Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Article in Zh | WPRIM | ID: wpr-1039034

ABSTRACT

The pathogenesis of osteoarthritis (OA) is related to a variety of factors such as mechanical overload, metabolic dysfunction, aging, etc., and is a group of total joint diseases characterized by intra-articular chondrocyte apoptosis, cartilage fibrillations, synovial inflammation, and osteophyte formation. At present, the treatment methods for osteoarthritis include glucosamine, non-steroidal anti-inflammatory drugs, intra-articular injection of sodium hyaluronate, etc., which are difficult to take effect in a short period of time and require long-term treatment, so the patients struggle to adhere to doctor’s advice. Some methods can only provide temporary relief without chondrocyte protection, and some even increase the risk of cardiovascular disease and gastrointestinal disease. In the advanced stages of OA, patients often have to undergo joint replacement surgery due to pain and joint dysfunction. Mitochondrial dysfunction plays an important role in the development of OA. It is possible to improve mitochondrial biogenesis, quality control, autophagy balance, and oxidative stress levels, thereby exerting a protective effect on chondrocytes in OA. Therefore, compared to traditional treatments, improving mitochondrial function may be a potential treatment for OA. Here, we collected relevant literature on mitochondrial research in OA in recent years, summarized the potential pathogenic factors that affect the development of OA through mitochondrial pathways, and elaborated on relevant treatment methods, in order to provide new diagnostic and therapeutic ideas for the research field of osteoarthritis.

2.
Article in Zh | WPRIM | ID: wpr-774533

ABSTRACT

To determine the plasma protein binding rate of the nine compounds in Inula cappa extraction by the method of equilibrium dialysis. The proteins in plasma samples were precipitated by methanol, and the ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) was developed for determination of the concentrations of the nine active compounds, namely chlorogenic acid, scopolin, neochlorogenic acid, cryptochlorogenic acid, 1,3-O-dicaffeoylquinic acid, galuteolin, 3,4-O-dicaffeoylquinic acid, 3,5-O-dicaffeoylquinic acid, 4,5-O-dicaffeoylquinic acid, with the internal standard of puerarin. We found that all components have a good linearity(r≥0.999), and accuracy, precision, extraction recovery and stability conformed to the requirements of determination, without endogenous compounds disturbing within the range of optimum concentration. This suggested that the method was stable and reliable, and could be used for the determination of the plasma protein binding rates of the nine active compounds in rat and human plasma of I. cappa. The plasma protein binding rates of the nine active compounds in rat and human plasma respectively were(41.07±0.046)%-(94.95±0.008)%, and(37.66±0.043)%-(97.46±0.013)%. According to the results, there were differences in the plasma protein binding rates of the nine compounds in I. cappa extraction between rat and human.


Subject(s)
Animals , Humans , Rats , Blood Proteins , Metabolism , Chromatography, High Pressure Liquid , Inula , Chemistry , Phytochemicals , Metabolism , Plant Extracts , Metabolism , Protein Binding , Reproducibility of Results , Tandem Mass Spectrometry
3.
Article in Zh | WPRIM | ID: wpr-771693

ABSTRACT

To investigate the absorptive characteristics of Inula cappa extract based on the rat everted intestinal sac method . Nine representative ingredients in I. cappa extract were selected as the study objects. An UPLC-MS/MS method was established to determine and detect their cumulative absorption amount for expounding the absorptive characteristics of ingredients in different intestinal sections. According to the results, the transport mechanism of 8 compounds showed passive diffusion by the reverted gut sac method. And scopolin was actively transported in the intestine. The best absorption site of chlorogenic acid was duodenum. The best absorption site of cryptochlorogenic acid, 1,3--dicaffeoylquinic acid, luteolin-7-glucoside and 3,4--dicaffeoylquinic acid were jejunum. The best absorption site of neochlorogenic acid, scopolin, 4,5--dicaffeoylquinic acid and 3,5--dicaffeoylquinic acid was ileum. The absorption of all the compounds was affected by pH and bile. All of the nine ingredients in I. cappa extract could be absorbed in intestines, but with differences in the absorption rate, the best absorptive site and mechanism, indicating that the intestinal absorption of I. cappa extract was selective.


Subject(s)
Animals , Rats , Chromatography, High Pressure Liquid , Intestinal Absorption , Intestines , Inula , Chemistry , Plant Extracts , Pharmacology , Rats, Sprague-Dawley , Tandem Mass Spectrometry
4.
Article in Zh | WPRIM | ID: wpr-335815

ABSTRACT

To investigate the metabolism of major components in Inula cappa by rat intestinal bacteria in vitro. I. cappa extract was incubated for 24 h with rat intestinal bacteria under anaerobic environment. After the samples were precipitated by n-butanol, UPLC-Q-TOF-MS/MS was applied for the qualitative analysis of the metabolites, combined with data software such as Metabolite Tools, Data Analysis and so on. The potential metabolites in rat intestinal bacteria were analyzed by comparing the total ion current of the test samples and blank samples and analyzing the quasi-molecular ion and fragment ion of all chromatograms. The results injected that fourteen metabolites were detected in rat intestinal flora. Various types of metabolic reactions happen to caffeoylquinic acid in intestinal flora, including isomerization, hydrolyzation, there were also methylation, hydrogenation and acetylation of caffeic acid. At the same time, a methylate of dicaffeoylquinic acid was also detected. Presumably, caffeoylquinic acids were gradually transformed into more hydrophobic metabolites with smaller molecular mass, which were better absorbed by the intestinal tract.

SELECTION OF CITATIONS
SEARCH DETAIL