Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 175
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Biol Chem ; : 107556, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002683

ABSTRACT

Diversity, a hallmark of G protein-coupled receptor (GPCR) signaling, partly stems from alternative splicing of a single gene generating more than one isoform for a receptor. Additionally, receptor responses to ligands can be attenuated by desensitization upon prolonged or repeated ligand exposure. Both phenomena have been demonstrated and exemplified by the deuterostome tachykinin (TK) signaling system, although the role of phosphorylation in desensitization remains a subject of debate. Here, we describe the signaling system for tachykinin-related peptides (TKRPs) in a protostome, mollusk Aplysia. We cloned the Aplysia TKRP precursor, which encodes three TKRPs (apTKRP-1, apTKRP-2a, and apTKRP-2b) containing the FXGXR-amide motif. In situ hybridization and immunohistochemistry showed predominant expression of TKRP mRNA and peptide in the cerebral ganglia. TKRPs and their post-translational modifications were observed in extracts of CNS ganglia using mass spectrometry. We identified two Aplysia TKRP receptors (TKRPRs), named apTKRPR-A and apTKRPR-B. These receptors are two isoforms generated through alternative splicing of the same gene and differ only in their intracellular C-termini. Structure-activity relationship analysis of apTKRP-2b revealed that both C-terminal amidation and conserved residues of the ligand are critical for receptor activation. C-terminal truncates and mutants of apTKRPRs suggested that there is a C-terminal phosphorylation-independent desensitization for both receptors. Moreover, apTKRPR-B also exhibits phosphorylation-dependent desensitization through the phosphorylation of C-terminal Ser/Thr residues. This comprehensive characterization of the Aplysia TKRP signaling system underscores the evolutionary conservation of the TKRP and TK signaling systems, while highlighting the intricacies of receptor regulation through alternative splicing and differential desensitization mechanisms.

2.
Learn Mem ; 31(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38950977

ABSTRACT

Changes caused by learning that a food is inedible in Aplysia were examined for fast and slow synaptic connections from the buccal ganglia S1 cluster of mechanoafferents to five followers, in response to repeated stimulus trains. Learning affected only fast connections. For these, unique patterns of change were present in each follower, indicating that learning differentially affects the different branches of the mechanoafferents to their followers. In some followers, there were increases in either excitatory or inhibitory connections, and in others, there were decreases. Changes in connectivity resulted from changes in the amplitude of excitation or inhibition, or as a result of the number of connections, or of both. Some followers also exhibited changes in either within or between stimulus train plasticity as a result of learning. In one follower, changes differed from the different areas of the S1 cluster. The patterns of changes in connectivity were consistent with the behavioral changes produced by learning, in that they would produce an increase in the bias to reject or to release food, and a decrease in the likelihood to respond to food.


Subject(s)
Aplysia , Ganglia, Invertebrate , Motor Neurons , Aplysia/physiology , Animals , Motor Neurons/physiology , Ganglia, Invertebrate/physiology , Learning/physiology , Mechanoreceptors/physiology , Neuronal Plasticity/physiology , Food , Feeding Behavior/physiology
3.
Learn Mem ; 31(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38950976

ABSTRACT

How does repeated stimulation of mechanoafferents affect feeding motor neurons? Monosynaptic connections from a mechanoafferent population in the Aplysia buccal ganglia to five motor followers with different functions were examined during repeated stimulus trains. The mechanoafferents produced both fast and slow synaptic outputs, which could be excitatory or inhibitory. In contrast, other Aplysia mechanoafferents produce only fast excitation on their followers. In addition, patterns of synaptic connections were different to the different motor followers. Some followers received both fast excitation and fast inhibition, whereas others received exclusively fast excitation. All followers showed strong decreases in fast postsynaptic potential (PSP) amplitude within a stimulus train. Fast and slow synaptic connections were of net opposite signs in some followers but not in others. For one follower, synaptic contacts were not uniform from all subareas of the mechanoafferent cluster. Differences in properties of the buccal ganglia mechanoafferents and other Aplysia mechanoafferents may arise because the buccal ganglia neurons innervate the interior of the feeding apparatus, rather than an external surface, and connect to motor neurons for muscles with different motor functions. Fast connection patterns suggest that these synapses may be activated when food slips, biasing the musculature to release food. The largest slow inhibitory synaptic PSPs may contribute to a delay in the onset of the next behavior. Additional functions are also possible.


Subject(s)
Aplysia , Feeding Behavior , Ganglia, Invertebrate , Motor Neurons , Animals , Aplysia/physiology , Motor Neurons/physiology , Ganglia, Invertebrate/physiology , Feeding Behavior/physiology , Mechanoreceptors/physiology , Synapses/physiology , Physical Stimulation
4.
Int J Mol Sci ; 25(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38474114

ABSTRACT

As an important functional protein molecule in the human body, human annexin A5 (hAnxA5) is widely found in human cells and body fluids. hAnxA5, the smallest type of annexin, performs a variety of biological functions by reversibly and specifically binding phosphatidylserine (PS) in a calcium-dependent manner and plays an important role in many human physiological and pathological processes. The free state hAnxA5 exists in the form of monomers and usually forms a polymer in a specific self-assembly manner when exerting biological activity. This review systematically discusses the current knowledge and understanding of hAnxA5 from three perspectives: physiopathological relevance, diagnostic value, and therapeutic utility. hAnxA5 affects the occurrence and development of many physiopathological processes. Moreover, hAnxA5 can be used independently or in combination as a biomarker of physiopathological phenomena for the diagnosis of certain diseases. Importantly, based on the properties of hAnxA5, many novel drug candidates have been designed and prepared for application in actual medical practice. However, there are also some gaps and shortcomings in hAnxA5 research. This in-depth study will not only expand the understanding of structural and functional relationships but also promote the application of hAnxA5 in the field of biomedicine.


Subject(s)
Calcium , Phosphatidylserines , Humans , Annexin A5/metabolism , Apoptosis , Calcium/metabolism , Calcium, Dietary/metabolism , Phosphatidylserines/metabolism
5.
Learn Mem ; 30(11): 278-281, 2023 11.
Article in English | MEDLINE | ID: mdl-37852783

ABSTRACT

An in vitro analog of learning that a food is inedible provided insight into mechanisms underlying the learning. Aplysia learn to stop responding to a food when they attempt but fail to swallow it. Pairing a cholinergic agonist with an NO donor or histamine in the Aplysia cerebral ganglion produced significant decreases in fictive feeding in response to the cholinergic agonist alone. Acetylcholine (ACh) is the transmitter of chemoreceptors sensing food touching the lips. Nitric oxide (NO) and histamine (HA) signal failed attempts to swallow food. Reduced responses to the cholinergic agonist after pairing with NO or HA indicate that learning partially arises via a decreased response to ACh in the cerebral ganglion.


Subject(s)
Aplysia , Deglutition , Animals , Aplysia/physiology , Deglutition/physiology , Histamine , Feeding Behavior/physiology , Nitric Oxide/physiology , Cholinergic Agonists
6.
J Biol Chem ; 298(10): 102440, 2022 10.
Article in English | MEDLINE | ID: mdl-36049520

ABSTRACT

The protostome leucokinin (LK) signaling system, including LK peptides and their G protein-coupled receptors, has been characterized in several species. Despite the progress, molecular mechanisms governing LK peptide-receptor interactions remain to be elucidated. Previously, we identified a precursor protein for Aplysia leucokinin-like peptides (ALKs) that contains the greatest number of amidated peptides among LK precursors in all species identified so far. Here, we identified the first ALK receptor from Aplysia, ALKR. We used cell-based IP1 activation assays to demonstrate that two ALK peptides with the most copies, ALK1 and ALK2, activated ALKR with high potencies. Other endogenous ALK-derived peptides bearing the FXXWX-amide motif also activated ALKR to various degrees. Our examination of cross-species activity of ALKs with the Anopheles LK receptor was consistent with a critical role for the FXXWX-amide motif in receptor activity. Furthermore, we showed, through alanine substitution of ALK1, the highly conserved phenylalanine (F), tryptophan (W), and C-terminal amidation were each essential for receptor activation. Finally, we used an artificial intelligence-based protein structure prediction server (Robetta) and Autodock Vina to predict the ligand-bound conformation of ALKR. Our model predicted several interactions (i.e., hydrophobic interactions, hydrogen bonds, and amide-pi stacking) between ALK peptides and ALKR, and several of our substitution and mutagenesis experiments were consistent with the predicted model. In conclusion, our results provide important information defining possible interactions between ALK peptides and their receptors. The workflow utilized here may be useful for studying other ligand-receptor interactions for a neuropeptide signaling system, particularly in protostomes.


Subject(s)
Aplysia , Artificial Intelligence , Neuropeptides , Receptors, Neuropeptide , Animals , Amides , Aplysia/genetics , Aplysia/metabolism , Ligands , Mutagenesis , Neuropeptides/chemistry , Neuropeptides/genetics , Protein Conformation , Receptors, Neuropeptide/chemistry , Receptors, Neuropeptide/genetics
7.
J Neurophysiol ; 130(4): 941-952, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37671445

ABSTRACT

Command systems integrate sensory information and then activate the interneurons and motor neurons that mediate behavior. Much research has established that the higher-order projection neurons that constitute these systems can play a key role in specifying the nature of the motor activity induced, or determining its parametric features. To a large extent, these insights have been obtained by contrasting activity induced by stimulating one neuron (or set of neurons) to activity induced by stimulating a different neuron (or set of neurons). The focus of our work differs. We study one type of motor program, ingestive feeding in the mollusc Aplysia californica, which can either be triggered when a single projection neuron (CBI-2) is repeatedly stimulated or can be triggered by projection neuron coactivation (e.g., activation of CBI-2 and CBI-3). We ask why this might be an advantageous arrangement. The cellular/molecular mechanisms that configure motor activity are different in the two situations because the released neurotransmitters differ. We focus on an important consequence of this arrangement, the fact that a persistent state can be induced with repeated CBI-2 stimulation that is not necessarily induced by CBI-2/3 coactivation. We show that this difference can have consequences for the ability of the system to switch from one type of activity to another.NEW & NOTEWORTHY We study a type of motor program that can be induced either by stimulating a higher-order projection neuron that induces a persistent state, or by coactivating projection neurons that configure activity but do not produce a state change. We show that when an activity is configured without a state change, it is possible to immediately return to an intermediate state that subsequently can be converted to any type of motor program.


Subject(s)
Aplysia , Feeding Behavior , Animals , Feeding Behavior/physiology , Aplysia/physiology , Eating/physiology , Interneurons/physiology , Motor Neurons/physiology , Ganglia, Invertebrate/physiology
8.
Appl Opt ; 62(31): 8248-8260, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-38037927

ABSTRACT

Spectral combination is promising for diffraction-limited beam quality and single aperture beams. Unfortunately, beamlet deviations, linewidth broadening, and thermal aberrations inevitably degrade the beam quality. Many high-power laser systems integrate adaptive optics systems to maintain beam qualities. However, owing to the nature of incoherent combination, there is no well-defined wavefront in the spectrally combined beam, and whether phase compensations can enhance beam quality has not been discussed yet. We present the feasibility of improving the beam quality of spectral combined fiber lasers by adaptive optics. Simulations indicate that common path aberrations can be effectively corrected by adaptive optics, while beam quality degraded by displacement deviations and linewidth broadening cannot be improved. Additionally, the combined beam could be directly used as the beacon light in the propagation tunnel. To our knowledge, this study is the first to demonstrate that adaptive optics can improve the beam quality of spectrally combined fiber lasers and enable a further step toward diffraction-limited beam quality.

9.
Int J Mol Sci ; 24(13)2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37446286

ABSTRACT

Tumor tissues often exhibit unique integrin receptor presentation during development, such as high exposures of αvß3 and αIIbß3 integrins. These features are not present in normal tissues. The induction of selective thrombosis and infarction in the tumor-feeding vessels, as well as specific antagonism of αvß3 integrin on the surface of tumor endothelial cells, is a potential novel antitumor strategy. The Echistatin-Annexin V (EAV) fusion protein is a novel Annexin V (ANV) derivative that possesses a high degree of αvß3 and αIIbß3 integrin receptor recognition and binding characteristics while retaining the specific binding ability of the natural ANV molecule for phosphatidylserine (PS). We systematically investigated the biological effects of this novel molecule with superimposed functions on mouse melanoma. We found that EAV inhibited the viability and migration of B16F10 murine melanoma cells in a dose-dependent manner, exhibited good tumor suppressive effects in a xenograft mouse melanoma model, strongly induced tumor tissue necrosis in mice, and targeted the inhibition of angiogenesis in mouse melanoma tumor tissue. EAV exhibited stronger biological effects than natural ANV molecules in inhibiting melanoma in mice. The unique biological effects of EAV are based on its high ß3-type integrin receptor-specific recognition and binding ability, as well as its highly selective binding to PS molecules. Based on these findings, we propose that EAV-mediated tumor suppression is a novel and promising antitumor strategy that targets both PS- and integrin ß3-positive tumor neovascularization and the tumor cells themselves, thus providing a possible mechanism for the treatment of melanoma.


Subject(s)
Integrin beta3 , Melanoma , Humans , Mice , Animals , Integrin beta3/metabolism , Annexin A5/metabolism , Endothelial Cells/metabolism , Melanoma/metabolism , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Integrin alphaVbeta3/metabolism
10.
Int J Mol Sci ; 24(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36835282

ABSTRACT

Malignant melanoma, an increasingly common form of skin cancer, is a major threat to public health, especially when the disease progresses past skin lesions to the stage of advanced metastasis. Targeted drug development is an effective strategy for the treatment of malignant melanoma. In this work, a new antimelanoma tumor peptide, the lebestatin-annexin V (designated LbtA5) fusion protein, was developed and synthesized by recombinant DNA techniques. As a control, annexin V (designated ANV) was also synthesized by the same method. The fusion protein combines annexin V, which specifically recognizes and binds phosphatidylserine, with the disintegrin lebestatin (lbt), a polypeptide that specifically recognizes and binds integrin α1ß1. LbtA5 was successfully prepared with good stability and high purity while retaining the dual biological activity of ANV and lbt. MTT assays demonstrated that both ANV and LbtA5 could reduce the viability of melanoma B16F10 cells, but the activity of the fusion protein LbtA5 was superior to that of ANV. The tumor volume growth was slowed in a mouse xenograft model treated with ANV and LbtA5, and the inhibitory effect of high concentrations of LbtA5 was significantly better than that of the same dose of ANV and was comparable to that of DTIC, a drug used clinically for melanoma treatment. The hematoxylin and eosin (H&E) staining test showed that ANV and LbtA5 had antitumor effects, but LbtA5 showed a stronger ability to induce melanoma necrosis in mice. Immunohistochemical experiments further showed that ANV and LbtA5 may inhibit tumor growth by inhibiting angiogenesis in tumor tissue. Fluorescence labeling experiments showed that the fusion of ANV with lbt enhanced the targeting of LbtA5 to mouse melanoma tumor tissue, and the amount of target protein in tumor tissue was significantly increased. In conclusion, effective coupling of the integrin α1ß1-specific recognition molecule lbt confers stronger biological antimelanoma effects of ANV, which may be achieved by the dual effects of effective inhibition of B16F10 melanoma cell viability and inhibition of tumor tissue angiogenesis. The present study describes a new potential strategy for the application of the promising recombinant fusion protein LbtA5 in the treatment of various cancers, including malignant melanoma.


Subject(s)
Annexin A5 , Integrin alpha1beta1 , Melanoma , Recombinant Fusion Proteins , Skin Neoplasms , Animals , Humans , Mice , Annexin A5/therapeutic use , Integrin alpha1beta1/metabolism , Melanoma/therapy , Recombinant Fusion Proteins/therapeutic use , Skin Neoplasms/therapy , Melanoma, Experimental , Melanoma, Cutaneous Malignant
11.
J Neurophysiol ; 127(6): 1445-1459, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35507477

ABSTRACT

These experiments focus on an interneuron (B63) that is part of the feeding central pattern generator (CPG) in Aplysia californica. Previous work has established that B63 is critical for program initiation regardless of the type of evoked activity. B63 receives input from a number of different elements of the feeding circuit. Program initiation occurs reliably when some are activated, but we show that it does not occur reliably with activation of others. When program initiation is reliable, modulatory neuropeptides are released. For example, previous work has established that an ingestive input to the feeding CPG, cerebral buccal interneuron 2 (CBI-2), releases feeding circuit activating peptide (FCAP) and cerebral peptide 2 (CP-2). Afferents with processes in the esophageal nerve (EN) that trigger egestive motor programs release small cardioactive peptide (SCP). Previous studies have described divergent cellular and molecular effects of FCAP/CP-2 and SCP on the feeding circuit that specify motor activity. Here, we show that FCAP/CP-2 and SCP additionally increase the B63 excitability. Thus, we show that peptides that have well-characterized divergent effects on the feeding circuit additionally act convergently at the level of a single neuron. Since convergent effects of FCAP/CP-2 and SCP are not necessary for specifying the type of network output, we ask why they might be important. Our data suggest that they have an impact during a task switch, i.e., when there is a switch from egestive to ingestive activity.NEW & NOTEWORTHY The activity of multifunctional central pattern generators (CPGs) is often configured by neuromodulators that exert divergent effects that are necessary to specify motor output. We demonstrate that ingestive and egestive inputs to the feeding CPG in Aplysia act convergently (as well as divergently). We ask why this convergence may be important and suggest that it may be a mechanism for a type of arousal that occurs during task switching.


Subject(s)
Central Pattern Generators , Neuropeptides , Animals , Aplysia/physiology , Feeding Behavior/physiology , Ganglia, Invertebrate/physiology , Interneurons/physiology , Neuropeptides/pharmacology
12.
Phys Chem Chem Phys ; 24(45): 28003-28011, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36373622

ABSTRACT

Two-dimensional covalent organic frameworks (COFs) are a new type of porous crystalline material constructed by the linkage of organic building units through covalent bonds to produce predetermined structures. Here, the electronic structure evolution induced by the charge redistribution during the construction of two-dimensional polymer networks (sp2c-COF-2 and COF-66) from building units to crystal frameworks is examined theoretically. The calculated results demonstrate that the electronic structure of the framework is controlled by the relative energy level between the frontier orbitals of organic building core and linker units as well as the charge transfer amount between them during the construction of the framework. Moreover, it is observed that a noncoplanar framework becomes more conjugated because the charge transfer amount between core and linker units becomes larger during the construction of 2D frameworks, which leads to a larger charge carrier mobility within the 2D structure of COFs. The charge carrier mobility along the z-direction of the COF crystal is dominated by the interface interaction between COF layers. Thereby, we believed reasonable design or selection of organic building units plays a key role in improving the electronic and optoelectronic properties of such 2D organic frameworks.

13.
Clin Neuropathol ; 41(3): 128-134, 2022.
Article in English | MEDLINE | ID: mdl-35102820

ABSTRACT

The Wernekinck commissure syndrome is extremely rare in a clinical setting. This condition has been previously reported in association with midbrain infarction, midbrain hemorrhage, demyelinating pseudotumor, and optic neuromyelitis spectrum disease, but not with Hashimoto's encephalopathy. Herein, we report the case of a 44-year-old hypertensive man who developed cerebellar ataxia, internuclear ophthalmoplegia, and cognitive decline. Magnetic resonance imaging (MRI) of the brain revealed brain stem damage involving Wernekinck commissure. Initially, this patient was diagnosed with acute midbrain infarction in another hospital. However, his symptoms did not improve after the administration of anti-platelet aggregation drugs, statin, and free radicals scavenging treatment. Re-examination of cranial MRI revealed abnormal signals in the left parietal lobe. After a series of investigations that excluded cerebral infarction and neurodegenerative diseases, Hashimoto's encephalopathy was finally diagnosed. The patient's symptoms improved remarkably after treatment with methylprednisolone and γ-globulin. To the best of our knowledge, there are no other reports on the onset of Wernekinck commissure syndrome in the clinical manifestations of Hashimoto's encephalopathy.


Subject(s)
Brain Diseases , Cerebellar Ataxia , Encephalitis , Hashimoto Disease , Adult , Brain Diseases/diagnosis , Encephalitis/complications , Encephalitis/diagnosis , Hashimoto Disease/complications , Hashimoto Disease/diagnosis , Hashimoto Disease/drug therapy , Humans , Infarction/complications , Male , Syndrome
14.
Fa Yi Xue Za Zhi ; 38(1): 40-45, 2022 Feb 25.
Article in English, Zh | MEDLINE | ID: mdl-35725702

ABSTRACT

OBJECTIVES: To explore the application values of diatom artificial intelligence (AI) search system in the diagnosis of drowning. METHODS: The liver and kidney tissues of 12 drowned corpses were taken and were performed with the diatom test, the view images were obtained by scanning electron microscopy (SEM). Diatom detection and forensic expert manual identification were carried out under the thresholds of 0.5, 0.7 and 0.9 of the diatom AI search system, respectively. Diatom recall rate, precision rate and image exclusion rate were used to detect and compare the efficiency of diatom AI search system. RESULTS: There was no statistical difference between the number of diatoms detected in the target marked by the diatom AI search system and the number of diatoms identified manually (P>0.05); the recall rates of the diatom AI search system were statistically different under different thresholds (P<0.05); the precision rates of the diatom AI system were statistically different under different thresholds(P<0.05), and the highest precision rate was 53.15%; the image exclusion rates of the diatom AI search system were statistically different under different thresholds (P<0.05), and the highest image exclusion rate was 99.72%. For the same sample, the time taken by the diatom AI search system to identify diatoms was only 1/7 of that of manual identification. CONCLUSIONS: Diatom AI search system has a good application prospect in drowning cases. Its automatic diatom search ability is equal to that of experienced forensic experts, and it can greatly reduce the workload of manual observation of images.


Subject(s)
Diatoms , Drowning , Artificial Intelligence , Drowning/diagnosis , Humans , Liver , Lung , Microscopy, Electron, Scanning
15.
Fa Yi Xue Za Zhi ; 38(1): 67-70, 2022 Feb 25.
Article in English, Zh | MEDLINE | ID: mdl-35725706

ABSTRACT

OBJECTIVES: To study whether diatoms can enter the body through the lymphatic system of the digestive tract. METHODS: Twenty experimental rabbits were divided into the test group and the control group randomly, and intragastric administration was performed with 20 mL water sample from the Pearl River and 20 mL ultrapure water, respectively. After 30 min, lymph, lungs, livers and kidneys were extracted for the diatom test. The concentration, size and type of diatoms were recorded. RESULTS: The concentration of diatoms of the test group was higher than that of the control group (P<0.05). In the test group, Stephanodiscus, Coscinodiscus, Cyclotella, Melosira, Nitzschia, Synedra, Cymbella, and Navicula were detected; in the control group, Stephanodiscus, Coscinodiscus and Cyclotella were detected. The long diameter and the short diameter of diatoms of the test group were higher than those of the control group (P<0.05). In the test group, 1-2 diatoms were detected in 3 lung samples and 2 liver samples, which were Stephanodiscus or Cyclotella, and no diatoms were detected in the kidney samples; in the control group, 1-2 diatoms were detected in 2 lung samples and 3 liver samples, which were Stephanodiscus or Coscinodiscus, and no diatoms were detected in the kidney samples. CONCLUSIONS: Diatoms can enter the body through the lymphatic fluid, which is one of the reasons for the presence of diatoms in tissues and organs of non-drowning cadavers.


Subject(s)
Diatoms , Drowning , Animals , Gastrointestinal Tract , Lung , Lymphatic System , Rabbits , Water/metabolism
16.
Fa Yi Xue Za Zhi ; 38(1): 77-81, 2022 Feb 25.
Article in English, Zh | MEDLINE | ID: mdl-35725708

ABSTRACT

OBJECTIVES: To study the effects of temperature and time for diatoms digestion and find out suitable digestive temperature and time. METHODS: Eighty pieces of liver tissues were collected, each piece of tissue was 2 g, and 2 mL Pearl River water was added to each piece of tissue. The digestion temperature was set at 100 ℃, 120 ℃, 140 ℃, 160 ℃, 180 ℃ and the digestion time was set at 40, 50, 60, 70, 80 min. The liver tissue and water mixture were divided into 8 portions in each group. All the samples were tested by microwave digestive - vacuum filtration - automated scanning electron microscopy method. The quantity of diatom recovered and the quality of residue on the membrane were recorded. RESULTS: When the digestion time was set to 60 min, there were statistically significant differences in the number of diatoms recovered at different temperatures (P<0.05). The maximum number of diatoms recovered was (28 797.50±6 009.67) at 140 ℃, and the minimum residue was (0.60±0.28) mg at 180 ℃. When the digestion temperature was set at 140 ℃, there were statistically significant differences in the number of diatoms recovered at different digestion times (P<0.05). The number of diatoms recovered was the highest at 40 min, it was up to (20 650.88±1 950.29), and the residue quality of each group had no statistical significance among different digestion time groups(P>0.05). CONCLUSIONS: The effect of diatom digestion is related to temperature and time. When the digestion temperature was 140 ℃ and the digestion time was 40, 50 and 60 min, it is favorable for diatom test.


Subject(s)
Diatoms , Drowning , Forensic Pathology/methods , Temperature , Water
17.
Fa Yi Xue Za Zhi ; 38(1): 110-113, 2022 Feb 25.
Article in English, Zh | MEDLINE | ID: mdl-35725713

ABSTRACT

OBJECTIVES: To retrospectively analyze diatom test cases of corpses in water and discuss the value of quantitative analysis of diatoms in the diagnosis of drowning. METHODS: A total of 490 cases of water-related death were collected. They were divided into drowning group and postmortem immersion group according to the cause of death. Diatoms in lung, liver, kidney tissue and water sample were analyzed quantitatively by microwave digestion-vacuum filtration-automated scanning electron microscopy (MD-VF-Auto SEM) method. The ratios of content of diatoms in lung tissue and water sample (CL/CD) were calculated. RESULTS: The results of diatom test for three organs (lung, liver and kidney) were all positive in 400 cases (85.5%); the content of diatom in lung, liver, kidney tissues, and water samples of drowning group were (113 235.9±317 868.1), (26.7±75.6), (23.3±52.2) and (12 113.3±21 760.0) cells/10 g, respectively; the species of diatom were (7.5±2.8), (2.6±1.9), (2.9±2.1) and (8.9±3.0) types, respectively; the CL/CD of drowning group and postmortem immersion group were (100.6±830.7) and (0.3±0.4), respectively. CONCLUSIONS: Quantitative analysis of diatoms can provide supportive evidence for the diagnosis of drowning, and the parameter CL/CD can be introduced into the analysis to make a more accurate diagnosis of drowning.


Subject(s)
Diatoms , Drowning , Autopsy , Drowning/diagnosis , Humans , Lung , Retrospective Studies , Water
18.
Fa Yi Xue Za Zhi ; 38(1): 114-118, 2022 Feb 25.
Article in English, Zh | MEDLINE | ID: mdl-35725714

ABSTRACT

OBJECTIVES: To compare the application effect of microwave digestion - vacuum filtration - automated scanning electron microscopy (MD-VF-Auto SEM) method and plankton gene multiplex PCR system in the diagnosis of drowning. METHODS: Lung, liver and kidney tissue of 10 non-drowning cases and 50 drowning cases were prepared for further MD-VF-Auto SEM method analysis and plankton gene multiplex PCR system analysis. The positive detection rate of the two methods in each tissue was calculated. RESULTS: The positive rate of the MD-VF-Auto SEM method detecting diatoms in drowning cases was 100%, and few diatoms were detected in the liver and kidney tissues of 6 non-drowning cases. By using the plankton gene multiplex PCR system, the diatom positive rate of drowning cases was 84%, and all the non-drowning cases were negative. There were significant differences in the positive rate of the liver, kidney tissues between MD-VF-Auto SEM method and plankton gene multiplex PCR system (P<0.05), as well as the total positive rate of cases. However, no significant differences were found in the positive rates of lung tissues (P>0.05). CONCLUSIONS: MD-VF-Auto SEM method is more sensitive than plankton gene multiplex PCR system in diatom test. But the plankton gene multiplex PCR system can also detect plankton other than diatoms. Combination of the two methods can provide a more reliable basis for the diagnosis of drowning.


Subject(s)
Diatoms , Drowning , Diatoms/genetics , Drowning/diagnosis , Humans , Liver , Lung , Microscopy, Electron, Scanning , Multiplex Polymerase Chain Reaction , Plankton/genetics
19.
J Biol Chem ; 294(17): 6670-6684, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30803987

ABSTRACT

Blood platelets are required for normal wound healing, but they are also involved in thrombotic diseases, which are usually managed with anticoagulant drugs. Here, using genetic engineering, we coupled the disintegrin protein echistatin, which specifically binds to the platelet integrin αIIbß3 receptor, to annexin V, which binds platelet membrane-associated phosphatidylserine (PS), to create the bifunctional antithrombotic molecule recombinant echistatin-annexin V fusion protein (r-EchAV). Lipid binding and plasma coagulation studies revealed that r-EchAV dose-dependently binds PS and delays plasma clotting time. Moreover, r-EchAV inhibited ADP-induced platelet aggregation in a dose-dependent manner and exhibited potent antiplatelet aggregation effects. r-EchAV significantly prolonged activated partial thromboplastin time, suggesting that it primarily affects the in vivo coagulation pathway. Flow cytometry results indicated that r-EchAV could effectively bind to the platelet αIIbß3 receptor, indicating that r-EchAV retains echistatin's receptor-recognition region. In vivo experiments in mice disclosed that r-EchAV significantly prolongs bleeding time, indicating a significant anticoagulant effect in vivo resulting from the joint binding of r-EchAV to both PS and the αIIbß3 receptor. We also report optimization of the r-EchAV production steps and its purification for high purity and yield. Our findings indicate that r-EchAV retains the active structural regions of echistatin and annexin V and that the whole molecule exhibits multitarget-binding ability arising from the dual functions of echistatin and annexin V. Therefore, r-EchAV represents a new class of anticoagulant that specifically targets the anionic membrane-associated coagulation enzyme complexes at thrombogenesis sites and may be a potentially useful antithrombotic agent.


Subject(s)
Annexin A5/metabolism , Blood Coagulation/drug effects , Intercellular Signaling Peptides and Proteins/metabolism , Phosphatidylserines/metabolism , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Recombinant Fusion Proteins/metabolism , Thrombosis/prevention & control , Animals , Escherichia coli/genetics , Humans , Male , Mice , Phosphatidylserines/pharmacology , Platelet Aggregation/drug effects , Protein Binding , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/pharmacology
20.
J Biol Chem ; 293(43): 16862-16873, 2018 10 26.
Article in English | MEDLINE | ID: mdl-30194283

ABSTRACT

l- to d-residue isomerization is a post-translational modification (PTM) present in neuropeptides, peptide hormones, and peptide toxins from several animals. In most cases, the d-residue is critical for the biological function of the resulting d-amino acid-containing peptide (DAACP). Here, we provide an example in native neuropeptides in which the DAACP and its all-l-amino acid epimer are both active at their newly identified receptor in vitro and at a neuronal target associated with feeding behavior. On the basis of sequence similarity to a known DAACP from cone snail venom, we hypothesized that allatotropin-related peptide (ATRP), a neuropeptide from the neuroscience model organism Aplysia californica, may form multiple diastereomers in the Aplysia central nervous system. We determined that ATRP exists as a d-amino acid-containing peptide (d2-ATRP) and identified a specific G protein-coupled receptor as an ATRP receptor. Interestingly, unlike many previously reported DAACPs and their all-l-residue analogs, both l-ATRP and d2-ATRP were potent agonists of this receptor and active in electrophysiological experiments. Finally, d2-ATRP was much more stable than its all-l-residue counterpart in Aplysia plasma, suggesting that in the case of ATRP, the primary role of the l- to d-residue isomerization may be to protect this peptide from aminopeptidase activity in the extracellular space. Our results indicate that l- to d-residue isomerization can occur even in an all-l-residue peptide with a known biological activity and that in some cases, this PTM may help modulate peptide signal lifetime in the extracellular space rather than activity at the cognate receptor.


Subject(s)
Amino Acids/metabolism , Aplysia/physiology , Insect Hormones/metabolism , Neurons/metabolism , Neuropeptides/metabolism , Peptide Fragments/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Neurons/cytology , Protein Processing, Post-Translational , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL