Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
Add more filters

Publication year range
1.
Kidney Int ; 105(6): 1159-1161, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777399

ABSTRACT

Measurement of glomerular filtration rate (GFR) is crucial in assessing kidney function status. Estimating GFR using clearance methodologies is cumbersome, as plasma and urinary concentrations and timed urine collections are required. Recently, a transcutaneous sensor has been developed whereby the rate of renal washout of a fluorescent marker administered intravenously allows calculation of GFR. The challenge is to ensure that the values of GFR obtained using the washout approach are in accord with those obtained conventionally.


Subject(s)
Glomerular Filtration Rate , Humans , Fluorescent Dyes/administration & dosage , Kidney/physiopathology , Kidney/physiology , Kidney Function Tests/methods , Kidney Function Tests/standards
2.
Exp Physiol ; 108(2): 268-279, 2023 02.
Article in English | MEDLINE | ID: mdl-36454195

ABSTRACT

NEW FINDINGS: What is the central question of this study? Are renal functional responses to intrarenal angiotensin 1-7 (Ang (1-7)) infusion dependent on the level of the endogenous renin-angiotensin system (RAS) in the two-kidney one-clip (2K1C) and deoxycorticosterone acetate (DOCA)-salt animal models of hypertension? What is the main finding and its importance? The renal actions of Ang (1-7) are dependent on the relative endogenous levels of each arm of the classical angiotensin II-angiotensin II type 1 receptor (AT1 R) axis and those of the Ang (1-7)-Mas receptor axis. These findings support the hypothesis that a balance exists between the intrarenal classical and novel arms of the RAS, and in particular the relative abundance of AT1 R to Mas receptor, which may to a large extent determine the renal excretory response to Ang (1-7) infusion. ABSTRACT: This study investigated the action of angiotensin 1-7 (Ang (1-7)) on renal haemodynamic and excretory function in the two-kidney one-clip (2K1C) and deoxycorticosterone acetate (DOCA)-salt rat models of hypertension, in which the endogenous renin-angiotensin system (RAS) activity was likely to be raised or lowered, respectively. Rats were anaesthetised and prepared for the measurement of mean arterial pressure and kidney function during renal interstitial infusion of Ang (1-7) or saline. Kidney tissue concentrations of angiotensin II (Ang II) and Ang (1-7) were determined. Intrarenal infusion of Ang (1-7) into the clipped kidney of 2K1C rats increased urine flow (UV), absolute (UNa V) and fractional sodium (FENa ) excretions by 110%, 214% and 147%, respectively. Renal Ang II concentrations of the clipped kidney were increased with no major changes in Ang (1-7) concentration. By contrast, Ang (1-7) infusion decreased UV, UNa V, and FENa by 27%, 24% and 21%, respectively in the non-clipped kidney in which tissue Ang (1-7) concentrations were increased, but renal Ang II concentrations were unchanged compared to sham animals. Ang (1-7) infusion in DOCA-salt rats had minimal effects on glomerular filtration rate but significantly decreased UV, UNa V and FENa by ∼30%. Renal Ang (1-7) concentrations were higher and Ang II concentrations were lower in DOCA-salt rats compared to sham rats. These findings demonstrate that the intrarenal infusion of exogenous Ang (1-7) elicits different renal excretory responses the magnitude of which is dependent on the balance between the endogenous renal Ang II-AT1 receptor axis and Ang (1-7)-Mas receptor axis.


Subject(s)
Desoxycorticosterone Acetate , Hypertension , Rats , Animals , Angiotensin II/pharmacology , Angiotensin II/physiology , Desoxycorticosterone Acetate/pharmacology , Kidney , Hypertension/chemically induced , Hemodynamics , Acetates/pharmacology
3.
Clin Exp Pharmacol Physiol ; 48(4): 585-596, 2021 04.
Article in English | MEDLINE | ID: mdl-33352624

ABSTRACT

This study examined the effect of leptin and orexin-A on autonomic baroreflex control in conscious Wistar rats exposed to high-fat (45% fat) or normal (3.4%) diet for 4 weeks. Renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP) and heart rate (HR) were monitored during the generation of baroreflex gain curves and acute volume expansion (VEP). Intracerebroventricular (ICV) leptin (1 µg/min) increased RSNA in the normal diet group (0.31 ± 0.04 vs 0.23 ± 0.03 mV/s) and MAP in the high-fat diet group (115 ± 5 vs 105 ± 5 mm Hg, P < .05). Orexin-A (50 ng/min) increased RSNA, HR and MAP in the high-fat diet group (0.26 ± 0.03 vs 0.22 ± 0.02 mV/s, 454 ± 8 vs 417 ± 12 beats/min, 117 ± 1 vs 108 ± 1 mm Hg) and the normal diet group (0.18 ± 0.05 vs 0.17 ± 0.05 mV/s, 465 ± 10 vs 426 ± 6 beats/min, 116 ± 2 vs 104 ± 3 mm Hg). Baroreflex sensitivity for RSNA was increased during ICV leptin by 50% in the normal diet group, compared to 14% in the high-fat diet group (P < .05). Similarly, orexin-A increased baroreflex sensitivity by 56% and 50% in the high-fat and normal diet groups, respectively (all P < .05). During ICV saline, VEP decreased RSNA by 31 ± 5% (P < .05) after 10 minutes and the magnitude of this response was blunted during ICV infusion of leptin (17 ± 2%, P < .05) but not orexin-A in the normal diet group. RSNA response to VEP was not changed during ICV leptin or orexin-A in the high-fat diet group. These findings indicate possible central roles for leptin and orexin-A in modulating the baroreflexes under normal or increased fat intake in conscious rats and potential therapeutic approaches for obesity associated hypertension.


Subject(s)
Baroreflex , Diet, High-Fat , Animals , Blood Pressure/drug effects , Heart Rate/drug effects , Kidney/drug effects , Rats , Rats, Wistar , Sympathetic Nervous System
4.
Clin Exp Pharmacol Physiol ; 48(12): 1674-1684, 2021 12.
Article in English | MEDLINE | ID: mdl-34375480

ABSTRACT

This study investigated the impact of intrarenal angiotensin 1-7 (Ang [1-7]) infusion on renal excretory function in a rat model of hypertension. Eleven-week-old spontaneously hypertensive rats (SHRs, n = 7) and Han Wistar controls (NCR, n = 7) were anaesthetised with sodium pentobarbital (60 mg/kg i.p.) and prepared for the measurement of mean arterial pressure (MAP) and left renal function during renal interstitial infusion of Ang (1-7) (50 ng/min). The kidneys were harvested, the renal cortex and medulla separated, prepared for measurement of Ang II and Ang (1-7) and Western blot determination of AT1 and Mas receptor protein expression. MAP, glomerular filtration rate (GFR), urine flow (UF) and absolute sodium excretion (UNaV) were 109 ± 16 mmHg, 4.4 ± 1.0 mL/min/kg, 102 ± 16 µL/min/kg and 16 ± 3 µmol/min/kg, respectively in the NCR and 172 ± 24 mmHg, 3.4 ± 0.7 mL/min/kg, 58 ± 30 µL/min/kg and 8.6 ± 4.8 µmol/min/kg respectively in the SHR. Ang (1-7) increased UF (31%), UNa V (50%) and fractional sodium excretion (FENa+ ) (22%) in the NCR group (all p < 0.05) but had no effect on GFR in either group. The magnitudes of the Ang (1-7)-induced increases in UF and UNa V were significantly blunted in the SHR group (model × drug p < 0.05). The renal cortical AT1: Mas receptor expression ratio was significantly higher in the SHR group (p < 0.05) but renal Ang II and Ang (1-7) levels were not statistically different between groups. The Ang (1-7)-induced increases in sodium and water excretion were impaired in the SHR group in the context of an unstimulated RAS. The decrease in responsiveness of the SHR kidney to Ang (1-7) appears to be associated with higher levels of AT1 receptor expression in the renal cortex.


Subject(s)
Angiotensin I , Peptide Fragments
5.
Exp Physiol ; 104(11): 1726-1736, 2019 11.
Article in English | MEDLINE | ID: mdl-31468631

ABSTRACT

NEW FINDINGS: What is the central question of this study? Does immunosuppression restore the baroreflex control of renal sympathetic nerve activity (RSNA) in an animal model of kidney injury? What is the main finding and its importance? Tacrolimus, a calcineurin inhibitor, restored the high- and low-pressure baroreflex control of RSNA following cisplatin-induced renal injury. ABSTRACT: Cisplatin administration causes depression of renal haemodynamic and excretory function and is associated with renal sympatho-excitation and loss of baroreflex regulation of renal sympathetic nerve activity (RSNA). This study investigated whether administration of the immunosuppressant tacrolimus in this cisplatin-mediated renal injury model could restore, or the acute intra-renal infusion of tumour necrosis factor α (TNF-α) could blunt, the high- or low-pressure baroreflex control of RSNA. Groups of control and cisplatin-treated (5 mg kg-1 , i.p. on day 0) rats received either saline or tacrolimus (0.25 mg kg-1  day-1 , i.p.) for 7 days prior to study. Rats were anaesthetised and prepared for measurement of mean arterial pressure (MAP), heart rate (HR) and RSNA. Baroreflex gain curves were generated and the degree of renal sympatho-inhibition determined (area under the curve (AUC) reported as %RSNA min) during acute volume expansion. Intrarenal TNF-α infusion (0.3 µg kg-1  h-1 ) in control rats decreased baroreflex gain by 32% (P < 0.05) compared to intra-renal saline infusion. In the cisplatin group (MAP: 98 ± 14 mmHg; HR: 391 ± 24beats min-1 ), the baroreflex gain for RSNA was 39% (P < 0.05) lower than that for the control group (MAP: 91 ± 7 mmHg; HR: 382 ± 29 beats min-1 ). In cisplatin-treated rats given daily tacrolimus (MAP: 84 ± 12 mmHg; HR: 357 ± 30 beats min-1 ), the baroreflex gain and renal sympatho-inhibition (AUC, 2440 ± 1071 vs. 635 ± 498% min) were restored to normal values. These findings provide evidence for the view that cisplatin administration initiates an injury involving inflammation which may contribute to the deranged baroreflex regulation of RSNA. This phenomenon appears mediated in part via the renal innervation.


Subject(s)
Baroreflex/drug effects , Cisplatin/pharmacology , Kidney/drug effects , Renal Insufficiency/chemically induced , Renal Insufficiency/drug therapy , Sympathetic Nervous System/drug effects , Tacrolimus/pharmacology , Animals , Blood Pressure/drug effects , Heart Rate/drug effects , Hemodynamics/drug effects , Male , Rats , Rats, Wistar
6.
Exp Physiol ; 102(12): 1700-1715, 2017 12 01.
Article in English | MEDLINE | ID: mdl-28940861

ABSTRACT

NEW FINDINGS: What is the central question of this study? Dietary sodium manipulation alters the magnitude of angiotensin-(1-7) [Ang-(1-7)]-induced natriuresis. The present study sought to determine whether this was related to relative changes in the activity of intrarenal Mas and/or AT1 receptors. What is the main finding and its importance? Angiotensin-(1-7)-induced diuresis and natriuresis is mediated by intrarenal Mas receptors. However, intrarenal AT1 receptor blockade also had an inhibitory effect on Ang-(1-7)-induced natriuresis and diuresis. Thus, Ang-(1-7)-induced increases in sodium and water excretion are dependent upon functional Mas and AT1 receptors. We investigated whether angiotensin-(1-7) [Ang-(1-7)]-induced renal haemodynamic and excretory actions were solely dependent upon intrarenal Mas receptor activation or required functional angiotensin II type 1 (AT1 ) receptors. The renin-angiotensin system was enhanced in anaesthetized rats by prior manipulation of dietary sodium intake. Angiotensin-(1-7) and AT1 and Mas receptor antagonists were infused into the kidney at the corticomedullary border. Mas receptor expression was measured in the kidney. Mean arterial pressure, urine flow and fractional sodium excretion were 93 ± 4 mmHg, 46.1 ± 15.7 µl min-1  kg-1 and 1.4 ± 0.3%, respectively, in the normal-sodium group and 91 ± 2 mmHg, 19.1 ± 3.3 µl min-1  kg-1 and 0.7 ± 0.2%, respectively, in the low-sodium group. Angiotensin-(1-7) infusion had no effect on mean arterial pressure in rats receiving a normal-sodium diet but decreased it by 4 ± 5% in rats receiving a low-sodium diet (P < 0.05). Interstitial Ang-(1-7) infusion increased urine flow twofold and fractional sodium excretion threefold (P < 0.05) in rats receiving a normal-sodium diet and to a greater extent, approximately three- and fourfold, respectively, in rats receiving the low-sodium diet (both P < 0.05). Angiotensin-(1-7)-induced increases in urine flow and fractional sodium excretion were absent in both dietary groups during intrarenal AT1 or Mas receptor inhibition after either losartan or A-779, respectively. Thus, AT1 receptor activation, as well as Mas receptor activation, plays an essential role in mediating Ang-(1-7)-induced natriuresis and diuresis. Whether this is because Ang-(1-7) partly antagonizes AT1 receptors or whether Ang-(1-7)-induced natriuresis is mediated through AT1 -Mas receptor dimerization remains unclear.


Subject(s)
Angiotensin I/administration & dosage , Kidney/blood supply , Kidney/drug effects , Natriuresis/drug effects , Peptide Fragments/administration & dosage , Proto-Oncogene Proteins/agonists , Receptor, Angiotensin, Type 1/agonists , Receptors, G-Protein-Coupled/agonists , Renal Elimination/drug effects , Renin-Angiotensin System/drug effects , Anesthesia, General , Angiotensin II/administration & dosage , Angiotensin II/analogs & derivatives , Angiotensin II Type 1 Receptor Blockers/administration & dosage , Animals , Diet, Sodium-Restricted , Glomerular Filtration Rate/drug effects , Hemodynamics/drug effects , Infusions, Parenteral , Kidney/metabolism , Losartan/administration & dosage , Male , Proto-Oncogene Mas , Proto-Oncogene Proteins/metabolism , Rats, Wistar , Receptor, Angiotensin, Type 1/metabolism , Receptors, G-Protein-Coupled/metabolism , Renal Circulation/drug effects , Signal Transduction , Sodium, Dietary/administration & dosage
7.
Acta Pol Pharm ; 74(2): 413-423, 2017 Mar.
Article in English | MEDLINE | ID: mdl-29624247

ABSTRACT

Present study explored endothelial nitric oxide synthase/nitric oxide (eNOS/NO) pathway in the kidney and role of αIB adrenergic receptor in the regulation of renal vasculature in the rats with left ventricular hypertrophy (LVH). LVH was induced by administering isoprenaline 5 mg/kg (s.c. 72 h. apart) and caffeine (62 mg/L in drinking water) for 14 days. Quantification of molecular expression of eNOS in kidney was performed by quantitative Real Time Polymerase Chain Reaction (qPCR). Renal vasoconstrictor responses were measured by administering noradrenaline (NA), phenylephrine (PE) and methoxamine (ME) in pre-drug phase, low dose and high dose phases of chloroethylelonidine (CEC), a selective of (αIB adrenergic receptor antagonist. In the kidney of LVH male Wistar Kyoto (WKY) rats eNOS was significantly down regulated (p < 0.05) by 74% relative to Control WKY (taken as 100%). The high dose 5 CEC attenuated the vasoconstrictor responses to NA by 41%, PE by 43% and ME by 33% in the LVH-WKY when compared to the same dose phase in Control WKY group. In LVH, increased oxidative stress in kidney and increased ACE activity in the plasma resulted in down regulation of eNOS/NO in the kidney. The renal vasoconstrictor responses to adrenergic agonist are blunted in LVH and (αIB adrenergic receptor is functional subtype in renal vasculature in LVH.


Subject(s)
Hypertrophy, Left Ventricular/enzymology , Kidney/blood supply , Kidney/enzymology , Nitric Oxide Synthase Type III/metabolism , Oxidative Stress , Receptors, Adrenergic, alpha-1/metabolism , Renal Artery/enzymology , Adrenergic alpha-1 Receptor Agonists/pharmacology , Animals , Caffeine , Disease Models, Animal , Dose-Response Relationship, Drug , Down-Regulation , Hypertrophy, Left Ventricular/chemically induced , Hypertrophy, Left Ventricular/physiopathology , Isoproterenol , Kidney/drug effects , Male , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/genetics , Peptidyl-Dipeptidase A/blood , Rats, Inbred WKY , Receptors, Adrenergic, alpha-1/drug effects , Renal Artery/drug effects , Renal Artery/physiopathology , Signal Transduction , Vasoconstriction
8.
Acta Pol Pharm ; 74(3): 747-752, 2017 May.
Article in English | MEDLINE | ID: mdl-29513943

ABSTRACT

Until recently hydrogen sulfide (H2S) was the least appreciated of the three gasotransmitters but now recognized as 3Y gaseous mediator after nitric oxide(NO) and carbon monoxide (CO). H2S regulates a number of physiological processes like vasorelaxation, prevention of inflammation, leukocyte adhesion, anti-prolifera- tive effects, anti-thrombotic effects, resistance to oxidative stress and protection against ischemia reperfusion injury (IRI). However, considerable amount of research is still needed to evaluate the mechanisms involved in the therapeutic effects of H2S in IRI such as its effects on nuclear factor-kappa B (NF-KB) concentration and intercellular adhesion molecule-1 (ICAM-1) expression in renal IRI and ARF (acute renal failure). More than a decade of good repute among researchers, H2S research has certain results that need to be clarified more such as whether H2S is pro-inflammatory or anti-inflammatory agent. Moreover, pathways adopted by H2S in the protein modification and its effects on cell signalling specially its effect on NF-KB in the process of inflamma- tion are not fully elucidated. H2S has delighted researchers and a great deal of information is being generated every year.The main purpose of the review is to provide an update on the development in the research of H2S in renal IRI due to uncertainty of the exact role of H2S on ICAM-1 expression and NF-KB concentration whether it inhibits or activates them.


Subject(s)
Acute Kidney Injury/drug therapy , Hydrogen Sulfide/therapeutic use , Intercellular Adhesion Molecule-1/metabolism , Kidney Diseases/drug therapy , Kidney/drug effects , NF-kappa B/metabolism , Reperfusion Injury/drug therapy , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Animals , Humans , Kidney/metabolism , Kidney/pathology , Kidney Diseases/metabolism , Kidney Diseases/pathology , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Signal Transduction/drug effects
9.
Acta Pol Pharm ; 72(5): 1015-26, 2015.
Article in English | MEDLINE | ID: mdl-26665409

ABSTRACT

Left ventricular hypertrophy (LVH) is a compensatory mechanism in response to an increased work load on the heart. This study investigated the impact of chronic isoprenaline and caffeine (I/C model) administration on cardiac geometry, systemic hemodynamic and physiological data in rats as LVH develops. LVH was induced by administering isoprenaline (5 mg/kg s.c. every 72 h) and caffeine (62 mg/L) in drinking water for 14 days to Wistar Kyoto (WKY) rats. Mean arterial pressure (MAP), systolic blood pressure (SBP), heart weight, LV weight, LV chamber diameter and thickness of myocardium were observed as LVH indicators. MAP was significantly higher (142 ± 13 vs. 119 ± 2 mmHg, respectively) while heart rate (HR) in LVH was lower (314 ± 9 vs. 264 ± 18 BPM) compared to control WKY. Heart weight, LV weight and kidney weight were 31%, 38% and 7%, respectively, greater in the LVH group as compared to the control WKY (all p < 0.05).The myocardium thickness was 101% greater while LV chamber diameter was 44% smaller in the LVH group as compared to the control WKY (p < 0.05). The superoxide dismutase (SOD), glutathione reductase (GSH) and total antioxidant capacity (T-AOC) levels were significantly reduced while malonodialdehyde (MDA) level increased in LVH as compared to control WKY (all p < 0.05). In conclusion, isoprenaline and caffeine (I/C) induces LVH and cardiac hypertrophy with increases in blood pressure, fluid excretion and reduced renal hemodynamics. Prooxidant mechanism of the body and arterial stiffness are dominant in this disease model. This model of LVH is easily generated and associated with low mortality.


Subject(s)
Caffeine/toxicity , Hemodynamics/drug effects , Hypertrophy, Left Ventricular/chemically induced , Isoproterenol/toxicity , Kidney/drug effects , Animals , Male , Oxidative Stress/drug effects , Rats , Rats, Inbred WKY , Rats, Wistar
10.
Acta Pol Pharm ; 72(2): 245-52, 2015.
Article in English | MEDLINE | ID: mdl-26642674

ABSTRACT

In the family of gaseous transmitters, hydrogen sulfide (H2S) is considered as third member beside nitric oxide (NO) and carbon monoxide (CO), which can play physiological role in different organs. The present study was designed to elucidate the antioxidant and free radical scavenging potentials of L-arginnine (a source for endogenous production of NO in vivo) and NaHS (a source H2S) individually and in combination. Different assays like 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging, percent inhibition of linoleic acid peroxidation and reducing power assays were used to evaluate the free radical scavenging capacity and antioxidant activity of L-arginine and NaHS. Furthermore, study was aimed to know the antioxidant potential of both compounds at their effective doses in human body, which is 56 µM for H2S and 1.2 g/mL for L-arginine. The study also aimed to clear whether either NaHS, L-arginine or the mixture of NaHS and L-arginine in vitio (in the form of new compounds) is responsible for their therapeutic action. Results showed that NaHS, L-arginine and combination of NaHS + L-arginine showed good radical scavenging activity i.e., 55.60%, 52.10% and 52.32%, respectively. Moreover, NaHS was found to have ability to inhibit linoleic acid peroxidation by 53.98% at effective dose while L-arginine did not show inhibition of linoleic acid peroxidation. Combination of NaHS + L-arginine showed 54.15% inhibition of linoleic acid peroxidation, which is similar to that of H2S. Reducing power of NaHS was 0.073 and L-arginine showed 0.037, combination of NaHS + L-arginine showed 0.063. It can be concluded that NaHS showed better antioxidant potential in vitio as compared to L-arginine and the antioxidant activity of the mixture of NaHS + L-arginine is closed to the antioxidant activity of NaHS, which reflects that NaHS is a dominant factor in combination mixture that is responsible for antioxidant activity.


Subject(s)
Antioxidants/pharmacology , Arginine/pharmacology , Free Radical Scavengers/pharmacology , Sulfides/pharmacology , Humans
11.
Exp Physiol ; 99(2): 289-94, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23955311

ABSTRACT

NEW FINDINGS: What is the topic of this review? Reports that bilateral renal denervation in resistant hypertensive patients results in a long-lasting reduction in blood pressure raise the question of the underlying mechanisms involved and how they may be deranged in pathophysiological states of hypertension and renal failure. What advances does it highlight? The renal sensory afferent nerves and efferent sympathetic nerves work together to exert an important control over extracellular fluid volume, hence the level at which blood pressure is set. This article emphasizes that both the afferent and the efferent renal innervation may contribute to the neural dysregulation of the kidney that occurs in chronic renal disease and resistant hypertension. Autonomic control is central to cardiovascular homeostasis, and this is exerted not only at the level of the heart and blood vessels but also at the kidney. At the kidney, the sympathetic neural regulation of renin release and fluid reabsorption may influence fluid balance and, in the longer term, the level at which blood pressure is set. The role of the renal innervation in the regulation of blood pressure has received renewed attention over the past few years, following the reports that bilateral renal denervation of resistant hypertensive patients resulted in a marked reduction in blood pressure, which has been maintained for several years. Such has been the interest that this approach of renal denervation is being applied in other patient groups with diabetes, obesity and renal failure, with the hope that there may be a sustained reduction in blood pressure as well as the amelioration of some aspects of the metabolic syndrome. However, the factors that come into play to cause the rise in blood pressure in these patient groups, particularly the resistant hypertensive patients, are far from clear. Moreover, the mechanisms leading to the fall in blood pressure following renal denervation of resistant hypertensive patients currently elude our understanding and is therefore an area that requires much more investigation to enhance our insight.


Subject(s)
Hypertension/physiopathology , Kidney/innervation , Kidney/physiopathology , Renal Insufficiency/physiopathology , Sympathetic Nervous System/physiology , Blood Pressure/physiology , Humans
12.
Can J Physiol Pharmacol ; 92(12): 1029-35, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25403946

ABSTRACT

This study investigated the role of α1D-adrenoceptor in the modulation of renal haemodynamics in rats with left ventricular hypertrophy (LVH). LVH was established in Wistar-Kyoto (WKY) rats with isoprenaline (5.0 mg · (kg body mass)(-1), by subcutaneous injection every 72 h) and caffeine (62 mg · L(-1) in drinking water, daily for 14 days). Renal vasoconstrictor responses were measured for noradrenaline (NA), phenylephrine (PE), and methoxamine (ME) before and immediately after low or high dose intrarenal infusions of BMY 7378, a selective α1D-adrenoceptor blocker. The rats with LVH had higher mean arterial blood pressure and circulating NA levels, but lower renal cortical blood perfusion compared with the control group (all P < 0.05). In the LVH group, the magnitude of the renal vasoconstrictor response to ME was blunted, but not the response to NA or PE (P < 0.05), compared with the control group (LVH vs. C, 38% vs. 50%). The magnitude of the drop in the vasoconstrictor responses to NA, PE, and ME in the presence of a higher dose of BMY 7378 was significantly greater in the LVH group compared with the control group (LVH vs. C, 45% vs. 25% for NA, 52% vs. 33% for PE, 66% vs. 53% for ME, all P < 0.05). These findings indicate an impaired renal vasoconstrictor response to adrenergic agonists during LVH. In addition, the α1D-adrenoceptor subtype plays a key role in the modulation of vascular responses in this diseased state.


Subject(s)
Caffeine , Hypertrophy, Left Ventricular/metabolism , Isoproterenol , Kidney/blood supply , Receptors, Adrenergic, alpha-1/metabolism , Adrenergic alpha-1 Receptor Antagonists/pharmacology , Animals , Arterial Pressure/drug effects , Hemodynamics/drug effects , Hypertrophy, Left Ventricular/chemically induced , Hypertrophy, Left Ventricular/physiopathology , Kidney/drug effects , Kidney/metabolism , Male , Methoxamine/pharmacology , Norepinephrine/blood , Norepinephrine/pharmacology , Phenylephrine/pharmacology , Piperazines/pharmacology , Rats, Inbred WKY , Regional Blood Flow , Vasoconstrictor Agents/pharmacology
13.
Ren Fail ; 36(4): 598-605, 2014 May.
Article in English | MEDLINE | ID: mdl-24502512

ABSTRACT

Oxidative stress and suppressed H2S production lead to increased renal vascular resistance, disturbed glomerular hemodynamics, and abnormal renal sodium and water handling, contribute to the pathogenesis and maintenance of essential hypertension in man and the spontaneously hypertensive rat. This study investigated the impact of H2S and tempol alone and in combination on blood pressure and renal hemodynamics and excretory functions in the SHR. Groups of WKY rats or SHR (n=6) were treated for 4 weeks either as controls or received NaHS (SHR+NaHS), tempol (SHR+Tempol), or NaHS plus tempol (SHR+NaHS +Tempol). Metabolic studies were performed on days 0, 14, and 28, thereafter animals were anaesthetized to measure renal hemodynamics and plasma oxidative and antioxidant markers. SHR control rats had higher mean arterial blood pressure (140.0 ± 2 vs. 100.0 ± 3 mmHg), lower plasma and urinary H2S, creatinine clearance, urine flow rate and urinary sodium excretion, and oxidative stress compared to WKY (all p<0.05). Treatment either with NaHS or with tempol alone decreased blood pressure and oxidative stress and improved renal hemodynamic and excretory function compared to untreated SHR. Combined NaHS and tempol therapy in SHRs caused larger decreases in blood pressure (∼20-22% vs. ∼11-15% and ∼10-14%), increases in creatinine clearance, urinary sodium excretion and fractional sodium excretion and up-regulated the antioxidant status compared to each agent alone (all p<0.05). These findings demonstrated that H2S and tempol together resulted in greater reductions in blood pressure and normalization of kidney function compared with either compound alone.


Subject(s)
Antioxidants/pharmacology , Blood Pressure/drug effects , Cyclic N-Oxides/pharmacology , Hydrogen Sulfide/pharmacology , Hypertension/physiopathology , Kidney/metabolism , Natriuretic Agents/pharmacology , Vasodilator Agents/pharmacology , Animals , Body Weight/drug effects , Disease Models, Animal , Drinking/drug effects , Essential Hypertension , Heart Rate/drug effects , Hemodynamics/drug effects , Kidney/drug effects , Male , Oxidative Stress/drug effects , Rats, Inbred SHR , Rats, Inbred WKY , Renal Circulation/drug effects , Spin Labels , Urinalysis , Urination/drug effects
14.
J Hypertens ; 42(6): 1027-1038, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38690904

ABSTRACT

OBJECTIVE: Reno-renal reflexes are disturbed in cardiovascular and hypertensive conditions when elevated levels of pro-inflammatory mediators/cytokines are present within the kidney. We hypothesised that exogenously administered inflammatory cytokines tumour necrosis factor alpha (TNF-α) and interleukin (IL)-1ß modulate the renal sympatho-excitatory response to chemical stimulation of renal pelvic sensory nerves. METHODS: In anaesthetised rats, intrarenal pelvic infusions of vehicle [0.9% sodium chloride (NaCl)], TNF-α (500 and 1000 ng/kg) and IL-1ß (1000 ng/kg) were maintained for 30 min before chemical activation of renal pelvic sensory receptors was performed using randomized intrarenal pelvic infusions of hypertonic NaCl, potassium chloride (KCl), bradykinin, adenosine and capsaicin. RESULTS: The increase in renal sympathetic nerve activity (RSNA) in response to intrarenal pelvic hypertonic NaCl was enhanced during intrapelvic TNF-α (1000 ng/kg) and IL-1ß infusions by almost 800% above vehicle with minimal changes in mean arterial pressure (MAP) and heart rate (HR). Similarly, the RSNA response to intrarenal pelvic adenosine in the presence of TNF-α (500 ng/kg), but not IL-1ß, was almost 200% above vehicle but neither MAP nor HR were changed. There was a blunted sympatho-excitatory response to intrapelvic bradykinin in the presence of TNF-α (1000 ng/kg), but not IL-1ß, by almost 80% below vehicle, again without effect on either MAP or HR. CONCLUSION: The renal sympatho-excitatory response to renal pelvic chemoreceptor stimulation is modulated by exogenous TNF-α and IL-1ß. This suggests that inflammatory mediators within the kidney can play a significant role in modulating the renal afferent nerve-mediated sympatho-excitatory response.


Subject(s)
Interleukin-1beta , Kidney , Sympathetic Nervous System , Tumor Necrosis Factor-alpha , Animals , Interleukin-1beta/pharmacology , Rats , Kidney/innervation , Kidney/drug effects , Male , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/physiology , Rats, Sprague-Dawley , Heart Rate/drug effects , Bradykinin/pharmacology , Reflex/drug effects , Blood Pressure/drug effects , Adenosine/administration & dosage , Adenosine/pharmacology , Saline Solution, Hypertonic/administration & dosage , Saline Solution, Hypertonic/pharmacology
15.
Curr Opin Nephrol Hypertens ; 22(5): 504-10, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23872675

ABSTRACT

PURPOSE: This review highlights the physiological mechanisms underlying the neural regulation of the kidney, normally to maintain cardiovascular homeostasis, and in pathophysiological states of hypertension and renal disease. It is relevant because of the demonstration that bilateral renal denervation in different hypertensive groups causes a sustained reduction in blood pressure. RECENT FINDINGS: There are patients groups in whom their hypertension is resistant to antihypertensive drugs or with renal diseases in which they are contraindicated. Recently, medical devices have been developed to manipulate the sympathetic nervous system, for example, implantation of carotid sinus nerve stimulating electrodes and ablation of the renal innervation. These approaches have been relatively successful but there remains a lack of understanding of the neural mechanisms impinging on the kidney that regulate long-term control of blood pressure. SUMMARY: The observation that bilateral renal nerve ablation can reduce blood pressure represents an important therapeutic milestone. Nonetheless, questions arise as to the underlying mechanisms, the long-term consequences, whether there may be re-innervation over a number of years, or whether some unknown consequence to the denervation may arise. This may point to the development of novel compounds targeted to the innervation of the kidney.


Subject(s)
Blood Pressure/physiology , Kidney/innervation , Animals , Humans , Hypertension/physiopathology , Inflammation/pathology , Neurons, Afferent/physiology , Sympathetic Nervous System/physiology
16.
Am J Physiol Regul Integr Comp Physiol ; 304(3): R260-6, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23255591

ABSTRACT

Angiotensin II at the kidney regulates renal hemodynamic and excretory function, but the actions of an alternative metabolite, angiotensin (1-7), are less clear. This study investigated how manipulation of dietary sodium intake influenced the renal hemodynamic and excretory responses to intrarenal administration of angiotensin (1-7). Renal interstitial infusion of angiotensin (1-7) in anesthetized rats fed a normal salt intake had minimal effects on glomerular filtration rate but caused dose-related increases in urine flow and absolute and fractional sodium excretions ranging from 150 to 200%. In rats maintained for 2 wk on a low-sodium diet angiotensin (1-7) increased glomerular filtration rate by some 45%, but the diuretic and natriuretic responses were enhanced compared with those in rats on a normal sodium intake. By contrast, renal interstitial infusion of angiotensin (1-7) in rats maintained on a high-sodium intake had no effect on glomerular filtration rate, whereas the diuresis and natriuresis was markedly attenuated compared with those in rats fed either a normal or low-sodium diet. Plasma renin and angiotensin (1-7) were highest in the rats on the low-sodium diet and depressed in the rats on a high-sodium diet. These findings demonstrate that the renal hemodynamic and excretory responses to locally administered angiotensin (1-7) is dependent on the level of sodium intake and indirectly on the degree of activation of the renin-angiotensin system. The exact way in which angiotensin (1-7) exerts its effects may be dependent on the prevailing levels of angiotensin II and its receptor expression.


Subject(s)
Angiotensin I/administration & dosage , Glomerular Filtration Rate/drug effects , Glomerular Filtration Rate/physiology , Kidney/drug effects , Kidney/physiology , Peptide Fragments/administration & dosage , Sodium, Dietary/administration & dosage , Sodium, Dietary/pharmacokinetics , Anesthetics, General , Animals , Male , Rats , Rats, Wistar , Renal Circulation/drug effects , Renal Circulation/physiology
17.
Clin Exp Pharmacol Physiol ; 40(1): 5-12, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23106106

ABSTRACT

The present study compared the cardiovascular and renal actions of γ(2) -melanocyte-stimulating hormone (γ(2) MSH) with those of the synthetic analogue [Nle(3) ,d-Phe(6) ]-γ(2) MSH (NDP-γ(2) MSH) and explored the effects of high dietary salt intake on the renal actions of NDP-γ(2) MSH. Both peptides were infused systemically (3-1000 nmol/kg) and intrarenally (500 fmol/min) into innervated and renally denervated rats fed either a normal (0.4% NaCl) or high-salt (4% NaCl; HS) diet. Mean arterial pressure (MAP), glomerular filtration rate (GFR), urinary sodium excretion (U(N) (a) V), urinary output (UV) and fractional sodium excretion were determined, as was expression of the melanocortin MC(3) receptor in inner medullary collecting duct (IMCD) epithelial cells. Both renal and systemic infusion of γ(2) MSH increased MAP by 23 ± 2% and 54 ± 4%, respectively, but equivalent doses of NDP-γ(2) MSH had no significant pressor effects. Both peptides had similar natriuretic and diuretic effects in rats fed a normal salt diet. However, NDP-γ(2) MSH increased U(N) (a) V and UV by two- to threefold in rats fed the normal salt diet and by six- to sevenfold in rats fed the HS diet. Furthermore, NDP-γ(2) MSH induced a 3.5-fold increase in GFR only in rats fed the HS diet. These renal effects of NDP-γ(2) MSH were not abolished by prior renal denervation. Rats fed the HS diet also exhibited a 4.5-fold increase in MC(3) receptor expression in IMCD epithelial cells. Intrarenal infusion of NDP-γ(2) MSH induced the natriuretic but not the cardiovascular effects exhibited by γ(2) MSH. The renal activities may be attributed to a direct binding of NDP-γ(2) MSH to MC(3) receptors expressed in IMCD cells, leading to a potent natriuretic effect that is independent of renal innervation.


Subject(s)
Cardiovascular System/drug effects , Kidney Medulla/drug effects , Kidney Tubules, Collecting/drug effects , gamma-MSH/pharmacology , Animals , Arterial Pressure/drug effects , Cardiovascular System/metabolism , Denervation/methods , Diuretics/pharmacology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Glomerular Filtration Rate/drug effects , Kidney Medulla/metabolism , Kidney Tubules, Collecting/metabolism , Male , Natriuretic Agents/pharmacology , Rats , Rats, Wistar , Receptor, Melanocortin, Type 3/metabolism , Salts/metabolism , Sodium/metabolism , Sodium Chloride, Dietary/metabolism , alpha-MSH/analogs & derivatives , alpha-MSH/pharmacology
18.
Ren Fail ; 35(7): 978-88, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23822648

ABSTRACT

This study investigated the effects of tempol, a superoxide dismutase (SOD) mimetic and L-NAME, a nitric oxide (NO) synthase inhibitor on the renal function and hemodynamics in cyclosporine A (CsA) induced renal insufficiency rats. Male Sprague-Dawley rats were treated with either vehicle (C), tempol (T, 1 mmol/L in drinking fluid), L-NAME (L, 1 mmol/L in drinking fluid), CsA (Cs, 25 mg/kg/day via gavage), CsA plus tempol (TCs), CsA plus L-NAME (LCs) or CsA plus a combination of tempol and L-NAME (TLCs) for 21 consecutive days. At the end of treatment regimen, the renal responses to noradrenaline (NA), phenylephrine (PE), methoxamine and angiotensin II (Ang II) were determined. Cs and LCs rats had lower creatinine clearance (0.7 ± 0.1 and 0.6 ± 0.5 vs. 1.3 ± 0.2 mL/min/kg) and fractional excretion of sodium (0.12 ± 0.02 and 0.17 ± 0.01 vs. 0.67 ± 0.04%) but higher systolic blood pressure (145 ± 2 and 178 ± 4 vs. 116 ± 2) compared to the control (all p < 0.05), respectively. Tempol treatment in TCs or TLCs prevented the increase in blood pressure and improved creatinine clearance and sodium excretion compared to untreated Cs. The renal vasoconstriction in Cs or LCs to NA, PE and Ang II were lower than control by ∼35-48% (all p < 0.05). In TCs or TLCs, there was enhanced renal vasoconstriction to all agonist by ∼39-114% compared to Cs. SOD is important to counterbalance the hypertensive effect of a defective NO system and to allow the normal vasoconstrictor response of the renal vasculature to adrenergic agonists and Ang II in a model of CsA-induced renal insufficiency.


Subject(s)
Cyclic N-Oxides/pharmacology , Cyclosporine/pharmacology , Hemodynamics/drug effects , Hypertension/prevention & control , Kidney Concentrating Ability/drug effects , Renal Insufficiency , Animals , Antioxidants/pharmacology , Blood Pressure/drug effects , Disease Models, Animal , Hypertension/etiology , Hypertension/physiopathology , Kidney/blood supply , Male , NG-Nitroarginine Methyl Ester/administration & dosage , NG-Nitroarginine Methyl Ester/metabolism , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/metabolism , Rats , Rats, Sprague-Dawley , Regional Blood Flow/drug effects , Renal Insufficiency/chemically induced , Renal Insufficiency/physiopathology , Spin Labels , Superoxide Dismutase/administration & dosage , Superoxide Dismutase/metabolism
19.
Br J Nutr ; 107(2): 218-28, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21733307

ABSTRACT

The present study explored the hypothesis that a prolonged 8 weeks exposure to a high fructose intake suppresses adrenergic and angiotensin II (Ang II)-mediated vasoconstriction and is associated with a higher contribution of α1D-adrenoceptors. A total of thirty-two Sprague-Dawley rats received either 20 % fructose solution (FFR) or tap water (control, C) to drink ad libitum for 8 weeks. Metabolic and haemodynamic parameters were assessed weekly. The renal cortical vasoconstrictor responses to noradrenaline (NA), phenylephrine (PE), methoxamine (ME) and Ang II were determined in the presence and absence of BMY7378 (α1D-adrenoceptor antagonist). FFR had increased blood pressure, plasma levels of glucose, TAG and insulin. FFR expressed reduced renal vascular responses to adrenergic agonists and Ang II (NA: 50 %, PE: 50 %, ME, 65 %, Ang II: 54 %). Furthermore in the C group, the magnitude of the renal cortical vasoconstriction to all agonists was blunted in the presence of the low or high dose of BMY7378 (NA: 30 and 31 %, PE: 23 and 33 %, ME: 19 and 44 %, Ang II: 53 and 77 %), respectively, while in the FFR, vasoconstriction was enhanced to adrenergic agonists and reduced to Ang II (NA: 8 and 83 %, PE: 55 %, ME, 2 and 177 %, Ang II: 61 and 31 %). Chronic high fructose intake blunts vascular sensitivity to adrenergic agonists and Ang II. Moreover, blocking of the α1D-adrenoceptor subtype results in enhancement of renal vasoconstriction to adrenergic agonists, suggesting an inhibitory action of α1D-adrenoceptors in the FFR. α1D-Adrenoceptors buffer the AT1-receptor response in the renal vasculature of normal rats and fructose feeding suppressed this interaction.


Subject(s)
Dietary Carbohydrates/adverse effects , Fructose/adverse effects , Hyperinsulinism/physiopathology , Hypertension/etiology , Kidney/blood supply , Receptors, Adrenergic, alpha-1/metabolism , Renal Circulation , Adrenergic alpha-1 Receptor Agonists/pharmacology , Adrenergic alpha-Antagonists/pharmacology , Angiotensin II/metabolism , Animals , Dietary Carbohydrates/administration & dosage , Fructose/administration & dosage , Hemodynamics/drug effects , Hyperglycemia/blood , Hyperglycemia/etiology , Hyperinsulinism/etiology , Hyperinsulinism/metabolism , Hypertension/metabolism , Hypertriglyceridemia/blood , Hypertriglyceridemia/etiology , Kidney/drug effects , Male , Norepinephrine/metabolism , Random Allocation , Rats , Rats, Sprague-Dawley , Receptors, Adrenergic, alpha-1/chemistry , Receptors, Angiotensin/chemistry , Receptors, Angiotensin/metabolism , Renal Circulation/drug effects , Vasoconstrictor Agents/pharmacology
20.
Clin Exp Nephrol ; 16(3): 382-8, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22139055

ABSTRACT

BACKGROUND: It remains unclear whether Shiga toxin-2 (Stx-2)-induced acute encephalopathy contributes to an inappropriate activation of the renal sympathetic outflow. This investigation set out to examine the impact of Stx-2 administered into the brain on the neural control of the kidney. METHODS: Using acutely anaesthetised male Wistar rats (300-350 g), saline, Stx-2 (10 µg/kg) or lipopolysaccharide (LPS 50 µg/kg) was administered intracerebroventricularly (icv) and measurements of renal haemodynamic and excretory function or renal nerve activity were made over the following 4 h. RESULTS: There were minimal changes in renal blood flow, glomerular filtration rate, urine flow or sodium excretion, irrespective of whether saline, Stx-2 or LPS was administered into the brain. The renal nerve recordings showed that whereas saline and LPS caused small inconsistent changes in renal nerve activity over the 4-h period, there was a significant (P < 0.05) doubling of renal nerve activity in the rats which were administered Stx-2 icv. Immunocytochemical examination demonstrated that Stx-2 induced globotriaosylceramide receptors, the proposed functional receptors for Stx-2, on the blood vessel walls around the hypothalamus and hippocampus, and histological evaluations showed that changes in the kidney were beginning to occur to the renal tubular epithelial cells, consistent with developing lesions. CONCLUSION: Stx-2 crosses either the blood-brain barrier or the blood-cerebrospinal fluid barrier where it can alter neuronal function and trigger neuronal derangements. These structural changes could contribute, at least in part, to the raised renal sympathetic nerve activity.


Subject(s)
Kidney/innervation , Shiga Toxin 2/toxicity , Sympathetic Nervous System/physiology , Animals , Blood Pressure/drug effects , Blood-Brain Barrier/physiology , Injections, Intraventricular , Kidney/drug effects , Kidney/pathology , Lipopolysaccharides/toxicity , Male , Rats , Rats, Wistar , Renal Circulation/drug effects , Sympathetic Nervous System/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL