NAPs enhanced the rate of entry. Botulinum neurotoxin serotype A detection peaked at approximately 6 and 8 h for complex and holotoxin, respectively, and thereafter began to disperse with some toxin remaining in the epithelia after 24 h. Purified HA complexes alone were also internalized and followed a similar time course to that of BoNT/A complex internalization. However, recombinant HA complexes did not enhance BoNT/A holotoxin entry in the absence of a physical link with BoNT/A. We propose a model for BoNT/A toxin complex translocation whereby toxin complex entry is facilitated by NAPs in a receptor-mediated mechanism. Understanding the intestinal uptake of BoNT complexes will aid the development of new measures to prevent or treat oral intoxications.


Subject(s)
Botulinum Toxins, Type A/metabolism , Carrier Proteins/metabolism , Epithelial Cells/metabolism , Intestinal Mucosa/metabolism , Macromolecular Substances/metabolism , Animals , Caco-2 Cells , Humans , Mice , Models, Biological , Protein Transport , Time Factors
8.
PLoS Pathog ; 9(10): e1003690, 2013.
Article in English | MEDLINE | ID: mdl-24130488

ABSTRACT

Botulinum neurotoxins (BoNTs) are produced by Clostridium botulinum and cause the fatal disease botulism, a flaccid paralysis of the muscle. BoNTs are released together with several auxiliary proteins as progenitor toxin complexes (PTCs) to become highly potent oral poisons. Here, we report the structure of a ∼760 kDa 14-subunit large PTC of serotype A (L-PTC/A) and reveal insight into its absorption mechanism. Using a combination of X-ray crystallography, electron microscopy, and functional studies, we found that L-PTC/A consists of two structurally and functionally independent sub-complexes. A hetero-dimeric 290 kDa complex protects BoNT, while a hetero-dodecameric 470 kDa complex facilitates its absorption in the harsh environment of the gastrointestinal tract. BoNT absorption is mediated by nine glycan-binding sites on the dodecameric sub-complex that forms multivalent interactions with carbohydrate receptors on intestinal epithelial cells. We identified monosaccharides that blocked oral BoNT intoxication in mice, which suggests a new strategy for the development of preventive countermeasures for BoNTs based on carbohydrate receptor mimicry.


Subject(s)
Botulinum Toxins , Botulism , Multiprotein Complexes , Animals , Botulinum Toxins/chemistry , Botulinum Toxins/genetics , Botulinum Toxins/toxicity , Clostridium botulinum/genetics , Clostridium botulinum/metabolism , Female , Mice , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Multiprotein Complexes/toxicity , Protein Structure, Quaternary , Structure-Activity Relationship
9.
Biochem Biophys Res Commun ; 446(2): 568-73, 2014 Apr 04.
Article in English | MEDLINE | ID: mdl-24631690

ABSTRACT

Botulinum neurotoxins (BoNTs) are produced as progenitor toxin complexes (PTCs) by Clostridium botulinum. The PTCs are composed of BoNT and non-toxic neurotoxin-associated proteins (NAPs), which serve to protect and deliver BoNT through the gastrointestinal tract in food borne botulism. HA33 is a key NAP component that specifically recognizes host carbohydrates and helps enrich PTC on the intestinal lumen preceding its transport across the epithelial barriers. Here, we report the crystal structure of HA33 of type B PTC (HA33/B) in complex with lactose at 1.46Å resolution. The structural comparisons among HA33 of serotypes A-D reveal two different HA33-glycan interaction modes. The glycan-binding pockets on HA33/A and B are more suitable to recognize galactose-containing glycans in comparison to the equivalent sites on HA33/C and D. On the contrary, HA33/C and D could potentially recognize Neu5Ac as an independent receptor, whereas HA33/A and B do not. These findings indicate that the different oral toxicity and host susceptibility observed among different BoNT serotypes could be partly determined by the serotype-specific interaction between HA33 and host carbohydrate receptors. Furthermore, we have identified a key structural water molecule that mediates the HA33/B-lactose interactions. It provides the structural basis for development of new receptor-mimicking compounds, which have enhanced binding affinity with HA33 through their water-displacing moiety.


Subject(s)
Botulinum Toxins/chemistry , Botulinum Toxins/ultrastructure , Lactose/chemistry , Models, Chemical , Models, Molecular , Water/chemistry , Binding Sites , Botulinum Toxins, Type A , Computer Simulation , Molecular Conformation , Protein Binding
10.
Curr Top Microbiol Immunol ; 364: 21-44, 2013.
Article in English | MEDLINE | ID: mdl-23239347

ABSTRACT

Botulinum neurotoxins (BoNTs) are among the most poisonous substances known to man, but paradoxically, BoNT-containing medicines and cosmetics have been used with great success in the clinic. Accidental BoNT poisoning mainly occurs through oral ingestion of food contaminated with Clostridium botulinum. BoNTs are naturally produced in the form of progenitor toxin complexes (PTCs), which are high molecular weight (up to ~900 kDa) multiprotein complexes composed of BoNT and several non-toxic neurotoxin-associated proteins (NAPs). NAPs protect the inherently fragile BoNTs against the hostile environment of the gastrointestinal (GI) tract and help BoNTs pass through the intestinal epithelial barrier before they are released into the general circulation. These events are essential for ingested BoNTs to gain access to motoneurons, where they inhibit neurotransmitter release and cause muscle paralysis. In this review, we discuss the structural basis for assembly of NAPs and BoNT into the PTC that protects BoNT and facilitate its delivery into the bloodstream.


Subject(s)
Botulinum Toxins/metabolism , Clostridium botulinum/metabolism , Multiprotein Complexes/metabolism , Amino Acid Sequence , Animals , Binding Sites , Biological Transport , Botulinum Toxins/genetics , Botulinum Toxins/toxicity , Clostridium botulinum/genetics , Clostridium botulinum/pathogenicity , Genetic Vectors/genetics , Genetic Vectors/metabolism , Hemagglutinins/metabolism , Host-Pathogen Interactions , Hydrogen-Ion Concentration , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Neurotoxins/genetics , Neurotoxins/metabolism , Neurotoxins/toxicity , Protein Interaction Mapping , Protein Structure, Tertiary , Sequence Analysis, Protein , Structure-Activity Relationship
11.
Cell Mol Life Sci ; 70(17): 3077-88, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23178848

ABSTRACT

The neuromuscular junction (NMJ) is the most extensively studied model of neuronal synaptogenesis. Acetylcholine receptor (AChR) clustering on the postsynaptic membrane is a cardinal event in the differentiation of NMJs. AChR clustering and postsynaptic differentiation is orchestrated by sophisticated interactions among three proteins: the neuron-secreted proteoglycan agrin, the co-receptor LRP4, and the muscle-specific receptor tyrosine kinase MuSK. LRP4 and MuSK act as scaffolds for multiple binding partners, resulting in a complex and dynamic network of interacting proteins that is required for AChR clustering. In this review, we discuss the structural basis for NMJ postsynaptic differentiation mediated by the agrin-LRP4-MuSK signaling pathway.


Subject(s)
Agrin/metabolism , Cell Differentiation , LDL-Receptor Related Proteins/metabolism , Neuromuscular Junction/cytology , Receptors, Cholinergic/metabolism , Signal Transduction , Agrin/chemistry , LDL-Receptor Related Proteins/chemistry , Neuromuscular Junction/metabolism , Receptors, Cholinergic/chemistry
12.
FEBS J ; 291(4): 672-675, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38009421

ABSTRACT

As one of the most fatal substances, botulinum neurotoxins (BoNTs) have never acted solo to accomplish their formidable missions. Most notably, nontoxic nonhemagglutinin (NTNH), a protein co-secreted with BoNT by bacteria, plays critical roles to stabilize and protect BoNT by tightly associating with it to form the minimal progenitor toxin complex (M-PTC). A new cryo-EM structure of the M-PTC of a BoNT-like toxin from Weissella oryzae (BoNT/Wo) reveals similar assembly modes between M-PTC/Wo and that of other BoNTs, yet also reveals some unique structural features of NTNH/Wo. These findings shed new light on the potential versatile roles of NTNH during BoNT intoxication.


Subject(s)
Botulinum Toxins , Clostridium botulinum , Botulinum Toxins/chemistry , Clostridium botulinum/chemistry , Clostridium botulinum/metabolism , Proteins/metabolism , Biological Transport , Neurotoxins/metabolism
13.
EMBO J ; 28(12): 1812-23, 2009 Jun 17.
Article in English | MEDLINE | ID: mdl-19461580

ABSTRACT

Fast excitatory neurotransmission is mediated largely by ionotropic glutamate receptors (iGluRs), tetrameric, ligand-gated ion channel proteins comprised of three subfamilies, AMPA, kainate and NMDA receptors, with each subfamily sharing a common, modular-domain architecture. For all receptor subfamilies, active channels are exclusively formed by assemblages of subunits within the same subfamily, a molecular process principally encoded by the amino-terminal domain (ATD). However, the molecular basis by which the ATD guides subfamily-specific receptor assembly is not known. Here we show that AMPA receptor GluR1- and GluR2-ATDs form tightly associated dimers and, by the analysis of crystal structures of the GluR2-ATD, propose mechanisms by which the ATD guides subfamily-specific receptor assembly.


Subject(s)
Receptors, AMPA/chemistry , Receptors, AMPA/metabolism , Amino Acid Sequence , Amino Acids , Animals , Binding Sites , Cell Line , Conserved Sequence , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Conformation , Protein Multimerization , Protein Stability , Protein Structure, Tertiary , Protein Subunits/chemistry , Rats , Solutions
14.
FEBS J ; 290(4): 962-969, 2023 02.
Article in English | MEDLINE | ID: mdl-34862749

ABSTRACT

Clostridioides difficile is classified as an urgent antibiotic resistance threat by the Centers for Disease Control and Prevention (CDC). C. difficile infection (CDI) is mainly caused by the C. difficile exotoxin TcdB, which invades host cells via receptor-mediated endocytosis. However, many natural variants of TcdB have been identified including some from the hypervirulent strains, which pose significant challenges for developing effective CDI therapies. Here, we review the recent research progress on the molecular mechanisms by which TcdB recognizes Frizzed proteins (FZDs) and chondroitin sulfate proteoglycan 4 (CSPG4) as two major host receptors. We suggest that the receptor-binding sites and several previously identified neutralizing epitopes on TcdB are ideal targets for the development of broad-spectrum inhibitors to protect against diverse TcdB variants.


Subject(s)
Bacterial Toxins , Clostridioides difficile , Bacterial Toxins/metabolism , Boron Compounds/metabolism , Protein Binding , Bacterial Proteins/metabolism
15.
FEBS Lett ; 597(4): 524-537, 2023 02.
Article in English | MEDLINE | ID: mdl-36653893

ABSTRACT

Botulinum neurotoxins (BoNTs) are among the most lethal toxins known to humans, comprising seven established serotypes termed BoNT/A-G encoded in two types of gene clusters (ha and orfX) in BoNT-producing clostridia. The ha cluster encodes four non-toxic neurotoxin-associated proteins (NAPs) that assemble with BoNTs to protect and enhance their oral toxicity. However, the structure and function of the orfX-type NAPs remain largely unknown. Here, we report the crystal structures for OrfX1, OrfX2, and an OrfX1-OrfX3 complex, which are encoded in the orfX cluster of a BoNT/E1-producing Clostridium botulinum strain associated with human foodborne botulism. These structures lay the foundation for future studies on the potential roles of OrfX proteins in oral intoxication and pathogenesis of BoNTs.


Subject(s)
Botulinum Toxins, Type A , Clostridium botulinum , Humans , Clostridium botulinum/genetics , Clostridium botulinum/chemistry , Clostridium botulinum/metabolism , Botulinum Toxins, Type A/metabolism , Multigene Family
16.
Nat Commun ; 14(1): 2338, 2023 04 24.
Article in English | MEDLINE | ID: mdl-37095076

ABSTRACT

Botulinum neurotoxin E (BoNT/E) is one of the major causes of human botulism and paradoxically also a promising therapeutic agent. Here we determined the co-crystal structures of the receptor-binding domain of BoNT/E (HCE) in complex with its neuronal receptor synaptic vesicle glycoprotein 2A (SV2A) and a nanobody that serves as a ganglioside surrogate. These structures reveal that the protein-protein interactions between HCE and SV2 provide the crucial location and specificity information for HCE to recognize SV2A and SV2B, but not the closely related SV2C. At the same time, HCE exploits a separated sialic acid-binding pocket to mediate recognition of an N-glycan of SV2. Structure-based mutagenesis and functional studies demonstrate that both the protein-protein and protein-glycan associations are essential for SV2A-mediated cell entry of BoNT/E and for its potent neurotoxicity. Our studies establish the structural basis to understand the receptor-specificity of BoNT/E and to engineer BoNT/E variants for new clinical applications.


Subject(s)
Botulinum Toxins, Type A , Synaptic Vesicles , Humans , Synaptic Vesicles/metabolism , Botulinum Toxins, Type A/metabolism , Membrane Glycoproteins/metabolism , Nerve Tissue Proteins/metabolism , Protein Binding
17.
Mol Microbiol ; 81(1): 143-56, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21542861

ABSTRACT

The seven botulinum neurotoxins (BoNT) cause muscle paralysis by selectively cleaving core components of the vesicular fusion machinery. Their extraordinary activity primarily relies on highly specific entry into neurons. Data on BoNT/A, B, E, F and G suggest that entry follows a dual receptor interaction with complex gangliosides via an established ganglioside binding region and a synaptic vesicle protein. Here, we report high resolution crystal structures of the BoNT/C cell binding fragment alone and in complex with sialic acid. The WY-motif characteristic of the established ganglioside binding region was located on an exposed loop. Sialic acid was co-ordinated at a novel position neighbouring the binding pocket for synaptotagmin in BoNT/B and G and the sialic acid binding site in BoNT/D and TeNT respectively. Employing synaptosomes and immobilized gangliosides binding studies with BoNT/C mutants showed that the ganglioside binding WY-loop, the newly identified sialic acid-co-ordinating pocket and the area corresponding to the established ganglioside binding region of other BoNTs are involved in ganglioside interaction. Phrenic nerve hemidiaphragm activity tests employing ganglioside deficient mice furthermore evidenced that the biological activity of BoNT/C depends on ganglioside interaction with at least two binding sites. These data suggest a unique cell binding and entry mechanism for BoNT/C among clostridial neurotoxins.


Subject(s)
Botulinum Toxins/chemistry , Botulinum Toxins/metabolism , N-Acetylneuraminic Acid/chemistry , N-Acetylneuraminic Acid/metabolism , Animals , Binding Sites , Botulinum Toxins/toxicity , Crystallography, X-Ray , Diaphragm/physiology , Mice , Models, Molecular , Phrenic Nerve/drug effects , Protein Binding , Protein Structure, Tertiary
18.
Nature ; 444(7122): 1092-5, 2006 Dec 21.
Article in English | MEDLINE | ID: mdl-17167421

ABSTRACT

Botulinum neurotoxins (BoNTs) are produced by Clostridium botulinum and cause the neuroparalytic syndrome of botulism. With a lethal dose of 1 ng kg(-1), they pose a biological hazard to humans and a serious potential bioweapon threat. BoNTs bind with high specificity at neuromuscular junctions and they impair exocytosis of synaptic vesicles containing acetylcholine through specific proteolysis of SNAREs (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors), which constitute part of the synaptic vesicle fusion machinery. The molecular details of the toxin-cell recognition have been elusive. Here we report the structure of a BoNT in complex with its protein receptor: the receptor-binding domain of botulinum neurotoxin serotype B (BoNT/B) bound to the luminal domain of synaptotagmin II, determined at 2.15 A resolution. On binding, a helix is induced in the luminal domain which binds to a saddle-shaped crevice on a distal tip of BoNT/B. This crevice is adjacent to the non-overlapping ganglioside-binding site of BoNT/B. Synaptotagmin II interacts with BoNT/B with nanomolar affinity, at both neutral and acidic endosomal pH. Biochemical and neuronal ex vivo studies of structure-based mutations indicate high specificity and affinity of the interaction, and high selectivity of BoNT/B among synaptotagmin I and II isoforms. Synergistic binding of both synaptotagmin and ganglioside imposes geometric restrictions on the initiation of BoNT/B translocation after endocytosis. Our results provide the basis for the rational development of preventive vaccines or inhibitors against these neurotoxins.


Subject(s)
Botulinum Toxins/chemistry , Botulinum Toxins/metabolism , Synaptotagmin II/chemistry , Synaptotagmin II/metabolism , Animals , Binding Sites , Botulinum Toxins/genetics , Botulinum Toxins, Type A , Cell Membrane/chemistry , Cell Membrane/metabolism , Crystallography, X-Ray , Models, Molecular , Mutagenesis, Site-Directed , Protein Binding , Protein Structure, Tertiary , Rats , Substrate Specificity , Synaptotagmin I/chemistry , Synaptotagmin I/genetics , Synaptotagmin I/metabolism , Synaptotagmin II/genetics
19.
Biochem J ; 438(2): 255-63, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21639859

ABSTRACT

The AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) subfamily of iGluRs (ionotropic glutamate receptors) is essential for fast excitatory neurotransmission in the central nervous system. The malfunction of AMPARs (AMPA receptors) has been implicated in many neurological diseases, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. The active channels of AMPARs and other iGluR subfamilies are tetramers formed exclusively by assembly of subunits within the same subfamily. It has been proposed that the assembly process is controlled mainly by the extracellular ATD (N-terminal domain) of iGluR. In addition, ATD has also been implicated in synaptogenesis, iGluR trafficking and trans-synaptic signalling, through unknown mechanisms. We report in the present study a 2.5 Å (1 Å=0.1 nm) resolution crystal structure of the ATD of GluA1. Comparative analyses of the structure of GluA1-ATD and other subunits sheds light on our understanding of how ATD drives subfamily-specific assembly of AMPARs. In addition, analysis of the crystal lattice of GluA1-ATD suggests a novel mechanism by which the ATD might participate in inter-tetramer AMPAR clustering, as well as in trans-synaptic protein-protein interactions.


Subject(s)
Receptors, AMPA/chemistry , Animals , Crystallography, X-Ray , Models, Molecular , Pliability , Protein Binding , Protein Multimerization , Protein Structure, Secondary , Protein Structure, Tertiary , Rats , Receptors, AMPA/isolation & purification
20.
Sci Rep ; 12(1): 9028, 2022 05 30.
Article in English | MEDLINE | ID: mdl-35637242

ABSTRACT

Clostridioides difficile is one of the most common causes of antibiotic-associated diarrhea in developed countries. As key virulence factors of C. difficile, toxin A (TcdA) and toxin B (TcdB) act by glucosylating and inactivating Rho and Ras family small GTPases in host cells, which leads to actin cytoskeleton disruption, cell rounding, and ultimately cell death. Here we present the co-crystal structure of the glucosyltransferase domain (GTD) of TcdA in complex with its substrate human RhoA at 2.60-angstrom resolution. This structure reveals that TcdA GTD grips RhoA mainly through its switch I and switch II regions, which is complemented by interactions involving RhoA's pre-switch I region. Comprehensive structural comparisons between the TcdA GTD-RhoA complex and the structures of TcdB GTD in complex with Cdc42 and R-Ras reveal both the conserved and divergent features of these two toxins in terms of substrate recognition. Taken together, these findings establish the structural basis for TcdA recognition of small GTPases and advance our understanding of the substrates selectivity of large clostridial toxins.


Subject(s)
Bacterial Toxins , Clostridioides difficile , Monomeric GTP-Binding Proteins , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Enterotoxins/metabolism , Glucosyltransferases/metabolism , Humans , Monomeric GTP-Binding Proteins/metabolism , rhoA GTP-Binding Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL