Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nucleic Acids Res ; 50(13): 7560-7569, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35819229

ABSTRACT

5'-Adenylated oligonucleotides (AppOligos) are widely used for single-stranded DNA/RNA ligation in next-generation sequencing (NGS) applications such as microRNA (miRNA) profiling. The ligation between an AppOligo adapter and target molecules (such as miRNA) no longer requires ATP, thereby minimizing potential self-ligations and simplifying library preparation procedures. AppOligos can be produced by chemical synthesis or enzymatic modification. However, adenylation via chemical synthesis is inefficient and expensive, while enzymatic modification requires pre-phosphorylated substrate and additional purification. Here we cloned and characterized the Pfu RNA ligase encoded by the PF0353 gene in the hyperthermophilic archaea Pyrococcus furiosus. We further engineered fusion enzymes containing both Pfu RNA ligase and T4 polynucleotide kinase. One fusion enzyme, 8H-AP, was thermostable and can directly catalyze 5'-OH-terminated DNA substrates to adenylated products. The newly discovered Pfu RNA ligase and the engineered fusion enzyme may be useful tools for applications using AppOligos.


Subject(s)
Adenosine Monophosphate/chemistry , Genetic Techniques , MicroRNAs , Oligonucleotides/chemistry , Polynucleotide 5'-Hydroxyl-Kinase , DNA/chemistry , DNA Ligases/metabolism , DNA, Single-Stranded , Polynucleotide 5'-Hydroxyl-Kinase/genetics , Pyrococcus furiosus/enzymology , RNA Ligase (ATP)/metabolism
2.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Article in English | MEDLINE | ID: mdl-33495330

ABSTRACT

Multiplex assays, involving the simultaneous use of multiple circulating tumor DNA (ctDNA) markers, can improve the performance of liquid biopsies so that they are highly predictive of cancer recurrence. We have developed a single-tube methylation-specific quantitative PCR assay (mqMSP) that uses 10 different methylation markers and is capable of quantitative analysis of plasma samples with as little as 0.05% tumor DNA. In a cohort of 179 plasma samples from colorectal cancer (CRC) patients, adenoma patients, and healthy controls, the sensitivity and specificity of the mqMSP assay were 84.9% and 83.3%, respectively. In a head-to-head comparative study, the mqMSP assay also performed better for detecting early-stage (stage I and II) and premalignant polyps than a published SEPT9 assay. In an independent longitudinal cohort of 182 plasma samples (preoperative, postoperative, and follow-up) from 82 CRC patients, the mqMSP assay detected ctDNA in 73 (89.0%) of the preoperative plasma samples. Postoperative detection of ctDNA (within 2 wk of surgery) identified 11 of the 20 recurrence patients and was associated with poorer recurrence-free survival (hazard ratio, 4.20; P = 0.0005). With subsequent longitudinal monitoring, 14 patients (70%) had detectable ctDNA before recurrence, with a median lead time of 8.0 mo earlier than seen with radiologic imaging. The mqMSP assay is cost-effective and easily implementable for routine clinical monitoring of CRC recurrence, which can lead to better patient management after surgery.


Subject(s)
Biomarkers, Tumor/genetics , Colonic Neoplasms/genetics , Colonic Neoplasms/surgery , DNA Methylation/genetics , Liquid Biopsy , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/metabolism , Carcinoembryonic Antigen/metabolism , Circulating Tumor DNA/blood , Cohort Studies , Colonic Neoplasms/blood , Female , Humans , Longitudinal Studies , Male , Middle Aged , Mutation/genetics , Postoperative Care , Reproducibility of Results , Septins/genetics
3.
Clin Chem Lab Med ; 60(10): 1543-1550, 2022 09 27.
Article in English | MEDLINE | ID: mdl-35938948

ABSTRACT

OBJECTIVES: Copy number alterations (CNAs) are frequently found in malignant tissues. Different approaches have been used for CNA detection. However, it is not easy to detect a large panel of CNA targets in heterogenous tumors. METHODS: We have developed a CNAs detection approach through quantitatively analyzed allelic imbalance by allelotyping single nucleotide polymorphisms (SNPs) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Furthermore, the copy number changes were quantified by real-competitive PCR (rcPCR) to distinguish loss of heterozygosity (LOH) and genomic amplification. The approach was used to validate the CNA regions detected by next generation sequencing (NGS) in early-stage lung carcinoma. RESULTS: CNAs were detected in heterogeneous DNA samples where tumor DNA is present at only 10% through the SNP based allelotyping. In addition, two different types of CNAs (loss of heterozygosity and chromosome amplification) were able to be distinguished quantitatively by rcPCR. Validation on a total of 41 SNPs from the selected CNA regions showed that copy number changes did occur, and the tissues from early-stage lung carcinoma were distinguished from normal. CONCLUSIONS: CNA detection by MALDI-TOF MS can be used for validating potentially interesting genomic regions identified from next generation sequencing, and for detecting CNAs in tumor tissues consisting of a mixture of neoplastic and normal cells.


Subject(s)
Carcinoma , DNA Copy Number Variations , DNA , Humans , Lasers , Polymorphism, Single Nucleotide , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
4.
Acta Biochim Biophys Sin (Shanghai) ; 54(7): 940-951, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35882623

ABSTRACT

More and more patients with advanced colorectal cancer (CRC) have benefited from surgical resection or ablation following neoadjuvant chemoradiotherapy (nCRT), but nCRT may be ineffective and have potential risks to some patients. Therefore, it is necessary to discover effective biomarkers for predicting the nCRT efficacy in CRC patients. Chromokinesin Kif4A plays a critical role in mitosis, DNA damage repair and tumorigenesis, but its relationship with nCRT efficacy in advanced CRC remains unclear. Here, we find that Kif4A expression in pretreated tumor tissue is positively correlated with poorer tumor regression after receiving nCRT ( P=0.005). Knockdown of endogenous Kif4A causes an increased sensitivity of CRC cells to chemotherapeutic drugs 5-fluorouracil (5-FU) and Cisplatin (DDP), while overexpression of Kif4A enhances resistance of CRC cells to the chemotherapeutic drugs. Furthermore, depending on its motor domain and tail domain, Kif4A regulates DNA damage response (DDR) induced by 5-FU or DDP treatment in CRC cells. In conclusion, we demonstrate that Kif4A may be a potential independent biomarker for predicting the nCRT efficacy in advanced CRC patients, and Kif4A regulates chemosensitivity of CRC cells through controlling DDR.


Subject(s)
Colorectal Neoplasms , Neoadjuvant Therapy , Cisplatin/pharmacology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , DNA Damage , Fluorouracil/pharmacology , Humans , Kinesins/genetics
5.
Acta Biochim Biophys Sin (Shanghai) ; 55(1): 131-142, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36305727

ABSTRACT

Obesity is a risk factor for many metabolic diseases. Efficient therapeutic strategies are urgently needed. Swertiamarin (STM) prevents obesity and the associated insulin resistance and inflammation. However, the therapeutic effects of STM on preexisting obesity remain unclear. Therefore, in this study we aim to investigate the effects of STM on energy expenditure and fat browning in mice with preexisting obesity. C57BL/6J mice are fed with a high-fat diet (HFD) for 8 weeks to induce obesity and then gavaged (or not) with STM for 10 weeks. The whole-body energy metabolism of mice is examined by indirect calorimetry. The results show that after 10 weeks of treatment, STM markedly prevents HFD-induced weight gain, chronic inflammation, insulin resistance, and hepatic steatosis. STM promotes oxygen consumption and energy expenditure. The level of uncoupling protein 1 is enhanced in the brown and white adipose tissues of STM-treated mice. STM increases the phosphorylation of AMP-activated protein kinase and the expressions of genes involved in fat oxidation, reducing fat deposition in skeletal muscles. Meanwhile, STM does not affect the intestinal microbiotic composition. Overall, STM supplementation may serve as a potential therapy for obesity.


Subject(s)
Insulin Resistance , Mice , Animals , Mice, Obese , Mice, Inbred C57BL , Obesity/drug therapy , Obesity/metabolism , Adipose Tissue/metabolism , Energy Metabolism , Diet, High-Fat/adverse effects , Inflammation/metabolism , Oxidative Stress , Adipose Tissue, Brown/metabolism
6.
J Fish Dis ; 45(2): 231-247, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34875118

ABSTRACT

Aeromonas veronii (A. veronii) is an opportunistic pathogen of fish-human-livestock, which poses a threat to the development of aquaculture. Based on our previous studies on proteomics and genomics, we found out that the aodp gene may be related to the virulence of A. veronii TH0426. However, aodp gene encodes a hypothetical protein with an unknown function, and its role in A. veronii TH0426 is not clear. Here, we first constructed a mutant strain (△-aodp) to investigate the functional role of aodp in A. veronii TH0426. Compared with the wild strain A. veronii TH0426, the growth rate of strain △-aodp was slower and was resistant to neomycin and kanamycin, but sensitive to cephalexin. The swimming and swarming ability of △-aodp strain decreased, and the pathogenicity to mice decreased by 15.84-fold. Besides, the activity of caspase-3 in EPCs infected with △-aodp strain was 1.49-fold lower than that of the wild strain. We examined 20 factors closely related to A. veronii virulence, among them 17 genes were down-regulated as a result of aodp deficiency. This study laid a foundation for further studies on the pathogenesis of A. veronii.


Subject(s)
Aeromonas , Fish Diseases , Gram-Negative Bacterial Infections , Rodent Diseases , Aeromonas/genetics , Aeromonas veronii/genetics , Animals , Gram-Negative Bacterial Infections/veterinary , Mice , Virulence , Virulence Factors/genetics , Zebrafish
7.
Medicina (Kaunas) ; 58(6)2022 Jun 12.
Article in English | MEDLINE | ID: mdl-35744053

ABSTRACT

Background and Objectives: Oxidative stress is implicated in the progression of nonalcoholic steatohepatitis (NASH) through the triggering of inflammation. Deuterium-reinforced polyunsaturated fatty acids (D-PUFAs) are more resistant to the reactive oxygen species (ROS)-initiated chain reaction of lipid peroxidation than regular hydrogenated (H-) PUFAs. Here, we aimed to investigate the impacts of D-PUFAs on oxidative stress and its protective effect on NASH. Materials and Methods: C57BL/6 mice were randomly divided into three groups and were fed a normal chow diet, a methionine-choline-deficient (MCD) diet, and an MCD with 0.6% D-PUFAs for 5 weeks. The phenotypes of NASH in mice were determined. The levels of oxidative stress were examined both in vivo and in vitro. Results: The treatment with D-PUFAs attenuated the ROS production and enhanced the cell viability in tert-butyl hydroperoxide (TBHP)-loaded hepatocytes. Concurrently, D-PUFAs decreased the TBHP-induced oxidative stress in Raw 264.7 macrophages. Accordingly, D-PUFAs increased the cell viability and attenuated the lipopolysaccharide-stimulated proinflammatory cytokine expression of macrophages. In vivo, the administration of D-PUFAs reduced the phenotypes of NASH in MCD-fed mice. Specifically, D-PUFAs decreased the liver transaminase activity and attenuated the steatosis, inflammation, and fibrosis in the livers of NASH mice. Conclusion: D-PUFAs may be potential therapeutic agents to prevent NASH by broadly reducing oxidative stress.


Subject(s)
Choline Deficiency , Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , Choline Deficiency/complications , Choline Deficiency/metabolism , Deuterium , Diet , Disease Models, Animal , Fatty Acids, Unsaturated/pharmacology , Inflammation/drug therapy , Liver/metabolism , Methionine/pharmacology , Methionine/therapeutic use , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/prevention & control , Oxidative Stress , Reactive Oxygen Species/metabolism
8.
J Am Chem Soc ; 143(33): 13124-13134, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34382392

ABSTRACT

Enantioenriched 1,1-silylboryl alkanes possess silyl and boryl groups that are both connected to the same stereogenic carbon center at well-defined orientations. As these chiral multifunctionalized compounds potentially offer two synthetic handles, they are highly valued building blocks in asymmetric synthesis as well as medicinal chemistry. Despite the potential usefulness, efficient synthetic approaches for their preparation are scarce. Seeking to address this deficiency, an enantioselective cobalt-catalyzed hydrosilylation/hydroboration cascade of terminal alkynes has been realized. This protocol constitutes an impressive case of chemo-, regio-, and stereoselectivity wherein the two different hydrofunctionalization events are exquisitely controlled by a single set of metal catalyst and ligand, an operation which would usually require two separate catalytic systems. Downstream transformations of enantioenriched 1,1-silyboryl alkanes led to various valuable chiral compounds. Mechanistic studies suggest that the present reaction undergoes highly regioselective and stereocontrolled sequential hydrosilylation and hydroboration processes.

9.
Org Biomol Chem ; 19(11): 2416-2419, 2021 03 21.
Article in English | MEDLINE | ID: mdl-33645595

ABSTRACT

A di-tert-butyl peroxide (DTBP)-promoted difunctionalization of α-aryl α-alkynyl allylic alcohols with alkyl nitriles was developed, affording a series of α-alkynyl γ-cyano functionalized ketones in moderate yields. This procedure involved C(sp3)-H bond cleavage of alkyl nitriles and radical 3-exo-dig cyclization. After this, radical 1,2-alkynyl migration is preferred rather than 1,2-aryl migration.

10.
Angew Chem Int Ed Engl ; 60(2): 881-888, 2021 Jan 11.
Article in English | MEDLINE | ID: mdl-32985082

ABSTRACT

Divergent synthesis for precise constructions of cyclic unsymmetrical diaryl disulfides or diselenides and polythiophenes from CF3 -containing 1,3-enynes and S8 was developed when the ortho group is F, Cl, Br, and NO2 on aromatic rings. Meanwhile, disulfides (diselenides) were also quickly constructed when the ortho group is H. These transformations undergo cascade thiophene construction/selective C3-position thiolation process, featuring simple operations, divergent synthesis, broad substrate scope, readily available starting materials, and valuable products. A novel plausible radical annulation process was proposed and validated by DFT calculations for the first time. A series of derivatizations about the thiophene (TBT) and disulfides were also well-represented.

11.
Clin Chem ; 66(2): 373-378, 2020 02 01.
Article in English | MEDLINE | ID: mdl-32040575

ABSTRACT

BACKGROUND: An inversion of intron 22 in the Factor VIII gene (Inv22) is the causative mutation for 45% of severe hemophilia A cases. Available methods for molecular diagnosis of Inv22 are generally tedious and not ideal for routine clinical use. METHODS: We report here a new method using a single closed-tube nested quantitative PCR (CN-qPCR) for rapid detection of Inv22. This method combines a 12-cycle long-distance PCR (LD-PCR) amplifying the int22h regions, followed by a duplex qPCR targeting two specific regions close to the int22h regions. All reagents were added to a single PCR mixture for the closed-tube assay. Sequential LD-PCR and qPCR was achieved by designing primers at substantially different melting temperatures and optimizing PCR conditions. RESULTS: Seventy-nine male hemophilia A patients of different disease severity were tested by both the CN-qPCR assay and the standard LD-PCR assay. CN-qPCR successfully made calls for all samples, whereas LD-PCR failed in eight samples. For the 71 samples where both methods made calls, the concordance was 100%. Inv22 was detected in 17 out of the 79 samples. Additionally, CN-qPCR achieved clear separation for 10 female carriers and 10 non-Inv22 females, suggesting the assay may also be useful for molecular diagnosis of female carriers. CONCLUSIONS: This new CN-qPCR method may provide a convenient and accurate F8 Inv22 test suitable for clinical use.


Subject(s)
Factor VIII/genetics , Hemophilia A/diagnosis , Real-Time Polymerase Chain Reaction/methods , Chromosome Inversion/genetics , Factor VIII/analysis , Factor VIII/metabolism , Female , Genotype , Hemophilia A/genetics , Humans , Introns/genetics , Male , Sequence Inversion/genetics
12.
J Org Chem ; 85(16): 11006-11013, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32672469

ABSTRACT

We herein establish a multicomponent annulation method for the synthesis of valuable iminocoumarins using aryl thiocarbamates, internal alkynes, and sulfonamides as starting materials, which are safe and readily available. The key step is a Rh-catalyzed and sulfur-directed C-H bond activation. Preliminary mechanistic investigations suggested that the nucleophilic attack of the sulfonamide on an active iminium cation finally completes the imine segment.

13.
Clin Chem Lab Med ; 59(1): 91-99, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32673280

ABSTRACT

Objectives: Colorectal cancer (CRC) screening using stool samples is now in routine use where tumor DNA methylation analysis for leading markers such as NDRG4 and SDC2 is an integral part of the test. However, processing stool samples for reproducible and efficient extraction of human genomic DNA remains a bottleneck for further research into better biomarkers and assays. Methods: We systematically evaluated several factors involved in the processing of stool samples and extraction of DNA. These factors include: stool processing (solid and homogenized samples), preparation of DNA from supernatant and pellets, and DNA extraction with column and magnetic beads-based methods. Furthermore, SDC2 and NDRG4 methylation levels were used to evaluate the clinical performance of the optimal protocol. Results: The yield of total and human genomic DNA (hgDNA) was not reproducible when solid stool scraping is used, possibly due to sampling variations. More reproducible results were obtained from homogenized stool samples. Magnetic beads-based DNA extraction using the supernatant from the homogenized stool was chosen for further analysis due to better reproducibility, higher hgDNA yield, lower non-hgDNA background, and the potential for automation. With this protocol, a combination of SDC2 and NDRG4 methylation signals with a linear regression model achieved a sensitivity and specificity of 81.82 and 93.75%, respectively. Conclusions: Through the systematic evaluation of different stool processing and DNA extraction methods, we established a reproducible protocol for analyzing tumor DNA methylation markers in stool samples for colorectal cancer screening.


Subject(s)
Biomarkers, Tumor/analysis , Colorectal Neoplasms/diagnosis , DNA/analysis , Diagnostic Tests, Routine/methods , Early Detection of Cancer/methods , Feces/chemistry , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/chemistry , DNA/chemistry , DNA Methylation , Female , Humans , Male , Middle Aged , Muscle Proteins/genetics , Nerve Tissue Proteins/genetics , Reproducibility of Results , Specimen Handling/methods , Syndecan-2/genetics
14.
J Org Chem ; 84(17): 11177-11185, 2019 Sep 06.
Article in English | MEDLINE | ID: mdl-31424935

ABSTRACT

The silver-promoted phosphonation/alkynylation of vinyl in α-aryl α-alkynyl allylic alcohols with phosphine oxide was developed, affording a series of α-alkynyl γ-ketophosphine oxides in moderate to good yields. This procedure involved the radical 3-exo-dig cyclization, proceeding with the radical 1,2-alkynyl migration rather than the aryl migration.

15.
RNA Biol ; 16(7): 940-949, 2019 07.
Article in English | MEDLINE | ID: mdl-30951404

ABSTRACT

SLC47A2 encodes MATE 2-K in the kidney, which mediates the secretion of certain endogenous and exogenous compounds. SLC47A2 was dramatically repressed in patients with renal cell carcinoma (RCC), and a lower level of SLC47A2 might act as a negative prognostic marker, although the mechanism is not well understood. In this study, we aimed to investigate the mechanism via which SLC47A2 is downregulated in RCC. Based on the annotation information of the SLC47A2 locus available in the UCSC genome browser database, we identified a novel lncRNA, which is transcribed from the SLC47A2 locus and named it SANT1. Overexpression and knock-down assays were performed to investigate the effects of SANT1 on cis-regulation of SLC47A2. We verified the direct binding between SANT1 and SFPQ/E2F1/HDAC1 using the cross-linking and immunoprecipitation (CLIP) assay. Chromatin immunoprecipitation was performed to confirm the molecular mechanism via which SANT1 activates the transcription of the SLC47A2 coding region. We observed that SANT1 can cis-regulate its own genetic locus. In tumour-adjacent tissues, the SLC47A2 locus highly expresses SANT1, which can remove the regulatory SFPQ/E2F1/HDAC1 suppressor complex from the promoter region, thereby significantly increasing the levels of the H3K27ac modification and RNAPII binding. Owing to a low SANT1 level, the binding of this inhibitory complex in the promoter region is upregulated in RCC, which results in silencing of the SLC47A2 coding region. In conclusion, we identified a novel lncRNA and elucidated the mechanism via which it regulates SLC47A2 expression in RCC.


Subject(s)
Carcinoma, Renal Cell/genetics , E2F1 Transcription Factor/metabolism , Gene Expression Regulation, Neoplastic , Histone Deacetylase 1/metabolism , Organic Cation Transport Proteins/metabolism , PTB-Associated Splicing Factor/metabolism , Promoter Regions, Genetic , RNA, Long Noncoding/metabolism , Base Sequence , Cell Line, Tumor , HEK293 Cells , Humans , Kidney Neoplasms/genetics , Models, Biological , Nucleic Acid Conformation , Organic Cation Transport Proteins/genetics , Protein Binding , RNA, Long Noncoding/chemistry , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Up-Regulation/genetics
16.
Org Biomol Chem ; 14(3): 920-39, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26608561

ABSTRACT

Aziridinium ions are useful reactive intermediates for the synthesis of enantiomerically enriched building blocks. However, N,N-dialkyl aziridinium ions are relatively underutilized in the synthesis of optically active molecules as compared to other three-membered ring cogeners, aziridines and epoxides. The characterization of both optically active aziridinium ions and secondary ß-halo amines as the precursor molecules of aziridinium ions has been scarcely reported and is often unclear. In this paper, we report for the first time the preparation and experimental and theoretical characterization of optically active aziridinium ions and secondary ß-halo amines. Optically active secondary N,N-substituted ß-halo amines were efficiently synthesized from N,N-substituted alaninol via formation and ring opening at the more hindered carbon of aziridinium ions by halides. Optically active ß-halo amines and aziridinium ions were characterized by NMR and computational analyses. The structure of an optically active ß-chloro amine was confirmed via X-ray crystallographic analysis. The aziridinium ions derived from N,N-dibenzyl alaniol remained stable only for several hours, which was long enough for analyses of NMR and optical activity. The stereospecific ring opening of aziridinium ions by halides was computationally studied using DFT and highly-accurate DLPNO-CCSD(T) methods. The highly regioselective and stereoselective ring opening of aziridinium ions was applied for efficient one-pot conversion of ß-alaninols to enantiomerically enriched ß-amino alcohols, ß-amino nitriles, and vicinal diamine derivatives.


Subject(s)
Amino Alcohols/chemistry , Aziridines/chemistry , Diamines/chemical synthesis , Nitriles/chemical synthesis , Crystallography, X-Ray , Diamines/chemistry , Halogenation , Ions/chemistry , Models, Molecular , Molecular Structure , Nitriles/chemistry , Quantum Theory , Stereoisomerism
17.
PLoS Genet ; 9(6): e1003515, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23754950

ABSTRACT

Down syndrome (DS), commonly caused by an extra copy of chromosome 21 (chr21), occurs in approximately one out of 700 live births. Precisely how an extra chr21 causes over 80 clinically defined phenotypes is not yet clear. Reduced representation bisulfite sequencing (RRBS) analysis at single base resolution revealed DNA hypermethylation in all autosomes in DS samples. We hypothesize that such global hypermethylation may be mediated by down-regulation of TET family genes involved in DNA demethylation, and down-regulation of REST/NRSF involved in transcriptional and epigenetic regulation. Genes located on chr21 were up-regulated by an average of 53% in DS compared to normal villi, while genes with promoter hypermethylation were modestly down-regulated. DNA methylation perturbation was conserved in DS placenta villi and in adult DS peripheral blood leukocytes, and enriched for genes known to be causally associated with DS phenotypes. Our data suggest that global epigenetic changes may occur early in development and contribute to DS phenotypes.


Subject(s)
DNA Methylation/genetics , Down Syndrome/genetics , Epigenesis, Genetic/genetics , Placenta/metabolism , Chromosomes, Human, Pair 21/genetics , CpG Islands/genetics , DNA-Binding Proteins/genetics , Dioxygenases , Down Syndrome/metabolism , Female , Gene Expression Regulation , Humans , Male , Mixed Function Oxygenases , Placenta/cytology , Pregnancy , Promoter Regions, Genetic , Proto-Oncogene Proteins/genetics , Repressor Proteins/genetics , Sequence Analysis, DNA
18.
Biol Proced Online ; 16(1): 1, 2014 Jan 09.
Article in English | MEDLINE | ID: mdl-24406024

ABSTRACT

BACKGROUND: DNA methylation plays crucial roles in epigenetic gene regulation in normal development and disease pathogenesis. Efficient and accurate quantification of DNA methylation at single base resolution can greatly advance the knowledge of disease mechanisms and be used to identify potential biomarkers. We developed an improved pipeline based on reduced representation bisulfite sequencing (RRBS) for cost-effective genome-wide quantification of DNA methylation at single base resolution. A selection of two restriction enzymes (TaqαI and MspI) enables a more unbiased coverage of genomic regions of different CpG densities. We further developed a highly automated software package to analyze bisulfite sequencing results from the Solexa GAIIx system. RESULTS: With two sequencing lanes, we were able to quantify ~1.8 million individual CpG sites at a minimum sequencing depth of 10. Overall, about 76.7% of CpG islands, 54.9% of CpG island shores and 52.2% of core promoters in the human genome were covered with at least 3 CpG sites per region. CONCLUSIONS: With this new pipeline, it is now possible to perform whole-genome DNA methylation analysis at single base resolution for a large number of samples for understanding how DNA methylation and its changes are involved in development, differentiation, and disease pathogenesis.

19.
Metabolism ; 151: 155758, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38070823

ABSTRACT

BACKGROUND AND AIMS: Chemokine (CC motif) receptor 1 (CCR1) promotes liver fibrosis in mice. However, its effects on nonalcoholic steatohepatitis (NASH) remain unclear. Therefore, the present study aimed to investigate the role of CCR1 in the progression of NASH. METHODS: Human serum and liver tissues were obtained from patients with NASH and controls. Systemic (Ccr1-/-) and liver macrophage-knockout Ccr1 (Ccr1LKD) mice were fed a high-cholesterol and high-fat (CL) diet for 12 weeks or a methionine/choline-deficient (MCD) diet for 4 weeks. BX471 was used to pharmacologically inhibit CCR1 in CL-fed mice. RESULTS: CCR1 was significantly upregulated in liver samples from patients with NASH and in animal models of dietary-induced NASH. In the livers of mice fed a CL diet for 12 weeks, the CCR1 protein colocalized with F4/80+ macrophages rather than with hepatic stellate cells. Compared to their wild-type littermates, Ccr1-/- mice fed with the CL or MCD diet showed inhibition of NASH-associated hepatic steatosis, inflammation, and fibrosis. Mechanistically, Ccr1 deficiency suppressed macrophage infiltration and activation by attenuating the mechanistic target of rapamycin complex 1 (mTORC1) signaling. Similar results were observed in Ccr1LKD mice administered the CL diet. Moreover, CCR1 inhibition by BX471 effectively suppressed NASH progression in CL-fed mice. CONCLUSIONS: Ccr1 deficiency mitigated macrophage activity by inhibiting mTORC1 signaling, thereby preventing the development of NASH. Notably, the CCR1 inhibitor BX471 protected against NASH. These findings would help in developing novel strategies for the treatment of NASH.


Subject(s)
Non-alcoholic Fatty Liver Disease , Phenylurea Compounds , Piperidines , Animals , Humans , Mice , Choline/metabolism , Choline/pharmacology , Disease Models, Animal , Liver/metabolism , Liver Cirrhosis/pathology , Macrophage Activation , Mechanistic Target of Rapamycin Complex 1/metabolism , Methionine/metabolism , Methionine/pharmacology , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Receptors, CCR1/genetics , Receptors, CCR1/metabolism , Receptors, Chemokine/metabolism
20.
Org Lett ; 26(31): 6681-6686, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39058573

ABSTRACT

Here, we demonstrate palladium-catalyzed Hiyama-type cross-coupling reactions of aryl thianthrenium or phenoxathiinium salts. By employing stable and inexpensive organosilanes, the arylation, alkenylation, and alkynylation were realized in high efficiency using commercially available Pd(tBu3P)2 as the catalyst, thus providing a reliable method for preparation of biaryls, styrenes, and aryl acetylenes with a broad functional group tolerance under mild conditions. Given the accessibility of aryl thianthrenium or phenoxathiinium salts from simple arenes in a remarkable regioselective fashion, this protocol also provides an attractive approach for the late-stage modification of complex bioactive scaffolds.

SELECTION OF CITATIONS
SEARCH DETAIL