Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Nature ; 555(7697): 502-506, 2018 03 21.
Article in English | MEDLINE | ID: mdl-29565358

ABSTRACT

Lithium-air batteries are considered to be a potential alternative to lithium-ion batteries for transportation applications, owing to their high theoretical specific energy. So far, however, such systems have been largely restricted to pure oxygen environments (lithium-oxygen batteries) and have a limited cycle life owing to side reactions involving the cathode, anode and electrolyte. In the presence of nitrogen, carbon dioxide and water vapour, these side reactions can become even more complex. Moreover, because of the need to store oxygen, the volumetric energy densities of lithium-oxygen systems may be too small for practical applications. Here we report a system comprising a lithium carbonate-based protected anode, a molybdenum disulfide cathode and an ionic liquid/dimethyl sulfoxide electrolyte that operates as a lithium-air battery in a simulated air atmosphere with a long cycle life of up to 700 cycles. We perform computational studies to provide insight into the operation of the system in this environment. This demonstration of a lithium-oxygen battery with a long cycle life in an air-like atmosphere is an important step towards the development of this field beyond lithium-ion technology, with a possibility to obtain much higher specific energy densities than for conventional lithium-ion batteries.

2.
Nanotechnology ; 32(48)2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34407513

ABSTRACT

Liquid cell electron microscopy is an imaging technique allowing for the investigation of the interaction of liquids and solids at nanoscopic length scales. Suchin situobservations are increasingly in-demand in an array of fields, from biological sciences to medicine to batteries. Graphene liquid cells (GLCs), in particular, have generated a great interest as a low-scattering window material with the potential for increasing the quality of both imaging and spectroscopy. However, preserving the stability of the liquid and of the sample in the GLC remains a considerable challenge. In the present work we encapsulate water and hydroxyapatite (HAP), a pH-sensitive biological material, in GLCs to observe the interactions between the graphene, HAP, and the electron beam. HAP was chosen for several reasons. One is its ubiquity in biological specimens such as bones and teeth, and the second is the presence of phosphate ions in common buffer solutions. Finally, there is its sensitivity to changes in pH, which result from beam-induced hydrolysis in liquid cells. A dynamic process of dissolution and recrystallization of HAP was observed, which correlated with the production of H+ions by the beam during imaging. In addition, a large increase in the stability of the GLC under irradiation was noted. Specifically, no stable hydrogen bubbles were detected under the electron fluxes routinely exceeding 170 e-Å-2s-1. With the measured threshold dose for the bubble formation in pure water equaling 9 e-Å-2s-1, it was concluded that the presence of HAP increases the resistance of water against radiolysis in the GLC by more than an order of magnitude. These results confirm the possibility of using biological materials, such as HAP, as stabilizers in liquid cell electron microscopy. They outline a potential route for stabilization of specimens in liquid cells through the addition of a scavenger of reactive species generated by the beam-induced hydrolysis of water. These improvements are essential for enhancing both the resolution of imaging and the available imaging time, as well as avoiding the beam-induced artifacts.

3.
Phys Rev Lett ; 120(13): 137602, 2018 Mar 30.
Article in English | MEDLINE | ID: mdl-29694202

ABSTRACT

Continuous developments in nanotechnology require new approaches to materials synthesis that can produce novel functional structures. Here, we show that nanoscale defects, such as nonstoichiometric nanoregions (NSNRs), can act as nano-building blocks for creating complex electrical polarization structures in the prototypical multiferroic BiFeO_{3}. An array of charged NSNRs are produced in BiFeO_{3} thin films by tuning the substrate temperature during film growth. Atomic-scale scanning transmission electron microscopy imaging reveals exotic polarization rotation patterns around these NSNRs. These polarization patterns resemble hedgehog or vortex topologies and can cause local changes in lattice symmetries leading to mixed-phase structures resembling the morphotropic phase boundary with high piezoelectricity. Phase-field simulations indicate that the observed polarization configurations are mainly induced by charged states at the NSNRs. Engineering defects thus may provide a new route for developing ferroelectric- or multiferroic-based nanodevices.

4.
Nano Lett ; 17(6): 3556-3562, 2017 06 14.
Article in English | MEDLINE | ID: mdl-28471679

ABSTRACT

The ability to switch the ferroelectric polarization using an electric field makes ferroelectrics attractive for application in nanodevices such as high-density memories. One of the major challenges impeding this application, however, has been known as "retention failure", which is a spontaneous process of polarization back-switching that can lead to data loss. This process is generally thought to be caused by the domain instability arising from interface boundary conditions and countered by defects, which can pin the domain wall and impede the back-switching. Here, using in situ transmission electron microscopy and atomic-scale scanning transmission electron microscopy, we show that the polarization retention failure can be induced by commonly observed nanoscale impurity defects in BiFeO3 thin films. The interaction between polarization and the defects can also lead to the stabilization of novel functional nanodomains with mixed-phase structures and head-to-head polarization configurations. Thus, defect engineering provides a new route for tuning properties of ferroelectric nanosystems.

5.
Nano Lett ; 13(11): 5218-23, 2013 Nov 13.
Article in English | MEDLINE | ID: mdl-24070735

ABSTRACT

Charged domain walls (CDWs) are of significant scientific and technological importance as they have been shown to play a critical role in controlling the switching mechanism and electric, photoelectric, and piezoelectric properties of ferroelectric materials. The atomic scale structure and properties of CDWs, which are critical for understanding the emergent properties, have, however, been rarely explored. In this work, using a spherical-aberration-corrected transmission electron microscope with subangstrom resolution, we have found that the polarization bound charge of the CDW in rhombohedral-like BiFeO3 thin films not only induces the formation of a tetragonal-like crystal structure at the CDW but also stabilizes unexpected nanosized domains with new polarization states and unconventional domain walls. These findings provide new insights on the effects of bound charge on ferroelectric domain structures and are critical for understanding the electrical switching in ferroelectric thin films as well as in memory devices.

6.
ACS Appl Mater Interfaces ; 12(39): 44371-44380, 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-32886478

ABSTRACT

In modern biomaterial-based electronics, conductive and flexible biomaterials are gaining increasing attention for their wide range of applications in biomedical and wearable electronics industries. The ecofriendly, biodegradable, and self-resorbable nature of these materials makes them an excellent choice in fabricating green and transient electronics. Surface functionalization of these biomaterials is required to cater to the need of designing electronics based on these substrate materials. In this work, a low-temperature atomic layer deposition (ALD) process of platinum (Pt) is presented to deposit a conductive thin film on collagen biomaterials, for the first time. Surface characterization revealed that a very thin ALD-deposited seed layer of TiO2 on the collagen surface prior to Pt deposition is an alternative for achieving a better nucleation and 100% surface coverage of ultrathin Pt on collagen surfaces. The presence of a pure metallic Pt thin film was confirmed from surface chemical characterization. Electrical characterization proved the existence of a continuous and conductive Pt thin film (∼27.8 ± 1.4 nm) on collagen with a resistivity of 295 ± 30 µΩ cm, which occurred because of the virtue of TiO2. Analysis of its electronic structures showed that the presence of metastable state due to the presence of TiO2 enables electrons to easily flow from valence into conductive bands. As a result, this turned collagen into a flexible conductive biomaterial.


Subject(s)
Collagen/chemistry , Platinum/chemistry , Temperature , Electric Conductivity , Materials Testing , Particle Size , Surface Properties
7.
ACS Nano ; 13(3): 3151-3161, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30763075

ABSTRACT

Tooth enamel is a hard yet resilient biomaterial that derives its unique mechanical properties from decussating bundles of apatite crystals. To understand enamel crystal nucleation and growth at a nanoscale level and to minimize preparation artifacts, the developing mouse enamel matrix was imaged in situ using graphene liquid cells and atomic resolution scanning transmission electron and cryo-fracture electron microscopy. We report that 1-2 nm diameter mineral precipitates aggregated to form larger 5 nm particle assemblies within ameloblast secretory vesicles or annular organic matrix subunits. Further evidence for the fusion of 1-2 nm mineral precipitates into 5 nm mineral aggregates via particle attachment was provided by matrix-mediated calcium phosphate crystal growth studies. As a next step, aggregated particles organized into rows of 3-10 subunits and developed lattice suprastructures with 0.34 nm gridline spacings corresponding to the (002) planes of apatite crystals. Mineral lattice suprastructures superseded closely matched organic matrix patterns, suggestive of a combination of organic/inorganic templates guiding apatite crystal growth. Upon assembly of 2-5 nm subunits into crystal ribbons, lattice fringes indicative of the presence of larger ordered crystallites were observed surrounding elongating crystal ribbons, presumably guiding the c-axis growth of composite apatite crystals. Cryo-fracture micrographs revealed reticular networks of an organic matrix on the surface of elongating enamel crystal ribbons, suggesting that protein coats facilitate c-axis apatite crystal growth. Together, these data demonstrate (i) the involvement of particle attachment in enamel crystal nucleation, (ii) a combination of matrix- and lattice-guided crystal growth, and (iii) fusion of individual crystals via a mechanism similar to Ostwald ripening.


Subject(s)
Apatites/chemistry , Dental Enamel/chemistry , Animals , Cryoelectron Microscopy , Crystallization , Mice , Microscopy, Electron, Scanning Transmission , Particle Size , Surface Properties
8.
ACS Appl Mater Interfaces ; 11(4): 3823-3833, 2019 Jan 30.
Article in English | MEDLINE | ID: mdl-30615410

ABSTRACT

Building a stable chemical environment at the cathode/electrolyte interface is directly linked to the durability of Li-ion batteries with high energy density. Recently, colloidal chemistry methods have enabled the design of core-shell nanocrystals of Li1+ xMn2- xO4, an important battery cathode, with passivating shells rich in Al3+ through a colloidal synthetic route. These heterostructures combine the presence of redox-inactive ions on the surface to minimize undesired reactions, with the coverage of each individual particle in an epitaxial manner. Although they improve electrode performance, the exact chemistry and structure of the shell as well as the precise effect of the ratio between the shell and the active core remain to be elucidated. Correlation of these parameters to electrode properties would serve to tailor the heterostructure design toward complete shutdown of undesired reactions. These knowledge gaps are the target of this study. Li1+ xMn2- xO4 nanocrystals with Al3+-rich shells of different thicknesses were synthesized. Multimodal characterization comprehensively revealed the elemental distribution, electronic state, and crystallinity in the heterostructures, which confirmed the potential of this approach to finely tune passivating layers. All of the modified nanocrystals improved the capacity retention while retaining charge storage compared to the bare counterpart, even under harsh conditions.

9.
Adv Mater ; 31(40): e1902518, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31441124

ABSTRACT

Lithium-CO2 batteries are attractive energy-storage systems for fulfilling the demand of future large-scale applications such as electric vehicles due to their high specific energy density. However, a major challenge with Li-CO2 batteries is to attain reversible formation and decomposition of the Li2 CO3 and carbon discharge products. A fully reversible Li-CO2 battery is developed with overall carbon neutrality using MoS2 nanoflakes as a cathode catalyst combined with an ionic liquid/dimethyl sulfoxide electrolyte. This combination of materials produces a multicomponent composite (Li2 CO3 /C) product. The battery shows a superior long cycle life of 500 for a fixed 500 mAh g-1 capacity per cycle, far exceeding the best cycling stability reported in Li-CO2 batteries. The long cycle life demonstrates that chemical transformations, making and breaking covalent CO bonds can be used in energy-storage systems. Theoretical calculations are used to deduce a mechanism for the reversible discharge/charge processes and explain how the carbon interface with Li2 CO3 provides the electronic conduction needed for the oxidation of Li2 CO3 and carbon to generate the CO2 on charge. This achievement paves the way for the use of CO2 in advanced energy-storage systems.

10.
ACS Appl Mater Interfaces ; 10(40): 34443-34454, 2018 Oct 10.
Article in English | MEDLINE | ID: mdl-30212175

ABSTRACT

Surface modifications of a biomaterial like collagen are crucial in improving the surface properties and thus enhancing the functionality and performance of such a material for a variety of biomedical applications. In this study, a commercially available collagen membrane's surface was functionalized by depositing an ultrathin film of titania or titanium dioxide (TiO2) using a room temperature atomic layer deposition (ALD) process. A novel titanium precursor-oxidizer combination was used for this process in a custom-made ALD reactor. Surface characterizations revealed successful deposition of uniform, conformal TiO2 thin film on the collagen fibrillar surface, and consequently, the fibers became thicker making the membrane pores smaller. The in vitro bioactivity of the ALD-TiO2 thin film coated collagen was investigated for the first time using cell proliferation and a calcium phosphate mineralization assay. The TiO2-coated collagen demonstrated improved biocompatibility promoting higher growth and proliferation of human osteoblastic and mesenchymal stem cells when compared to that of noncoated collagen. A higher level of calcium phosphate or apatite formation was observed on ALD modified collagen surface as compared to that on noncoated collagen. Therefore, this novel material can be promising in bone tissue engineering applications.


Subject(s)
Coated Materials, Biocompatible , Collagen , Materials Testing , Membranes, Artificial , Mesenchymal Stem Cells/metabolism , Osteoblasts/metabolism , Titanium , Cell Line , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Collagen/chemistry , Collagen/pharmacology , Humans , Mesenchymal Stem Cells/cytology , Osteoblasts/cytology , Titanium/chemistry , Titanium/pharmacology
11.
ACS Appl Nano Mater ; 1(9): 4602-4611, 2018 Sep 28.
Article in English | MEDLINE | ID: mdl-34056557

ABSTRACT

Inspired by the gallstone formation mechanism, we report a fast one-pot synthesis of high-surface-area bimetallic hierarchical supra-nanostructures. As gallstones are generated from metal cholate complexes, cholate bile acid molecules with Au/Ag metal precursors formed stable nanocomplexes aggregated with metal Au ions and preformed ~2 nm silver halide nanoparticles before reduction. When a reducing agent was added, the metal cholate nanocomplexes quickly formed noble bimetallic hierarchical supra-nanostructures. The morphology of bimetallic supra-nanostructures could be tailored by changing the feeding ratio of each metal precursor. In situ synchrotron small-angle X-ray scattering measurement with a custom-designed reaction cell showed two-step growth and attachment behavior toward hierarchical supra-nanostructures from the gallstone-formation-inspired metal cholate nanocomplexes in a 60 s reaction. Additional wide-angle X-ray scattering, X-ray absorption near-edge structure, in situ Fourier transform infrared, and high-resolution scanning transmission electron microscopy investigations subsequently revealed the mechanism for the evolution of bimetallic hierarchical supra-nanostructures. The gallstone-formation-inspired synthesis mechanism can be universally applied to other metals, for example, Pt-Ag and Pd-Ag bimetallic nanostructures. Finally, the synthesized high-surface-area bimetallic supra-nanostructures demonstrated significantly enhanced X-ray computed tomography imaging contrast and radiosensitizing effect for a potential image-guided nanomedicine application. We believe that our synthetic method inspired by gallstone formation and understanding represents an important step toward the development of hierarchical nanoparticles for various applications.

12.
Adv Mater ; : e1802702, 2018 Jul 30.
Article in English | MEDLINE | ID: mdl-30062804

ABSTRACT

The ability to examine the vibrational spectra of liquids with nanometer spatial resolution will greatly expand the potential to study liquids and liquid interfaces. In fact, the fundamental properties of water, including complexities in its phase diagram, electrochemistry, and bonding due to nanoscale confinement are current research topics. For any liquid, direct investigation of ordered liquid structures, interfacial double layers, and adsorbed species at liquid-solid interfaces are of interest. Here, a novel way of characterizing the vibrational properties of liquid water with high spatial resolution using transmission electron microscopy is reported. By encapsulating water between two sheets of boron nitride, the ability to capture vibrational spectra to quantify the structure of the liquid, its interaction with the liquid-cell surfaces, and the ability to identify isotopes including H2 O and D2 O using electron energy-loss spectroscopy is demonstrated. The electron microscope used here, equipped with a high-energy-resolution monochromator, is able to record vibrational spectra of liquids and molecules and is sensitive to surface and bulk morphological properties both at the nano- and micrometer scales. These results represent an important milestone for liquid and isotope-labeled materials characterization with high spatial resolution, combining nanoscale imaging with vibrational spectroscopy.

13.
Adv Mater ; 30(38): e1802737, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30084144

ABSTRACT

Domain walls (DWs) have become an essential component in nanodevices based on ferroic thin films. The domain configuration and DW stability, however, are strongly dependent on the boundary conditions of thin films, which make it difficult to create complex ordered patterns of DWs. Here, it is shown that novel domain structures, that are otherwise unfavorable under the natural boundary conditions, can be realized by utilizing engineered nanosized structural defects as building blocks for reconfiguring DW patterns. It is directly observed that an array of charged defects, which are located within a monolayer thickness, can be intentionally introduced by slightly changing substrate temperature during the growth of multiferroic BiFeO3 thin films. These defects are strongly coupled to the domain structures in the pretemperature-change portion of the BiFeO3 film and can effectively change the configuration of newly grown domains due to the interaction between the polarization and the defects. Thus, two types of domain patterns are integrated into a single film without breaking the DW periodicity. The potential use of these defects for building complex patterns of conductive DWs is also demonstrated.

14.
Adv Mater ; 28(31): 6574-80, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27213756

ABSTRACT

Controlled switching of resistivity in ferroelectric thin films is demonstrated by writing and erasing stable, nanoscale, strongly charged domain walls using an in situ transmission electron microscopy technique. The resistance can be read nondestructively and presents the largest off/on ratio (≈10(5) ) ever reported in room-temperature ferroelectric devices, opening new avenues for engineering ferroelectric thin-film devices.

15.
Adv Mater ; 26(43): 7365-70, 2014 Nov 19.
Article in English | MEDLINE | ID: mdl-25244308

ABSTRACT

Using pulsed laser deposition, TiO2 (-) B and its recently discovered variant Ca:TiO2 (-) B (CaTi5O11) are synthesized as highly crystalline thin films for the first time by a completely water-free process. Significant enhancement in the Li-ion battery performance is achieved by manipulating the crystal orientation of the films, used as anodes, with a demonstration of extraordinary structural stability under extreme conditions.


Subject(s)
Electric Power Supplies , Ions/chemistry , Lithium/chemistry , Titanium/chemistry , Calcium Compounds/chemistry , Electrodes , Equipment Design , Lasers , Microscopy, Electron, Transmission , X-Ray Diffraction
16.
Nat Commun ; 5: 3801, 2014 May 02.
Article in English | MEDLINE | ID: mdl-24787035

ABSTRACT

In thin film ferroelectric devices, switching of ferroelastic domains can significantly enhance electromechanical response. Previous studies have shown disagreement regarding the mobility or immobility of ferroelastic domain walls, indicating that switching behaviour strongly depends on specific microstructures in ferroelectric systems. Here we study the switching dynamics of individual ferroelastic domains in thin Pb(Zr0.2,Ti0.8)O3 films under electrical and mechanical excitations by using in situ transmission electron microscopy and phase-field modelling. We find that ferroelastic domains can be effectively and permanently stabilized by dislocations at the substrate interface while similar domains at free surfaces without pinning dislocations can be removed by either electric or stress fields. For both electrical and mechanical switching, ferroelastic switching is found to occur most readily at the highly active needle points in ferroelastic domains. Our results provide new insights into the understanding of polarization switching dynamics as well as the engineering of ferroelectric devices.

17.
Adv Mater ; 24(8): 1106-10, 2012 Feb 21.
Article in English | MEDLINE | ID: mdl-22331626

ABSTRACT

Nonvolatile ferroelectric random-access memory uses ferroelectric thin films to save a polar state written by an electric field that is retained when the field is removed. After switching, the high energy of the domain walls separating regions of unlike polarization can drive backswitching resulting in a loss of switched domain volume, or in the case of very small domains, complete retention loss.


Subject(s)
Electrical Equipment and Supplies , Lead/chemistry , Oxides/chemistry , Titanium/chemistry , Zirconium/chemistry
18.
Nat Commun ; 2: 591, 2011 Dec 20.
Article in English | MEDLINE | ID: mdl-22186887

ABSTRACT

Ferroelectric materials are characterized by a spontaneous polarization, which can be reoriented with an applied electric field. The switching between polarized domains is mediated by nanoscale defects. Understanding the role of defects in ferroelectric switching is critical for practical applications such as non-volatile memories. This is especially the case for ferroelectric nanostructures and thin films in which the entire switching volume is proximate to a defective surface. Here we report the nanoscale ferroelectric switching of a tetragonal PbZr(0.2)Ti(0.8)O(3) thin film under an applied electric field using in situ transmission electron microscopy. We found that the intrinsic electric fields formed at ferroelectric/electrode interfaces determine the nucleation sites and growth rates of ferroelectric domains and the orientation and mobility of domain walls, whereas dislocations exert a weak pinning force on domain wall motion.


Subject(s)
Electronics/methods , Nanotechnology/methods , Crystallization , Electricity , Electrodes , Lead/chemistry , Microscopy, Electron, Transmission , Nanostructures/chemistry , Nanostructures/ultrastructure , Oxides/chemistry , Titanium/chemistry , Zirconium/chemistry
19.
Science ; 334(6058): 968-71, 2011 Nov 18.
Article in English | MEDLINE | ID: mdl-22096196

ABSTRACT

The utility of ferroelectric materials stems from the ability to nucleate and move polarized domains using an electric field. To understand the mechanisms of polarization switching, structural characterization at the nanoscale is required. We used aberration-corrected transmission electron microscopy to follow the kinetics and dynamics of ferroelectric switching at millisecond temporal and subangstrom spatial resolution in an epitaxial bilayer of an antiferromagnetic ferroelectric (BiFeO(3)) on a ferromagnetic electrode (La(0.7)Sr(0.3)MnO(3)). We observed localized nucleation events at the electrode interface, domain wall pinning on point defects, and the formation of ferroelectric domains localized to the ferroelectric and ferromagnetic interface. These results show how defects and interfaces impede full ferroelectric switching of a thin film.

SELECTION OF CITATIONS
SEARCH DETAIL