Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
J Neurogenet ; 37(1-2): 10-19, 2023.
Article in English | MEDLINE | ID: mdl-36000467

ABSTRACT

Tau is a microtubule-associated protein that forms insoluble filaments that accumulate as neurofibrillary tangles in neurodegenerative diseases such as Alzheimer's disease and other related tauopathies. A relationship between abnormal Tau accumulation and ubiquitin-proteasome system impairment has been reported. However, the molecular mechanism linking Tau accumulation and ubiquitin proteasome system (UPS) dysfunction remains unclear. Here, we show that overexpression of wild-type or mutant (P301L) Tau increases the abundance of polyubiquitinated proteins and activates the autophagy-lysosome pathway in mammalian neuronal cells. Previous studies found that PTK2 inhibition mitigates toxicity induced by UPS impairment. Thus, we investigated whether PTK2 inhibition can attenuate Tau-induced UPS impairment and cell toxicity. We found that PTK2 inhibition significantly reduces Tau-induced death in mammalian neuronal cells. Moreover, overexpression of WT or mutant Tau increased the phosphorylation levels of PTK2 and p62. We also confirmed that PTK2 inhibition suppresses Tau-induced phosphorylation of PTK2 and p62. Furthermore, PTK2 inhibition significantly attenuated the climbing defect and shortened the lifespan in the Drosophila model of tauopathy. In addition, we observed that phosphorylation of p62 is markedly increased in Alzheimer's disease patients with tauopathies. Taken together, our results indicate that the UPS dysfunction induced by Tau accumulation might contribute directly to neurodegeneration in tauopathies and that PTK2 could be a promising therapeutic target for tauopathies.


Subject(s)
Alzheimer Disease , Tauopathies , Animals , Alzheimer Disease/metabolism , tau Proteins/metabolism , Phosphorylation , Proteasome Endopeptidase Complex/metabolism , Tauopathies/metabolism , Ubiquitins/metabolism , Mammals/metabolism
2.
J Biol Chem ; 295(50): 16906-16919, 2020 12 11.
Article in English | MEDLINE | ID: mdl-33060198

ABSTRACT

Kinases are critical components of intracellular signaling pathways and have been extensively investigated with regard to their roles in cancer. p21-activated kinase-1 (PAK1) is a serine/threonine kinase that has been previously implicated in numerous biological processes, such as cell migration, cell cycle progression, cell motility, invasion, and angiogenesis, in glioma and other cancers. However, the signaling network linked to PAK1 is not fully defined. We previously reported a large-scale yeast genetic interaction screen using toxicity as a readout to identify candidate PAK1 genetic interactions. En masse transformation of the PAK1 gene into 4,653 homozygous diploid Saccharomyces cerevisiae yeast deletion mutants identified ∼400 candidates that suppressed yeast toxicity. Here we selected 19 candidate PAK1 genetic interactions that had human orthologs and were expressed in glioma for further examination in mammalian cells, brain slice cultures, and orthotopic glioma models. RNAi and pharmacological inhibition of potential PAK1 interactors confirmed that DPP4, KIF11, mTOR, PKM2, SGPP1, TTK, and YWHAE regulate PAK1-induced cell migration and revealed the importance of genes related to the mitotic spindle, proteolysis, autophagy, and metabolism in PAK1-mediated glioma cell migration, drug resistance, and proliferation. AKT1 was further identified as a downstream mediator of the PAK1-TTK genetic interaction. Taken together, these data provide a global view of PAK1-mediated signal transduction pathways and point to potential new drug targets for glioma therapy.


Subject(s)
Cell Movement , Glioma/pathology , Saccharomyces cerevisiae/growth & development , Signal Transduction , Spindle Apparatus/genetics , p21-Activated Kinases/genetics , Animals , Cell Line , Cell Proliferation , Cell Survival , Disease Models, Animal , Epistasis, Genetic , Female , Glioma/genetics , Glioma/metabolism , Humans , Mice , Mice, Inbred C57BL , Mitosis , Protein Kinase Inhibitors/pharmacology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , p21-Activated Kinases/metabolism
3.
Genome Res ; 27(9): 1487-1500, 2017 09.
Article in English | MEDLINE | ID: mdl-28596290

ABSTRACT

To understand disease mechanisms, a large-scale analysis of human-yeast genetic interactions was performed. Of 1305 human disease genes assayed, 20 genes exhibited strong toxicity in yeast. Human-yeast genetic interactions were identified by en masse transformation of the human disease genes into a pool of 4653 homozygous diploid yeast deletion mutants with unique barcode sequences, followed by multiplexed barcode sequencing to identify yeast toxicity modifiers. Subsequent network analyses focusing on amyotrophic lateral sclerosis (ALS)-associated genes, such as optineurin (OPTN) and angiogenin (ANG), showed that the human orthologs of the yeast toxicity modifiers of these ALS genes are enriched for several biological processes, such as cell death, lipid metabolism, and molecular transport. When yeast genetic interaction partners held in common between human OPTN and ANG were validated in mammalian cells and zebrafish, MAP2K5 kinase emerged as a potential drug target for ALS therapy. The toxicity modifiers identified in this study may deepen our understanding of the pathogenic mechanisms of ALS and other devastating diseases.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , MAP Kinase Kinase 5/genetics , Ribonuclease, Pancreatic/genetics , Transcription Factor TFIIIA/genetics , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/therapy , Animals , Cell Cycle Proteins , Humans , Membrane Transport Proteins , Molecular Targeted Therapy , Mutant Proteins/genetics , Mutation/genetics , Protein Interaction Maps/genetics , Saccharomyces cerevisiae/genetics , Sequence Deletion/genetics , Zebrafish/genetics
4.
J Neuroinflammation ; 17(1): 299, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33054766

ABSTRACT

BACKGROUND: Cytoplasmic inclusions of transactive response DNA binding protein of 43 kDa (TDP-43) in neurons and astrocytes are a feature of some neurodegenerative diseases, such as frontotemporal lobar degeneration with TDP-43 (FTLD-TDP) and amyotrophic lateral sclerosis (ALS). However, the role of TDP-43 in astrocyte pathology remains largely unknown. METHODS: To investigate whether TDP-43 overexpression in primary astrocytes could induce inflammation, we transfected primary astrocytes with plasmids encoding Gfp or TDP-43-Gfp. The inflammatory response and upregulation of PTP1B in transfected cells were examined using quantitative RT-PCR and immunoblot analysis. Neurotoxicity was analysed in a transwell coculture system of primary cortical neurons with astrocytes and cultured neurons treated with astrocyte-conditioned medium (ACM). We also examined the lifespan, performed climbing assays and analysed immunohistochemical data in pan-glial TDP-43-expressing flies in the presence or absence of a Ptp61f RNAi transgene. RESULTS: PTP1B inhibition suppressed TDP-43-induced secretion of inflammatory cytokines (interleukin 1 beta (IL-1ß), interleukin 6 (IL-6) and tumour necrosis factor alpha (TNF-α)) in primary astrocytes. Using a neuron-astrocyte coculture system and astrocyte-conditioned media treatment, we demonstrated that PTP1B inhibition attenuated neuronal death and mitochondrial dysfunction caused by overexpression of TDP-43 in astrocytes. In addition, neuromuscular junction (NMJ) defects, a shortened lifespan, inflammation and climbing defects caused by pan-glial overexpression of TDP-43 were significantly rescued by downregulation of ptp61f (the Drosophila homologue of PTP1B) in flies. CONCLUSIONS: These results indicate that PTP1B inhibition mitigates the neuronal toxicity caused by TDP-43-induced inflammation in mammalian astrocytes and Drosophila glial cells.


Subject(s)
Astrocytes/metabolism , DNA-Binding Proteins/biosynthesis , Inflammation Mediators/metabolism , Nerve Degeneration/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 1/biosynthesis , Animals , Animals, Genetically Modified , Astrocytes/pathology , Cells, Cultured , DNA-Binding Proteins/genetics , Drosophila , Gene Expression , Inflammation Mediators/antagonists & inhibitors , Male , Mice , Mice, Inbred C57BL , Nerve Degeneration/genetics , Nerve Degeneration/pathology , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics
5.
Biochem Biophys Res Commun ; 513(4): 925-932, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31005259

ABSTRACT

The most prominent hallmarks of many neurodegenerative diseases are the accumulation of misfolded protein aggregates and the death of certain neuronal populations. Autophagy is the major intracellular mechanism that degrades protein aggregates and damaged cellular components. Many studies have reported that the dysfunction of autophagy is associated with several neurodegenerative diseases, such as Alzheimer's disease, amyotrophic lateral sclerosis (ALS), and Parkinson's disease. Here, we identified a novel mechanism of autophagy regulation. Inhibition of MEK5 reduced the level of p62 and increased the ratio of LC3-II to LC3-I, which is a marker for the activation of the autophagy-lysosome pathway (ALP). One of the most well-known regulators of the ALP is mTOR, and previous studies have reported that the major substrate of MEK5 is ERK5. However, we found that MEK5 modulates the autophagy-lysosome pathway in an mTOR- and ERK5-independent manner. Moreover, MEK5 inhibition alleviated the mislocalization of TDP-43 (an ALS-associated protein) and cell death in TDP-43-GFP-expressing neuronal cells. Taken together, these findings suggest that MEK5 is a novel autophagy modulator and that this kinase could be a therapeutic target for neurodegenerative diseases such as amyotrophic lateral sclerosis.


Subject(s)
Autophagy , DNA-Binding Proteins/toxicity , Lysosomes/metabolism , MAP Kinase Kinase 5/antagonists & inhibitors , Metabolic Networks and Pathways/physiology , Neurons/cytology , Animals , Humans , Microtubule-Associated Proteins/metabolism , Neurons/metabolism , RNA-Binding Proteins/metabolism , TOR Serine-Threonine Kinases/physiology
6.
Int J Mol Sci ; 20(3)2019 Jan 22.
Article in English | MEDLINE | ID: mdl-30678217

ABSTRACT

Chronic neuroinflammation is a common feature of the aged brain, and its association with the major neurodegenerative changes involved in cognitive impairment and motor dysfunction is well established. One of the most potent antiaging interventions tested so far is dietary restriction (DR), which extends the lifespan in various organisms. Microglia and astrocytes are two major types of glial cells involved in the regulation of neuroinflammation. Accumulating evidence suggests that the age-related proinflammatory activation of astrocytes and microglia is attenuated under DR. However, the molecular mechanisms underlying DR-mediated regulation of neuroinflammation are not well understood. Here, we review the current understanding of the effects of DR on neuroinflammation and suggest an underlying mechanistic link between DR and neuroinflammation that may provide novel insights into the role of DR in aging and age-associated brain disorders.


Subject(s)
Astrocytes/metabolism , Inflammation/metabolism , Microglia/metabolism , Animals , Astrocytes/immunology , Brain Diseases/immunology , Brain Diseases/metabolism , Caloric Restriction , Humans , Inflammation/immunology , Microglia/immunology
7.
J Neurosci ; 37(11): 2878-2894, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28193696

ABSTRACT

Orosomucoid (ORM) is an acute-phase protein that belongs to the immunocalin subfamily, a group of small-molecule-binding proteins with immunomodulatory functions. Little is known about the role of ORM proteins in the CNS. The aim of the present study was to investigate the brain expression of ORM and its role in neuroinflammation. Expression of Orm2, but not Orm1 or Orm3, was highly induced in the mouse brain after systemic injection of lipopolysaccharide (LPS). Plasma levels of ORM2 were also significantly higher in patients with cognitive impairment than in normal subjects. RT-PCR, Western blot, and immunofluorescence analyses revealed that astrocytes are the major cellular sources of ORM2 in the inflamed mouse brain. Recombinant ORM2 protein treatment decreased microglial production of proinflammatory mediators and reduced microglia-mediated neurotoxicity in vitro LPS-induced microglial activation, proinflammatory cytokines in hippocampus, and neuroinflammation-associated cognitive deficits also decreased as a result of intracerebroventricular injection of recombinant ORM2 protein in vivo Moreover, lentiviral shRNA-mediated Orm2 knockdown enhanced LPS-induced proinflammatory cytokine gene expression and microglial activation in the hippocampus. Mechanistically, ORM2 inhibited C-C chemokine ligand 4 (CCL4)-induced microglial migration and activation by blocking the interaction of CCL4 with C-C chemokine receptor type 5. Together, the results from our cultured glial cells, mouse neuroinflammation model, and patient studies suggest that ORM2 is a novel mediator of astrocyte-microglial interaction. We also report that ORM2 exerts anti-inflammatory effects by modulating microglial activation and migration during brain inflammation. ORM2 can be exploited therapeutically for the treatment of neuroinflammatory diseases.SIGNIFICANCE STATEMENT Neural cell interactions are important for brain physiology and pathology. Particularly, the interaction between non-neuronal cells plays a central role in regulating brain inflammation, which is closely linked to many brain disorders. Here, we newly identified orosomucoid-2 (ORM2) as an endogenous protein that mediates such non-neuronal glial cell interactions. Based on the critical role of astrocyte-derived ORM2 in modulating microglia-mediated neuroinflammation, ORM2 can be exploited for the diagnosis, prevention, or treatment of devastating brain disorders that have a strong neuroinflammatory component, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis.


Subject(s)
Brain/immunology , Brain/pathology , Encephalitis/immunology , Immunologic Factors/immunology , Microglia/immunology , Orosomucoid/immunology , Animals , Cytokines/immunology , Encephalitis/pathology , Humans , Male , Mice , Mice, Inbred C57BL , Microglia/pathology
8.
J Neurosci Res ; 96(3): 407-415, 2018 03.
Article in English | MEDLINE | ID: mdl-28843006

ABSTRACT

Optineurin (OPTN) is an autophagy receptor protein that has been implicated in glaucoma and amyotrophic lateral sclerosis. OPTN-mediated autophagy is a complex process involving many autophagy-regulating proteins. Autophagy plays a critical role in removing damaged organelles, intracellular pathogens, and protein aggregates to maintain cellular homeostasis. We identified Ypt1 as a novel interaction partner of OPTN by performing a large-scale yeast-human two-hybrid assay. Coimmunoprecipitation assay showed that OPTN interacted with Rab1, the mammalian homolog of yeast Ypt1, in N2a mouse neuroblastoma cell line. We confirmed this interaction by confocal microscopy showing intracellular colocalization of the two proteins. We observed that a zinc finger domain of OPTN is important for Rab1a binding. Rab1a activity is also required for the binding with OPTN. The role of the OPTN-Rab1a complex in neuronal autophagy was determined by measuring the translocation of microtubule-associated protein light chain 3-EGFP to autophagosomes. In N2a cells, OPTN-induced autophagosome formation was inhibited by Rab1a knockdown, indicating the important role of OPTN-Rab1a interaction in neuronal autophagy processes. Similarly, in N2a cells overexpressing Rab1a, serum starvation-induced formation of autophagosome was enhanced, while OPTN knockdown reduced the Rab1a-induced autophagy. These results show that the OPTN-Rab1a complex modulates autophagosome formation in neuroblastoma cells.


Subject(s)
Autophagosomes/metabolism , Eye Proteins/metabolism , Neuroblastoma/metabolism , rab1 GTP-Binding Proteins/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , Autophagy , Cell Cycle Proteins , Cell Line, Tumor , Eye Proteins/genetics , Glaucoma/genetics , Glaucoma/metabolism , Humans , Membrane Transport Proteins , Mice , NIH 3T3 Cells , Neuroblastoma/pathology , Protein Binding , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factor TFIIIA/genetics , Transcription Factor TFIIIA/metabolism , rab GTP-Binding Proteins/metabolism , rab1 GTP-Binding Proteins/genetics
9.
Dev Cell ; 57(6): 783-798.e8, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35320731

ABSTRACT

Fused in sarcoma (FUS) is a DNA/RNA-binding protein that is involved in DNA repair and RNA processing. FUS is associated with neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). However, the molecular mechanisms underlying FUS-mediated neurodegeneration are largely unknown. Here, using a Drosophila model, we showed that the overexpression of glutathione transferase omega 2 (GstO2) reduces cytoplasmic FUS aggregates and prevents neurodegenerative phenotypes, including neurotoxicity and mitochondrial dysfunction. We found a FUS glutathionylation site at the 447th cysteine residue in the RanBP2-type ZnF domain. The glutathionylation of FUS induces FUS aggregation by promoting phase separation. GstO2 reduced cytoplasmic FUS aggregation by deglutathionylation in Drosophila brains. Moreover, we demonstrated that the overexpression of human GSTO1, the homolog of Drosophila GstO2, attenuates FUS-induced neurotoxicity and cytoplasmic FUS accumulation in mouse neuronal cells. Thus, the modulation of FUS glutathionylation might be a promising therapeutic strategy for FUS-associated neurodegenerative diseases.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , Drosophila/metabolism , Mice , Mutation/genetics , RNA-Binding Protein FUS/chemistry , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/metabolism
10.
Exp Neurobiol ; 30(5): 341-355, 2021 Oct 31.
Article in English | MEDLINE | ID: mdl-34737239

ABSTRACT

Sirtuin 3 (SIRT3), a well-known mitochondrial deacetylase, is involved in mitochondrial function and metabolism under various stress conditions. In this study, we found that the expression of SIRT3 was markedly increased by oxidative stress in dopaminergic neuronal cells. In addition, SIRT3 overexpression enhanced mitochondrial activity in differentiated SH-SY5Y cells. We also showed that SIRT3 overexpression attenuated rotenoneor H2O2-induced toxicity in differentiated SH-SY5Y cells (human dopaminergic cell line). We further found that knockdown of SIRT3 enhanced rotenone- or H2O2-induced toxicity in differentiated SH-SY5Y cells. Moreover, overexpression of SIRT3 mitigated cell death caused by LPS/IFN-γ stimulation in astrocytes. We also found that the rotenone treatment increases the level of SIRT3 in Drosophila brain. We observed that downregulation of sirt2 (Drosophila homologue of SIRT3) significantly accelerated the rotenone-induced toxicity in flies. Taken together, these findings suggest that the overexpression of SIRT3 mitigates oxidative stress-induced cell death and mitochondrial dysfunction in dopaminergic neurons and astrocytes.

11.
Cells ; 10(3)2021 03 18.
Article in English | MEDLINE | ID: mdl-33803845

ABSTRACT

Transactive response DNA-binding protein 43 (TDP-43) is a ubiquitously expressed DNA/RNA-binding protein linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). TDP-43 has been implicated in numerous aspects of the mRNA life cycle, as well as in cell toxicity and neuroinflammation. In this study, we used the toxicity of the TDP-43 expression in Saccharomyces cerevisiae as an assay to identify TDP-43 genetic interactions. Specifically, we transformed human TDP-43 cDNAs of wild-type or disease-associated mutants (M337V and Q331K) en masse into 4653 homozygous diploid yeast deletion mutants and then used next-generation sequencing readouts of growth to identify yeast toxicity modifiers. Genetic interaction analysis provided a global view of TDP-43 pathways, some of which are known to be involved in cellular metabolic processes. Selected putative loci with the potential of genetic interactions with TDP-43 were assessed for associations with neurotoxicity and inflammatory activation of astrocytes. The pharmacological inhibition of succinate dehydrogenase flavoprotein subunit A (SDHA) and voltage-dependent anion-selective channel 3 (VDAC3) suppressed TDP-43-induced expression of proinflammatory cytokines in astrocytes, indicating the critical roles played by SDHA and VDAC3 in TDP-43 pathways during inflammatory activation of astrocytes and neuroinflammation. Thus, the findings of our TDP-43 genetic interaction screen provide a global landscape of TDP-43 pathways and may help improve our understanding of the roles of glia and neuroinflammation in ALS and FTD pathogenesis.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Astrocytes/metabolism , DNA-Binding Proteins/metabolism , Mutation/genetics , Amyotrophic Lateral Sclerosis/immunology , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Humans , Inflammation/metabolism , Neuroglia/metabolism
12.
Antioxidants (Basel) ; 11(1)2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35052586

ABSTRACT

TAR DNA-binding protein 43 (TDP-43) is a member of an evolutionarily conserved family of heterogeneous nuclear ribonucleoproteins that modulate multiple steps in RNA metabolic processes. Cytoplasmic aggregation of TDP-43 in affected neurons is a pathological hallmark of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Alzheimer's disease (AD), and limbic predominant age-related TDP-43 encephalopathy (LATE). Mislocalized and accumulated TDP-43 in the cytoplasm induces mitochondrial dysfunction and reactive oxidative species (ROS) production. Here, we show that TDP-43- and rotenone-induced neurotoxicity in the human neuronal cell line SH-SY5Y were attenuated by hydroxocobalamin (Hb, vitamin B12 analog) treatment. Although Hb did not affect the cytoplasmic accumulation of TDP-43, Hb attenuated TDP-43-induced toxicity by reducing oxidative stress and mitochondrial dysfunction. Moreover, a shortened lifespan and motility defects in TDP-43-expressing Drosophila were significantly mitigated by dietary treatment with hydroxocobalamin. Taken together, these findings suggest that oral intake of hydroxocobalamin may be a potential therapeutic intervention for TDP-43-associated proteinopathies.

13.
Front Pharmacol ; 12: 747975, 2021.
Article in English | MEDLINE | ID: mdl-34925009

ABSTRACT

The autophagy-lysosomal pathway is an essential cellular mechanism that degrades aggregated proteins and damaged cellular components to maintain cellular homeostasis. Here, we identified HEXA-018, a novel compound containing a catechol derivative structure, as a novel inducer of autophagy. HEXA-018 increased the LC3-I/II ratio, which indicates activation of autophagy. Consistent with this result, HEXA-018 effectively increased the numbers of autophagosomes and autolysosomes in neuronal cells. We also found that the activation of autophagy by HEXA-018 is mediated by the AMPK-ULK1 pathway in an mTOR-independent manner. We further showed that ubiquitin proteasome system impairment- or oxidative stress-induced neurotoxicity was significantly reduced by HEXA-018 treatment. Moreover, oxidative stress-induced mitochondrial dysfunction was strongly ameliorated by HEXA-018 treatment. In addition, we investigated the efficacy of HEXA-018 in models of TDP-43 proteinopathy. HEXA-018 treatment mitigated TDP-43 toxicity in cultured neuronal cell lines and Drosophila. Our data indicate that HEXA-018 could be a new drug candidate for TDP-43-associated neurodegenerative diseases.

14.
Front Cell Dev Biol ; 8: 548283, 2020.
Article in English | MEDLINE | ID: mdl-33262983

ABSTRACT

The abnormal accumulation of alpha-synuclein (α-syn) aggregates in neurons and glial cells is widely known to be associated with many neurodegenerative diseases, including Parkinson's disease (PD), Dementia with Lewy bodies (DLB), and Multiple system atrophy (MSA). Mitochondrial dysfunction in neurons and glia is known as a key feature of α-syn toxicity. Studies aimed at understanding α-syn-induced toxicity and its role in neurodegenerative diseases have primarily focused on neurons. However, a growing body of evidence demonstrates that glial cells such as microglia and astrocytes have been implicated in the initial pathogenesis and the progression of α-Synucleinopathy. Glial cells are important for supporting neuronal survival, synaptic functions, and local immunity. Furthermore, recent studies highlight the role of mitochondrial metabolism in the normal function of glial cells. In this work, we review the complex relationship between glial mitochondria and α-syn-mediated neurodegeneration, which may provide novel insights into the roles of glial cells in α-syn-associated neurodegenerative diseases.

15.
Exp Mol Med ; 52(10): 1652-1662, 2020 10.
Article in English | MEDLINE | ID: mdl-33051572

ABSTRACT

TAR DNA-binding protein 43 (TDP-43) is a highly conserved nuclear RNA/DNA-binding protein involved in the regulation of RNA processing. The accumulation of TDP-43 aggregates in the central nervous system is a common feature of many neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Alzheimer's disease (AD), and limbic predominant age-related TDP-43 encephalopathy (LATE). Accumulating evidence suggests that prion-like spreading of aberrant protein aggregates composed of tau, amyloid-ß, and α-synuclein is involved in the progression of neurodegenerative diseases such as AD and PD. Similar to those of prion-like proteins, pathological aggregates of TDP-43 can be transferred from cell-to-cell in a seed-dependent and self-templating manner. Here, we review clinical and experimental studies supporting the prion-like spreading of misfolded TDP-43 and discuss the molecular mechanisms underlying the propagation of these pathological aggregated proteins. The idea that misfolded TDP-43 spreads in a prion-like manner between cells may guide novel therapeutic strategies for TDP-43-associated neurodegenerative diseases.


Subject(s)
DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Disease Susceptibility , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/metabolism , Animals , DNA-Binding Proteins/chemistry , Gene Expression Regulation , Humans , Protein Aggregation, Pathological , Protein Binding , Structure-Activity Relationship
16.
Front Cell Dev Biol ; 8: 581942, 2020.
Article in English | MEDLINE | ID: mdl-33282865

ABSTRACT

Transactive response DNA-binding protein 43 (TDP-43)-induced neurotoxicity is currently well recognized as a contributor to the pathology of amyotrophic lateral sclerosis (ALS), and the deposition of TDP-43 has been linked to other neurodegenerative diseases, such as frontotemporal lobar degeneration (FTLD) and Alzheimer's disease (AD). Recent studies also suggest that TDP-43-induced neurotoxicity is associated with ubiquitin-proteasome system (UPS) impairment. Histone deacetylase 6 (HDAC6) is a well-known cytosolic deacetylase enzyme that suppresses the toxicity of UPS impairment. However, the role of HDAC6 in TDP-43-induced neurodegeneration is largely unknown. In this study, we found that HDAC6 overexpression decreased the levels of insoluble and cytosolic TDP-43 protein in TDP-43-overexpressing N2a cells. In addition, TDP-43 overexpression upregulated HDAC6 protein and mRNA levels, and knockdown of Hdac6 elevated the total protein level of TDP-43. We further found that HDAC6 modulates TDP-43-induced UPS impairment via the autophagy-lysosome pathway (ALP). We also showed that TDP-43 promoted a short lifespan in flies and that the accumulation of ubiquitin aggregates and climbing defects were significantly rescued by overexpression of HDAC6 in flies. Taken together, these findings suggest that HDAC6 overexpression can mitigate neuronal toxicity caused by TDP-43-induced UPS impairment, which may represent a novel therapeutic approach for ALS.

17.
Cells ; 9(5)2020 05 07.
Article in English | MEDLINE | ID: mdl-32392905

ABSTRACT

Kinases are critical intracellular signaling proteins. To better understand kinase-mediated signal transduction, a large-scale human-yeast genetic interaction screen was performed. Among 597 human kinase genes tested, 28 displayed strong toxicity in yeast when overexpressed. En masse transformation of these toxic kinase genes into 4653 homozygous diploid yeast deletion mutants followed by barcode sequencing identified yeast toxicity modifiers and thus their human orthologs. Subsequent network analyses and functional grouping revealed that the 28 kinases and their 676 interaction partners (corresponding to a total of 969 genetic interactions) are enriched in cell death and survival (34%), small-molecule biochemistry (18%) and molecular transport (11%), among others. In the subnetwork analyses, a few kinases were commonly associated with glioma, cell migration and cell death/survival. Our analysis enabled the creation of a first draft of the kinase genetic interactome network and identified multiple drug targets for inflammatory diseases and cancer, in which deregulated kinase signaling plays a pathogenic role.


Subject(s)
Epistasis, Genetic , Protein Serine-Threonine Kinases/genetics , Proteome/genetics , Saccharomyces cerevisiae/genetics , Gene Ontology , Gene Regulatory Networks , Humans , Protein Serine-Threonine Kinases/metabolism , Proteome/metabolism
18.
Autophagy ; 16(8): 1396-1412, 2020 08.
Article in English | MEDLINE | ID: mdl-31690171

ABSTRACT

TARDBP/TDP-43 (TAR DNA binding protein) proteinopathies are a common feature in a variety of neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), and Alzheimer disease (AD). However, the molecular mechanisms underlying TARDBP-induced neurotoxicity are largely unknown. In this study, we demonstrated that TARDBP proteinopathies induce impairment in the ubiquitin proteasome system (UPS), as evidenced by an accumulation of ubiquitinated proteins and a reduction in proteasome activity in neuronal cells. Through kinase inhibitor screening, we identified PTK2/FAK (PTK2 protein tyrosine kinase 2) as a suppressor of neurotoxicity induced by UPS impairment. Importantly, PTK2 inhibition significantly reduced ubiquitin aggregates and attenuated TARDBP-induced cytotoxicity in a Drosophila model of TARDBP proteinopathies. We further identified that phosphorylation of SQSTM1/p62 (sequestosome 1) at S403 (p-SQSTM1 [S403]), a key component in the autophagic degradation of poly-ubiquitinated proteins, is increased upon TARDBP overexpression and is dependent on the activation of PTK2 in neuronal cells. Moreover, expressing a non-phosphorylated form of SQSTM1 (SQSTM1S403A) significantly repressed the accumulation of insoluble poly-ubiquitinated proteins and neurotoxicity induced by TARDBP overexpression in neuronal cells. In addition, TBK1 (TANK binding kinase 1), a kinase that phosphorylates S403 of SQSTM1, was found to be involved in the PTK2-mediated phosphorylation of SQSTM1. Taken together, our data suggest that the PTK2-TBK1-SQSTM1 axis plays a critical role in the pathogenesis of TARDBP by regulating neurotoxicity induced by UPS impairment. Therefore, targeting the PTK2-TBK1-SQSTM1 axis may represent a novel therapeutic intervention for neurodegenerative diseases with TARDBP proteinopathies.Abbreviations: ALP: macroautophagy/autophagy lysosomal pathway; ALS: amyotrophic lateral sclerosis; ATXN2: ataxin 2; BafA1: bafilomycin A1; cCASP3: cleaved caspase 3; CSNK2: casein kinase 2; FTLD: frontotemporal lobar degeneration; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; OPTN: optineurin; PTK2/FAK: PTK2 protein tyrosine kinase 2; SQSTM1/p62: sequestosome 1; TARDBP/TDP-43: TAR DNA binding protein; TBK1: TANK binding kinase 1; ULK1: unc-51 like autophagy activating kinase 1; UPS: ubiquitin-proteasome system.


Subject(s)
Focal Adhesion Kinase 1/metabolism , Sequestosome-1 Protein/metabolism , TDP-43 Proteinopathies/metabolism , Unfolded Protein Response , Animals , Autophagy/drug effects , Behavior, Animal/drug effects , DNA-Binding Proteins/metabolism , Down-Regulation/drug effects , Drosophila melanogaster/metabolism , Focal Adhesion Kinase 1/antagonists & inhibitors , Focal Adhesion Kinase 1/genetics , Mice , Models, Biological , Mutation/genetics , Neurotoxins/toxicity , Phosphorylation/drug effects , Phosphoserine/metabolism , Protein Serine-Threonine Kinases/metabolism , Solubility , Ubiquitinated Proteins/metabolism , Unfolded Protein Response/drug effects
19.
Neuroscientist ; 25(3): 227-240, 2019 06.
Article in English | MEDLINE | ID: mdl-29931997

ABSTRACT

Microglia-astrocyte crosstalk has recently been at the forefront of glial research. Emerging evidence illustrates that microglia- and astrocyte-derived signals are the functional determinants for the fates of astrocytes and microglia, respectively. By releasing diverse signaling molecules, both microglia and astrocytes establish autocrine feedback and their bidirectional conversation for a tight reciprocal modulation during central nervous system (CNS) insult or injury. Microglia, the constant sensors of changes in the CNS microenvironment and restorers of tissue homeostasis, not only serve as the primary immune cells of the CNS but also regulate the innate immune functions of astrocytes. Similarly, microglia determine the functions of reactive astrocytes, ranging from neuroprotective to neurotoxic. Conversely, astrocytes through their secreted molecules regulate microglial phenotypes and functions ranging from motility to phagocytosis. Altogether, the microglia-astrocyte crosstalk is fundamental to neuronal functions and dysfunctions. This review discusses the current understanding of the intimate molecular conversation between microglia and astrocytes and outlines its potential implications in CNS health and disease.


Subject(s)
Astrocytes/metabolism , Brain/metabolism , Cell Communication , Encephalitis/metabolism , Microglia/metabolism , Neurons/metabolism , Animals , Astrocytes/immunology , Cell Movement , Encephalitis/immunology , Humans , Immunity, Innate , Microglia/immunology , Neurons/immunology , Phagocytosis , Synaptic Transmission
20.
Neuropharmacology ; 109: 159-169, 2016 10.
Article in English | MEDLINE | ID: mdl-27288982

ABSTRACT

Neuroinflammation is a key process for many neurodegenerative diseases. Activated microglia and astrocytes play an essential role in neuroinflammation by producing nitric oxide (NO), inflammatory cytokines, chemokines, and neurotoxins. Therefore, targeting glia-mediated neuroinflammation using small-molecules is a potential therapeutic strategy. In this study, we performed a phenotypic screen using microglia cell-based assay to identify a hit compound containing N-carbamoylated urethane moiety (SNU-BP), which inhibits lipopolysaccharide (LPS)-induced NO production in microglia. SNU-BP inhibited pro-inflammatory cytokines and inducible nitric oxide synthase in LPS-stimulated microglia, and potentiated interleukin-4-induced arginase-1 expression. PPAR-γ was identified as a molecular target of SNU-BP. The PPAR response element reporter assay revealed that SNU-BP specifically activated PPAR-γ, but not PPAR-δ or -α, confirming that PPAR-γ is the target protein of SNU-BP. The anti-inflammatory effect of SNU-BP was attenuated by genetic and pharmacological inhibition of PPAR-γ. In addition, SNU-BP induced an anti-inflammatory phenotype in astrocytes as well, by inhibiting pro-inflammatory NO and TNF-α, while increasing anti-inflammatory genes, such as arginase-1 and Ym-1. Finally, SNU-BP exhibited an anti-inflammatory effect in the LPS-injected mouse brain, demonstrating a protective potential for neuroinflammatory diseases.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Inflammation Mediators/antagonists & inhibitors , Neuroglia/drug effects , PPAR gamma/agonists , Phenotype , Small Molecule Libraries/pharmacology , Animals , Cell Line , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Inflammation Mediators/physiology , Mice , Mice, Inbred C57BL , Neuroglia/physiology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL