Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Nat Immunol ; 19(11): 1257-1264, 2018 11.
Article in English | MEDLINE | ID: mdl-30323344

ABSTRACT

Recent studies have elucidated cell-lineage-specific three-dimensional genome organization; however, how such specific architecture is established or maintained is unclear. We hypothesized that lineage-defining transcription factors maintain cell identity via global control of genome organization. These factors bind many genomic sites outside of the genes that they directly regulate and thus are potentially implicated in three-dimensional genome organization. Using chromosome-conformation-capture techniques, we show that the transcription factor Paired box 5 (Pax5) is critical for the establishment and maintenance of the global lineage-specific architecture of B cells. Pax5 was found to supervise genome architecture throughout B cell differentiation, until the plasmablast stage, in which Pax5 is naturally silenced and B cell-specific genome structure is lost. Crucially, Pax5 did not rely on ongoing transcription to organize the genome. These results implicate sequence-specific DNA-binding proteins in global genome organization to establish and maintain lineage fidelity.


Subject(s)
B-Lymphocytes/cytology , Cell Differentiation/genetics , Cell Lineage/genetics , PAX5 Transcription Factor/genetics , Animals , B-Lymphocytes/metabolism , Male , Mice , Mice, Inbred C57BL , PAX5 Transcription Factor/metabolism
3.
Mol Cell ; 81(10): 2183-2200.e13, 2021 05 20.
Article in English | MEDLINE | ID: mdl-34019788

ABSTRACT

To separate causal effects of histone acetylation on chromatin accessibility and transcriptional output, we used integrated epigenomic and transcriptomic analyses following acute inhibition of major cellular lysine acetyltransferases P300 and CBP in hematological malignancies. We found that catalytic P300/CBP inhibition dynamically perturbs steady-state acetylation kinetics and suppresses oncogenic transcriptional networks in the absence of changes to chromatin accessibility. CRISPR-Cas9 screening identified NCOR1 and HDAC3 transcriptional co-repressors as the principal antagonists of P300/CBP by counteracting acetylation turnover kinetics. Finally, deacetylation of H3K27 provides nucleation sites for reciprocal methylation switching, a feature that can be exploited therapeutically by concomitant KDM6A and P300/CBP inhibition. Overall, this study indicates that the steady-state histone acetylation-methylation equilibrium functions as a molecular rheostat governing cellular transcription that is amenable to therapeutic exploitation as an anti-cancer regimen.


Subject(s)
Biocatalysis , Histones/metabolism , Oncogenes , Transcription, Genetic , p300-CBP Transcription Factors/metabolism , Acetylation , Cell Line , Chromatin/metabolism , Co-Repressor Proteins/metabolism , Conserved Sequence , Evolution, Molecular , Gene Regulatory Networks , Genome , Histone Deacetylases/metabolism , Humans , Kinetics , Methylation , Models, Biological , RNA Polymerase II/metabolism
4.
Genome Res ; 34(4): 556-571, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38719473

ABSTRACT

H3K9me3-dependent heterochromatin is critical for the silencing of repeat-rich pericentromeric regions and also has key roles in repressing lineage-inappropriate protein-coding genes in differentiation and development. Here, we investigate the molecular consequences of heterochromatin loss in cells deficient in both SUV39H1 and SUV39H2 (Suv39DKO), the major mammalian histone methyltransferase enzymes that catalyze heterochromatic H3K9me3 deposition. We reveal a paradoxical repression of protein-coding genes in Suv39DKO cells, with these differentially expressed genes principally in euchromatic (Tn5-accessible, H3K4me3- and H3K27ac-marked) rather than heterochromatic (H3K9me3-marked) or polycomb (H3K27me3-marked) regions. Examination of the three-dimensional (3D) nucleome reveals that transcriptomic dysregulation occurs in euchromatic regions close to the nuclear periphery in 3D space. Moreover, this transcriptomic dysregulation is highly correlated with altered 3D genome organization in Suv39DKO cells. Together, our results suggest that the nuclear lamina-tethering of Suv39-dependent H3K9me3 domains provides an essential scaffold to support euchromatic genome organization and the maintenance of gene transcription for healthy cellular function.


Subject(s)
Euchromatin , Heterochromatin , Histone-Lysine N-Methyltransferase , Histones , Methyltransferases , Repressor Proteins , Transcription, Genetic , Euchromatin/metabolism , Euchromatin/genetics , Histones/metabolism , Histones/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Heterochromatin/metabolism , Heterochromatin/genetics , Repressor Proteins/metabolism , Repressor Proteins/genetics , Animals , Mice , Humans , Gene Expression Regulation , Cell Line
5.
Nat Immunol ; 16(11): 1134-41, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26437240

ABSTRACT

To investigate if the microRNA (miRNA) pathway is required for dendritic cell (DC) development, we assessed the effect of ablating Drosha and Dicer, the two enzymes central to miRNA biogenesis. We found that while Dicer deficiency had some effect, Drosha deficiency completely halted DC development and halted myelopoiesis more generally. This indicated that while the miRNA pathway did have a role, it was a non-miRNA function of Drosha that was particularly critical. Drosha repressed the expression of two mRNAs encoding inhibitors of myelopoiesis in early hematopoietic progenitors. We found that Drosha directly cleaved stem-loop structure within these mRNAs and that this mRNA degradation was necessary for myelopoiesis. We have therefore identified a mechanism that regulates the development of DCs and other myeloid cells.


Subject(s)
Dendritic Cells/immunology , Dendritic Cells/metabolism , Myelopoiesis/immunology , RNA, Messenger/metabolism , Ribonuclease III/immunology , Animals , Base Sequence , Cell Differentiation/genetics , Cell Differentiation/immunology , DEAD-box RNA Helicases/deficiency , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/immunology , Dendritic Cells/cytology , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/immunology , Hematopoietic Stem Cells/metabolism , Inflammation/immunology , Inflammation/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/genetics , MicroRNAs/metabolism , Molecular Sequence Data , Myelopoiesis/genetics , Myosin Light Chains/antagonists & inhibitors , Myosin Light Chains/genetics , Myosin Light Chains/metabolism , Nucleic Acid Conformation , RNA, Messenger/chemistry , RNA, Messenger/genetics , Ribonuclease III/deficiency , Ribonuclease III/genetics
6.
Immunol Cell Biol ; 101(4): 345-357, 2023 04.
Article in English | MEDLINE | ID: mdl-36710659

ABSTRACT

The transcription factor Myc is critically important in driving cell proliferation, a function that is frequently dysregulated in cancer. To avoid this dysregulation Myc is tightly controlled by numerous layers of regulation. One such layer is the use of distal regulatory enhancers to drive Myc expression. Here, using chromosome conformation capture to examine B cells of the immune system in the first hours after their activation, we reveal a previously unidentified enhancer of Myc. The interactivity of this enhancer coincides with a dramatic, but discrete, spike in Myc expression 3 h post-activation. However, genetic deletion of this region, has little impact on Myc expression, Myc protein level or in vitro and in vivo cell proliferation. Examination of the enhancer deleted regulatory landscape suggests that enhancer redundancy likely sustains Myc expression. This work highlights not only the importance of temporally examining enhancers, but also the complexity and dynamics of the regulation of critical genes such as Myc.


Subject(s)
Enhancer Elements, Genetic , Genes, myc , Enhancer Elements, Genetic/genetics , Transcription Factors/metabolism , Gene Expression Regulation , Promoter Regions, Genetic
7.
Blood ; 135(23): 2049-2058, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32305044

ABSTRACT

Loss of heterochromatin has been proposed as a universal mechanism of aging across different species and cell types. However, a comprehensive analysis of hematopoietic changes caused by heterochromatin loss is lacking. Moreover, there is conflict in the literature around the role of the major heterochromatic histone methyltransferase Suv39h1 in the aging process. Here, we use individual and dual deletion of Suv39h1 and Suv39h2 enzymes to examine the causal role of heterochromatin loss in hematopoietic cell development. Loss of neither Suv39h1 nor Suv39h2 individually had any effect on hematopoietic stem cell function or the development of mature lymphoid or myeloid lineages. However, deletion of both enzymes resulted in characteristic changes associated with aging such as reduced hematopoietic stem cell function, thymic involution and decreased lymphoid output with a skewing toward myeloid development, and increased memory T cells at the expense of naive T cells. These cellular changes were accompanied by molecular changes consistent with aging, including alterations in nuclear shape and increased nucleolar size. Together, our results indicate that the hematopoietic system has a remarkable tolerance for major disruptions in chromatin structure and reveal a role for Suv39h2 in depositing sufficient H3K9me3 to protect the entire hematopoietic system from changes associated with premature aging.


Subject(s)
Aging, Premature/pathology , Cell Differentiation , Hematopoiesis , Hematopoietic Stem Cells/pathology , Heterochromatin/metabolism , Histone-Lysine N-Methyltransferase/physiology , Methyltransferases/physiology , Repressor Proteins/physiology , Aged , Aging, Premature/metabolism , Animals , Cell Nucleus/genetics , Female , Hematopoietic Stem Cells/metabolism , Heterochromatin/genetics , Humans , Male , Mice , Mice, Knockout , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/pathology
8.
Immunol Cell Biol ; 99(3): 323-332, 2021 03.
Article in English | MEDLINE | ID: mdl-32970351

ABSTRACT

The eukaryotic genome is three-dimensionally segregated into discrete globules of topologically associating domains (TADs), within which numerous cis-regulatory elements such as enhancers and promoters interact to regulate gene expression. In this study, we identify a T-cell-specific sub-TAD containing the Gata3 locus, and reveal a previously uncharacterized long noncoding RNA (Dreg1) within a distant enhancer lying approximately 280 kb downstream of Gata3. Dreg1 expression is highly correlated with that of Gata3 during early immune system development and T helper type 2 cell differentiation. Inhibition and overexpression of Dreg1 suggest that it may be involved in the establishment, but not in the maintenance of Gata3 expression. Overall, we propose that Dreg1 is a novel regulator of Gata3 and may inform therapeutic strategies in diseases such allergy and lymphoma, where Gata3 has a pathological role.


Subject(s)
RNA, Long Noncoding , Chromatin , Enhancer Elements, Genetic/genetics , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , Promoter Regions, Genetic , RNA, Long Noncoding/genetics
9.
PLoS Genet ; 14(6): e1007431, 2018 06.
Article in English | MEDLINE | ID: mdl-29883495

ABSTRACT

It has been proposed that interactions between mammalian chromosomes, or transchromosomal interactions (also known as kissing chromosomes), regulate gene expression and cell fate determination. Here we aimed to identify novel transchromosomal interactions in immune cells by high-resolution genome-wide chromosome conformation capture. Although we readily identified stable interactions in cis, and also between centromeres and telomeres on different chromosomes, surprisingly we identified no gene regulatory transchromosomal interactions in either mouse or human cells, including previously described interactions. We suggest that advances in the chromosome conformation capture technique and the unbiased nature of this approach allow more reliable capture of interactions between chromosomes than previous methods. Overall our findings suggest that stable transchromosomal interactions that regulate gene expression are not present in mammalian immune cells and that lineage identity is governed by cis, not trans chromosomal interactions.


Subject(s)
Chromosomes, Mammalian/genetics , Gene Expression Regulation , Immunity, Cellular/genetics , Mammals/physiology , Animals , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Chromosomes, Mammalian/chemistry , Chromosomes, Mammalian/metabolism , DNA/chemistry , DNA/genetics , DNA/metabolism , Flow Cytometry , Genome , Humans , Male , Mice , Mice, Inbred C57BL , Nucleic Acid Conformation , Stereoisomerism
10.
Biochem Soc Trans ; 48(3): 1109-1119, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32453419

ABSTRACT

The development of B lymphocytes into antibody-secreting plasma cells is central to the adaptive immune system in that it confers protective and specific antibody response against invading pathogen. This developmental process involves extensive morphological and functional alterations that begin early after antigenic stimulation. These include chromatin restructuring that is critical in regulating gene expression, DNA rearrangement and other cellular processes. Here we outline the recent understanding of the three-dimensional architecture of the genome, specifically focused on its contribution to the process of B cell activation and terminal differentiation into antibody-secreting cells.


Subject(s)
Antibodies/metabolism , B-Lymphocytes/metabolism , Genome , Plasma Cells/metabolism , Adaptive Immunity , Animals , Antibody Formation , Antibody-Producing Cells/cytology , Cell Differentiation , Cell Division , DNA/metabolism , Gene Expression Regulation , Humans , Lymphocyte Activation , Recombination, Genetic , Transcription, Genetic
11.
Dev Dyn ; 247(3): 521-530, 2018 03.
Article in English | MEDLINE | ID: mdl-28560804

ABSTRACT

BACKGROUND: Metastasis underlies most colorectal cancer mortality. Cancer cells spread through the body as single cells or small clusters of cells that have an invasive, mesenchymal, nonproliferative phenotype. At the secondary site, they revert to a proliferative "tumor constructing" epithelial phenotype to rebuild a tumor. We previously developed a unique in vitro three-dimensional model, called LIM1863-Mph, which faithfully recapitulates these reversible transitions that underpin colorectal cancer metastasis. Wnt signaling plays a key role in these transitions and is initiated by the coupling of extracellular Wnt to Frizzled (FZD). Using the LIM1863-Mph model system we demonstrated that the Wnt receptor FZD7 is necessary for mesenchymal to epithelial transition (MET). Here we investigate the role of Wnt in MET. RESULTS: Wnt secretion is dependent on palmitoylation by Porcupine (PORC). A PORC inhibitor (IWP2) that prevents Wnt secretion, blocked the epithelial transition of mesenchymal LIM1863-Mph cells. Wnt gene array analysis identified several Wnts that are upregulated in epithelial compared with mesenchymal LIM1863-Mph cells, suggesting these ligands in MET. Wnt2B was the most abundant differentially expressed Wnt gene. Indeed, recombinant Wnt2B could overcome the IWP2-mediated block in epithelial transition of mesenchymal LIM1863-Mph cells. CONCLUSIONS: Wnt2B co-operates with Frizzled7 to mediate MET in colorectal cancer. Developmental Dynamics 247:521-530, 2018. © 2017 Wiley Periodicals, Inc.


Subject(s)
Colorectal Neoplasms/pathology , Epithelial-Mesenchymal Transition , Frizzled Receptors/metabolism , Glycoproteins/metabolism , Wnt Proteins/metabolism , Wnt Signaling Pathway , Cell Line, Tumor , Colorectal Neoplasms/metabolism , Humans , Models, Biological , Wnt Proteins/physiology
12.
Immunol Cell Biol ; 93(5): 480-5, 2015.
Article in English | MEDLINE | ID: mdl-25533289

ABSTRACT

Dendritic cells (DCs) are sentinel cells of the immune system and are essential for inducing a proper immune response. The mechanisms driving the development of DCs are not fully understood. Although the roles of cytokines and transcription factors have been a major focus, there is now substantial interest in the role of microRNAs (miRNAs). miRNAs are small RNAs that regulate gene expression by targeting messenger RNAs for translational repression and ultimately degradation. By means of deep sequencing, we have assembled a comprehensive and quantitative resource of miRNA expression during DC development. We show that mature DCs and their hematopoietic progenitors can be distinguished based on miRNA expression profiles. On the other hand, we show that functionally distinct conventional and plasmacytoid DC subsets are indistinguishable based on miRNA profile. In addition, we identify differences between ex vivo purified conventional DCs and their in vitro Flt3L-generated counterparts. This miRNA expression atlas will provide a valuable resource for the study of miRNAs in DC development and function.


Subject(s)
Dendritic Cells/physiology , Hematopoietic Stem Cells/physiology , MicroRNAs/metabolism , Animals , Cell Differentiation , Cell Lineage , Cells, Cultured , Gene Expression Profiling , Hematopoiesis/genetics , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Multigene Family , Vascular Endothelial Growth Factor Receptor-3/metabolism
14.
Development ; 137(17): 2875-84, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20667914

ABSTRACT

An unresolved question regarding the RNA-recognition motif (RRM) protein Half pint (Hfp) has been whether its tumour suppressor behaviour occurs by a transcriptional mechanism or via effects on splicing. The data presented here demonstrate that Hfp achieves cell cycle inhibition via an essential role in the repression of Drosophila myc (dmyc) transcription. We demonstrate that regulation of dmyc requires interaction between the transcriptional repressor Hfp and the DNA helicase subunit of TFIIH, Haywire (Hay). In vivo studies show that Hfp binds to the dmyc promoter and that repression of dmyc transcription requires Hfp. In addition, loss of Hfp results in enhanced cell growth, which depends on the presence of dMyc. This is consistent with Hfp being essential for inhibition of dmyc transcription and cell growth. Further support for Hfp controlling dmyc transcriptionally comes from the demonstration that Hfp physically and genetically interacts with the XPB helicase component of the TFIIH transcription factor complex, Hay, which is required for normal levels of dmyc expression, cell growth and cell cycle progression. Together, these data demonstrate that Hfp is crucial for repression of dmyc, suggesting that a transcriptional, rather than splicing, mechanism underlies the regulation of dMyc and the tumour suppressor behaviour of Hfp.


Subject(s)
DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila/cytology , Drosophila/metabolism , Genes, Insect , Genes, myc , Guanine Nucleotide Exchange Factors/metabolism , Transcription Factor TFIIH/metabolism , Transcription Factors/genetics , 5' Untranslated Regions , Animals , Animals, Genetically Modified , Base Sequence , Cell Proliferation , DNA Helicases/metabolism , DNA Primers/genetics , Drosophila/genetics , Drosophila/growth & development , Drosophila Proteins/antagonists & inhibitors , Guanine Nucleotide Exchange Factors/antagonists & inhibitors , Guanine Nucleotide Exchange Factors/genetics , Models, Biological , Promoter Regions, Genetic , RNA Interference , S Phase , Signal Transduction , Transcription, Genetic , Wings, Animal/growth & development , Wings, Animal/metabolism
15.
Cell Genom ; 3(11): 100424, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38020976

ABSTRACT

Although lineage-specific genes have been identified in the mammary gland, little is known about the contribution of the 3D genome organization to gene regulation in the epithelium. Here, we describe the chromatin landscape of the three major epithelial subsets through integration of long- and short-range chromatin interactions, accessibility, histone modifications, and gene expression. While basal genes display exquisite lineage specificity via distal enhancers, luminal-specific genes show widespread promoter priming in basal cells. Cell specificity in luminal progenitors is largely mediated through extensive chromatin interactions with super-enhancers in gene-body regions in addition to interactions with polycomb silencer elements. Moreover, lineage-specific transcription factors appear to be controlled through cell-specific chromatin interactivity. Finally, chromatin accessibility rather than interactivity emerged as a defining feature of the activation of quiescent basal stem cells. This work provides a comprehensive resource for understanding the role of higher-order chromatin interactions in cell-fate specification and differentiation in the adult mouse mammary gland.

16.
Nat Commun ; 14(1): 5466, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37749075

ABSTRACT

The interplay between 3D chromatin architecture and gene silencing is incompletely understood. Here, we report a novel point mutation in the non-canonical SMC protein SMCHD1 that enhances its silencing capacity at endogenous developmental targets. Moreover, it also results in enhanced silencing at the facioscapulohumeral muscular dystrophy associated macrosatellite-array, D4Z4, resulting in enhanced repression of DUX4 encoded by this repeat. Heightened SMCHD1 silencing perturbs developmental Hox gene activation, causing a homeotic transformation in mice. Paradoxically, the mutant SMCHD1 appears to enhance insulation against other epigenetic regulators, including PRC2 and CTCF, while depleting long range chromatin interactions akin to what is observed in the absence of SMCHD1. These data suggest that SMCHD1's role in long range chromatin interactions is not directly linked to gene silencing or insulating the chromatin, refining the model for how the different levels of SMCHD1-mediated chromatin regulation interact to bring about gene silencing in normal development and disease.


Subject(s)
Chromatin , Chromosomal Proteins, Non-Histone , Muscular Dystrophy, Facioscapulohumeral , Animals , Mice , Chromatin/genetics , Epigenomics , Gene Silencing , Genes, Homeobox , Muscular Dystrophy, Facioscapulohumeral/genetics , Chromosomal Proteins, Non-Histone/genetics
17.
Methods Mol Biol ; 2458: 333-343, 2022.
Article in English | MEDLINE | ID: mdl-35103976

ABSTRACT

In situ HiC uses the relative frequency of DNA-DNA ligation events to reconstruct the three-dimensional architecture of a genome. As such, restriction enzyme digested ends of genomic DNA within fixed nuclei are tagged with biotinylated dNTPs. DNA-DNA ligation events generated via proximity ligation are then captured, amplified and next generation sequenced to determine their linear genomic position, but also their three-dimensional relationship. Here, we describe these steps in detail.


Subject(s)
DNA , Genome , Cell Nucleus , Chromatin , DNA/genetics , Genomics
18.
Nat Commun ; 13(1): 5582, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36151095

ABSTRACT

Stably silenced genes that display a high level of CpG dinucleotide methylation are refractory to the current generation of dCas9-based activation systems. To counter this, we create an improved activation system by coupling the catalytic domain of DNA demethylating enzyme TET1 with transcriptional activators (TETact). We show that TETact demethylation-coupled activation is able to induce transcription of suppressed genes, both individually and simultaneously in cells, and has utility across a number of cell types. Furthermore, we show that TETact can effectively reactivate embryonic haemoglobin genes in non-erythroid cells. We anticipate that TETact will expand the existing CRISPR toolbox and be valuable for functional studies, genetic screens and potential therapeutics.


Subject(s)
CRISPR-Cas Systems , DNA Methylation , Clustered Regularly Interspaced Short Palindromic Repeats , Epigenesis, Genetic , Promoter Regions, Genetic/genetics , Transcription Factors/metabolism , Transcriptional Activation
19.
Cell Death Discov ; 8(1): 455, 2022 Nov 12.
Article in English | MEDLINE | ID: mdl-36371343

ABSTRACT

The Drosophila ovary is regenerated from germline and somatic stem cell populations that have provided fundamental conceptual understanding on how adult stem cells are regulated within their niches. Recent ovarian transcriptomic studies have failed to identify mRNAs that are specific to follicle stem cells (FSCs), suggesting that their fate may be regulated post-transcriptionally. We have identified that the RNA-binding protein, Musashi (Msi) is required for maintaining the stem cell state of FSCs. Loss of msi function results in stem cell loss, due to a change in differentiation state, indicated by upregulation of Lamin C in the stem cell population. In msi mutant ovaries, Lamin C upregulation was also observed in posterior escort cells that interact with newly formed germ cell cysts. Mutant somatic cells within this region were dysfunctional, as evidenced by the presence of germline cyst collisions, fused egg chambers and an increase in germ cell cyst apoptosis. The msi locus produces two classes of mRNAs (long and short). We show that FSC maintenance and escort cell function specifically requires the long transcripts, thus providing the first evidence of isoform-specific regulation in a population of Drosophila epithelial cells. We further demonstrate that although male germline stem cells have previously been shown to require Msi function to prevent differentiation this is not the case for female germline stem cells, indicating that these similar stem cell types have different requirements for Msi, in addition to the differential use of Msi isoforms between soma and germline. In summary, we show that different isoforms of the Msi RNA-binding protein are expressed in specific cell populations of the ovarian stem cell niche where Msi regulates stem cell differentiation, niche cell function and subsequent germ cell survival and differentiation.

20.
Front Immunol ; 12: 754200, 2021.
Article in English | MEDLINE | ID: mdl-34975842

ABSTRACT

In the two decades since the invention of laser-based super resolution microscopy this family of technologies has revolutionised the way life is viewed and understood. Its unparalleled resolution, speed, and accessibility makes super resolution imaging particularly useful in examining the highly complex and dynamic immune system. Here we introduce the super resolution technologies and studies that have already fundamentally changed our understanding of a number of central immunological processes and highlight other immunological puzzles only addressable in super resolution.


Subject(s)
Immunologic Techniques/instrumentation , Microscopy, Confocal/methods , Single Molecule Imaging/methods , Animals , Cell Lineage , Equipment Design , Fluorescence Recovery After Photobleaching , Humans , Immune System/cytology , Microscopy, Confocal/instrumentation , Microscopy, Fluorescence/instrumentation , Microscopy, Fluorescence/methods , Receptors, Antigen/ultrastructure , Receptors, Immunologic/ultrastructure , Single Molecule Imaging/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL