Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters

Publication year range
1.
Cell ; 166(6): 1459-1470.e11, 2016 Sep 08.
Article in English | MEDLINE | ID: mdl-27610570

ABSTRACT

Induction of broadly neutralizing antibodies (bnAbs) is a primary goal of HIV vaccine development. VRC01-class bnAbs are important vaccine leads because their precursor B cells targeted by an engineered priming immunogen are relatively common among humans. This priming immunogen has demonstrated the ability to initiate a bnAb response in animal models, but recall and maturation toward bnAb development has not been shown. Here, we report the development of boosting immunogens designed to guide the genetic and functional maturation of previously primed VRC01-class precursors. Boosting a transgenic mouse model expressing germline VRC01 heavy chains produced broad neutralization of near-native isolates (N276A) and weak neutralization of fully native HIV. Functional and genetic characteristics indicate that the boosted mAbs are consistent with partially mature VRC01-class antibodies and place them on a maturation trajectory that leads toward mature VRC01-class bnAbs. The results show how reductionist sequential immunization can guide maturation of HIV bnAb responses.


Subject(s)
Antibodies, Neutralizing/immunology , B-Lymphocytes/immunology , HIV Antibodies/immunology , HIV-1/immunology , Vaccines, Synthetic/immunology , Adult , Amino Acid Sequence , Animals , Antibodies, Neutralizing/genetics , Antigens, Viral/immunology , Female , HIV Antibodies/blood , HIV Antibodies/genetics , Humans , Male , Mice , Mice, Transgenic , Mutation , Sequence Alignment , Vaccines, Synthetic/administration & dosage
2.
Immunity ; 45(1): 31-45, 2016 07 19.
Article in English | MEDLINE | ID: mdl-27438765

ABSTRACT

The dense patch of high-mannose-type glycans surrounding the N332 glycan on the HIV envelope glycoprotein (Env) is targeted by multiple broadly neutralizing antibodies (bnAbs). This region is relatively conserved, implying functional importance, the origins of which are not well understood. Here we describe the isolation of new bnAbs targeting this region. Examination of these and previously described antibodies to Env revealed that four different bnAb families targeted the (324)GDIR(327) peptide stretch at the base of the gp120 V3 loop and its nearby glycans. We found that this peptide stretch constitutes part of the CCR5 co-receptor binding site, with the high-mannose patch glycans serving to camouflage it from most antibodies. GDIR-glycan bnAbs, in contrast, bound both (324)GDIR(327) peptide residues and high-mannose patch glycans, which enabled broad reactivity against diverse HIV isolates. Thus, as for the CD4 binding site, bnAb effectiveness relies on circumventing the defenses of a critical functional region on Env.


Subject(s)
Antibodies, Neutralizing/immunology , Binding Sites, Antibody/immunology , HIV Antibodies/immunology , HIV Envelope Protein gp120/metabolism , HIV Infections/immunology , HIV-1/immunology , Polysaccharides/metabolism , Amino Acid Motifs , CD4 Antigens/metabolism , Epitope Mapping , Epitopes/metabolism , Genetic Engineering , HEK293 Cells , HIV Envelope Protein gp120/immunology , Humans , Immunity, Humoral , Immunologic Memory , Peptide Fragments/metabolism , Polysaccharides/immunology , Protein Binding , Receptors, CCR5/metabolism
3.
Immunity ; 45(3): 483-496, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27617678

ABSTRACT

Broadly neutralizing antibodies (bnAbs) against the N332 supersite of the HIV envelope (Env) trimer are the most common bnAbs induced during infection, making them promising leads for vaccine design. Wild-type Env glycoproteins lack detectable affinity for supersite-bnAb germline precursors and are therefore unsuitable immunogens to prime supersite-bnAb responses. We employed mammalian cell surface display to design stabilized Env trimers with affinity for germline-reverted precursors of PGT121-class supersite bnAbs. The trimers maintained native-like antigenicity and structure, activated PGT121 inferred-germline B cells ex vivo when multimerized on liposomes, and primed PGT121-like responses in PGT121 inferred-germline knockin mice. Design intermediates have levels of epitope modification between wild-type and germline-targeting trimers; their mutation gradient suggests sequential immunization to induce bnAbs, in which the germline-targeting prime is followed by progressively less-mutated design intermediates and, lastly, with native trimers. The vaccine design strategies described could be utilized to target other epitopes on HIV or other pathogens.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , Polysaccharides/immunology , Amino Acid Sequence , Animals , B-Lymphocytes/immunology , Epitopes/immunology , HIV Infections/immunology , HIV-1/immunology , Immunization/methods , Mice , Mice, Knockout , Mutation/immunology , Sequence Alignment , env Gene Products, Human Immunodeficiency Virus/immunology
4.
Am J Physiol Lung Cell Mol Physiol ; 325(5): L552-L567, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37642652

ABSTRACT

Prenatal and early-life exposure to cigarette smoke (CS) has repeatedly been shown to induce stable, long-term changes in DNA methylation (DNAm) in offspring. It has been hypothesized that these changes might be functionally related to the known outcomes of prenatal and early-life CS exposure, which include impaired lung development, altered lung function, and increased risk of asthma and wheeze. However, to date, few studies have examined DNAm changes induced by prenatal CS in tissues of the lung, and even fewer have attempted to examine the specific influences of prenatal versus early postnatal exposures. Here, we have established a mouse model of CS exposure which isolates the effects of prenatal and early postnatal CS exposures in early life. We have used this model to measure the effects of prenatal and/or postnatal CS exposures on lung function and immune cell infiltration as well as DNAm and expression of Cyp1a1, a candidate gene previously observed to demonstrate DNAm differences on CS exposure in humans. Our study revealed that exposure to CS prenatally and in the early postnatal period causes long-lasting differences in offspring lung function, gene expression, and lung Cyp1a1 DNAm, which wane over time but are reestablished on reexposure to CS in adulthood. This study creates a testable mouse model that can be used to investigate the effects of prenatal and early postnatal CS exposures and will contribute to the design of intervention strategies to mediate these detrimental effects.NEW & NOTEWORTHY Here, we isolated effects of prenatal from early postnatal cigarette smoke and showed that exposure to cigarette smoke early in life causes changes in offspring DNA methylation at Cyp1a1 that last through early adulthood but not into late adulthood. We also showed that smoking in adulthood reestablished these DNA methylation patterns at Cyp1a1, suggesting that a mechanism other than DNA methylation results in long-term memory associated with early-life cigarette smoke exposures at this gene.


Subject(s)
Cigarette Smoking , Prenatal Exposure Delayed Effects , Humans , Pregnancy , Animals , Mice , Female , DNA Methylation , Cigarette Smoking/adverse effects , Cigarette Smoking/genetics , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1A1/pharmacology , Nicotiana/adverse effects , Lung/metabolism , Prenatal Exposure Delayed Effects/genetics , Prenatal Exposure Delayed Effects/metabolism
5.
Cell Mol Life Sci ; 79(4): 193, 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35298717

ABSTRACT

Aberrant insulin-like growth factor 1 (IGF-1) signaling has been proposed as a contributing factor to the development of neurodegenerative disorders including diabetic neuropathy, and delivery of exogenous IGF-1 has been explored as a treatment for Alzheimer's disease and amyotrophic lateral sclerosis. However, the role of autocrine/paracrine IGF-1 in neuroprotection has not been well established. We therefore used in vitro cell culture systems and animal models of diabetic neuropathy to characterize endogenous IGF-1 in sensory neurons and determine the factors regulating IGF-1 expression and/or affecting neuronal health. Single-cell RNA sequencing (scRNA-Seq) and in situ hybridization analyses revealed high expression of endogenous IGF-1 in non-peptidergic neurons and satellite glial cells (SGCs) of dorsal root ganglia (DRG). Brain cortex and DRG had higher IGF-1 gene expression than sciatic nerve. Bidirectional transport of IGF-1 along sensory nerves was observed. Despite no difference in IGF-1 receptor levels, IGF-1 gene expression was significantly (P < 0.05) reduced in liver and DRG from streptozotocin (STZ)-induced type 1 diabetic rats, Zucker diabetic fatty (ZDF) rats, mice on a high-fat/ high-sugar diet and db/db type 2 diabetic mice. Hyperglycemia suppressed IGF-1 gene expression in cultured DRG neurons and this was reversed by exogenous IGF-1 or the aldose reductase inhibitor sorbinil. Transcription factors, such as NFAT1 and CEBPß, were also less enriched at the IGF-1 promoter in DRG from diabetic rats vs control rats. CEBPß overexpression promoted neurite outgrowth and mitochondrial respiration, both of which were blunted by knocking down or blocking IGF-1. Suppression of endogenous IGF-1 in diabetes may contribute to neuropathy and its upregulation at the transcriptional level by CEBPß can be a promising therapeutic approach.


Subject(s)
Aging/metabolism , Axons/pathology , CCAAT-Enhancer-Binding Protein-beta/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Energy Metabolism , Insulin-Like Growth Factor I/metabolism , Sensory Receptor Cells/metabolism , Animals , Antibodies, Neutralizing/pharmacology , Axons/drug effects , Axons/metabolism , Base Sequence , CCAAT-Enhancer-Binding Protein-beta/genetics , Cell Respiration/drug effects , Cells, Cultured , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Energy Metabolism/drug effects , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Gene Expression Regulation/drug effects , Glycolysis/drug effects , HEK293 Cells , Humans , Insulin-Like Growth Factor I/genetics , Liver/metabolism , Male , Mitochondria/drug effects , Mitochondria/metabolism , NFATC Transcription Factors/metabolism , Neuronal Outgrowth/drug effects , Polymers/metabolism , Promoter Regions, Genetic/genetics , Protein Transport/drug effects , Rats, Sprague-Dawley , Sensory Receptor Cells/pathology , Signal Transduction/drug effects
6.
Proc Natl Acad Sci U S A ; 117(38): 23329-23335, 2020 09 22.
Article in English | MEDLINE | ID: mdl-31611402

ABSTRACT

The development of biological markers of aging has primarily focused on adult samples. Epigenetic clocks are a promising tool for measuring biological age that show impressive accuracy across most tissues and age ranges. In adults, deviations from the DNA methylation (DNAm) age prediction are correlated with several age-related phenotypes, such as mortality and frailty. In children, however, fewer such associations have been made, possibly because DNAm changes are more dynamic in pediatric populations as compared to adults. To address this gap, we aimed to develop a highly accurate, noninvasive, biological measure of age specific to pediatric samples using buccal epithelial cell DNAm. We gathered 1,721 genome-wide DNAm profiles from 11 different cohorts of typically developing individuals aged 0 to 20 y old. Elastic net penalized regression was used to select 94 CpG sites from a training dataset (n = 1,032), with performance assessed in a separate test dataset (n = 689). DNAm at these 94 CpG sites was highly predictive of age in the test cohort (median absolute error = 0.35 y). The Pediatric-Buccal-Epigenetic (PedBE) clock was characterized in additional cohorts, showcasing the accuracy in longitudinal data, the performance in nonbuccal tissues and adult age ranges, and the association with obstetric outcomes. The PedBE tool for measuring biological age in children might help in understanding the environmental and contextual factors that shape the DNA methylome during child development, and how it, in turn, might relate to child health and disease.


Subject(s)
Epigenomics/methods , Epithelial Cells/metabolism , Mouth Mucosa/cytology , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , CpG Islands , Epigenesis, Genetic , Female , Humans , Infant , Longitudinal Studies , Male , Mouth Mucosa/metabolism , Young Adult
7.
N Engl J Med ; 380(15): 1433-1441, 2019 04 11.
Article in English | MEDLINE | ID: mdl-30970188

ABSTRACT

We report an inborn error of metabolism caused by an expansion of a GCA-repeat tract in the 5' untranslated region of the gene encoding glutaminase (GLS) that was identified through detailed clinical and biochemical phenotyping, combined with whole-genome sequencing. The expansion was observed in three unrelated patients who presented with an early-onset delay in overall development, progressive ataxia, and elevated levels of glutamine. In addition to ataxia, one patient also showed cerebellar atrophy. The expansion was associated with a relative deficiency of GLS messenger RNA transcribed from the expanded allele, which probably resulted from repeat-mediated chromatin changes upstream of the GLS repeat. Our discovery underscores the importance of careful examination of regions of the genome that are typically excluded from or poorly captured by exome sequencing.


Subject(s)
Amino Acid Metabolism, Inborn Errors/genetics , Ataxia/genetics , Developmental Disabilities/genetics , Glutaminase/deficiency , Glutaminase/genetics , Glutamine/metabolism , Microsatellite Repeats , Mutation , Atrophy/genetics , Cerebellum/pathology , Child, Preschool , Female , Genotype , Glutamine/analysis , Humans , Male , Phenotype , Polymerase Chain Reaction , Whole Genome Sequencing
8.
Proc Natl Acad Sci U S A ; 114(29): 7611-7616, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28673994

ABSTRACT

Chronic inflammation contributes to a wide range of human diseases, and environments in infancy and childhood are important determinants of inflammatory phenotypes. The underlying biological mechanisms connecting early environments with the regulation of inflammation in adulthood are not known, but epigenetic processes are plausible candidates. We tested the hypothesis that patterns of DNA methylation (DNAm) in inflammatory genes in young adulthood would be predicted by early life nutritional, microbial, and psychosocial exposures previously associated with levels of inflammation. Data come from a population-based longitudinal birth cohort study in metropolitan Cebu, the Philippines, and DNAm was characterized in whole blood samples from 494 participants (age 20-22 y). Analyses focused on probes in 114 target genes involved in the regulation of inflammation, and we identified 10 sites across nine genes where the level of DNAm was significantly predicted by the following variables: household socioeconomic status in childhood, extended absence of a parent in childhood, exposure to animal feces in infancy, birth in the dry season, or duration of exclusive breastfeeding. To evaluate the biological significance of these sites, we tested for associations with a panel of inflammatory biomarkers measured in plasma obtained at the same age as DNAm assessment. Three sites predicted elevated inflammation, and one site predicted lower inflammation, consistent with the interpretation that levels of DNAm at these sites are functionally relevant. This pattern of results points toward DNAm as a potentially important biological mechanism through which developmental environments shape inflammatory phenotypes across the life course.


Subject(s)
DNA Methylation , Environment , Inflammation/genetics , Social Environment , Biomarkers , Breast Feeding , C-Reactive Protein/metabolism , Cardiovascular Diseases/genetics , Child, Preschool , Cohort Studies , Epigenesis, Genetic , Female , Gene Expression Profiling , Genome , Health Surveys , Humans , Immune System , Infant , Infant, Newborn , Longitudinal Studies , Male , Philippines , Risk Factors , Social Class , Young Adult
9.
Annu Rev Psychol ; 69: 459-485, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29035689

ABSTRACT

The interplay of genetically driven biological processes and environmental factors is a key driver of research questions spanning multiple areas of psychology. A nascent area of research focuses on the utility of epigenetic marks in capturing this intersection of genes and environment, as epigenetic mechanisms are both tightly linked to the genome and environmentally responsive. Advances over the past 10 years have allowed large-scale assessment of one epigenetic mark in particular, DNA methylation, in human populations, and the examination of DNA methylation is becoming increasingly common in psychological studies. In this review, we briefly outline some principles of epigenetics, focusing on highlighting important considerations unique to DNA methylation studies to guide psychologists in incorporating DNA methylation into a project. We discuss study design and biological and analytical considerations and conclude by discussing interpretability of epigenetic findings and how these important factors are currently being applied across areas of psychology.


Subject(s)
Epigenomics , Psychology , Epigenesis, Genetic , Humans
10.
Am J Phys Anthropol ; 169(1): 3-11, 2019 05.
Article in English | MEDLINE | ID: mdl-30771258

ABSTRACT

OBJECTIVES: Socioeconomic status (SES) is a powerful determinant of health, but the underlying biological mechanisms are poorly understood. This study investigates whether levels of DNA methylation at CpG sites across the genome are associated with SES in a cohort of young adults in the Philippines. METHODS: DNA methylation was assayed with the Illumina HumanMethylation450 Bead Chip, in leukocytes from 489 participants in the Cebu Longitudinal Health and Nutrition Survey (mean age = 20.9 years). SES was measured in infancy/childhood and adulthood, and was based on composite measures of income, assets, and education. Genome-wide analysis of variable probes identified CpG sites significantly associated with SES after adjustment for multiple comparisons. Functional enrichment analysis was used to identify biological pathways associated with these sites. RESULTS: A total of 2,546 CpG sites, across 1,537 annotated genes, were differentially methylated in association with SES. In comparison with high SES, low SES was associated with increased methylation at 1,777 sites, and decreased methylation at 769 sites. Functional enrichment analysis identified over-representation of biological pathways related to immune function, skeletal development, and development of the nervous system. CONCLUSIONS: Socioeconomic status predicts DNA methylation at a large number of CpG sites across the genome. The scope of these associations is commensurate with the wide range of biological systems and health outcomes that are shaped by SES, and these findings suggest that DNA methylation may play an important role.


Subject(s)
DNA Methylation/genetics , Genome-Wide Association Study/methods , Social Class , Adolescent , Adult , Child , Child Development , Child, Preschool , Epigenomics/methods , Female , Healthcare Disparities/statistics & numerical data , Humans , Longitudinal Studies , Male , Philippines/epidemiology , Young Adult
11.
PLoS Pathog ; 12(8): e1005815, 2016 08.
Article in English | MEDLINE | ID: mdl-27560183

ABSTRACT

An optimal HIV vaccine should induce broadly neutralizing antibodies (bnAbs) that neutralize diverse viral strains and subtypes. However, potent bnAbs develop in only a small fraction of HIV-infected individuals, all contain rare features such as extensive mutation, insertions, deletions, and/or long complementarity-determining regions, and some are polyreactive, casting doubt on whether bnAbs to HIV can be reliably induced by vaccination. We engineered two potent VRC01-class bnAbs that minimized rare features. According to a quantitative features frequency analysis, the set of features for one of these minimally mutated bnAbs compared favorably with all 68 HIV bnAbs analyzed and was similar to antibodies elicited by common vaccines. This same minimally mutated bnAb lacked polyreactivity in four different assays. We then divided the minimal mutations into spatial clusters and dissected the epitope components interacting with those clusters, by mutational and crystallographic analyses coupled with neutralization assays. Finally, by synthesizing available data, we developed a working-concept boosting strategy to select the mutation clusters in a logical order following a germline-targeting prime. We have thus developed potent HIV bnAbs that may be more tractable vaccine goals compared to existing bnAbs, and we have proposed a strategy to elicit them. This reductionist approach to vaccine design, guided by antibody and antigen structure, could be applied to design candidate vaccines for other HIV bnAbs or protective Abs against other pathogens.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , Drug Design , HIV Antibodies/immunology , HIV-1/immunology , Amino Acid Sequence , Antibodies, Neutralizing/genetics , HIV Antibodies/genetics , HIV Infections/immunology , High-Throughput Screening Assays , Humans , Models, Molecular , Mutation
13.
Am J Respir Crit Care Med ; 195(10): 1373-1383, 2017 05 15.
Article in English | MEDLINE | ID: mdl-27901618

ABSTRACT

RATIONALE: The evidence supporting an association between traffic-related air pollution exposure and incident childhood asthma is inconsistent and may depend on genetic factors. OBJECTIVES: To identify gene-environment interaction effects on childhood asthma using genome-wide single-nucleotide polymorphism (SNP) data and air pollution exposure. Identified loci were further analyzed at epigenetic and transcriptomic levels. METHODS: We used land use regression models to estimate individual air pollution exposure (represented by outdoor NO2 levels) at the birth address and performed a genome-wide interaction study for doctors' diagnoses of asthma up to 8 years in three European birth cohorts (n = 1,534) with look-up for interaction in two separate North American cohorts, CHS (Children's Health Study) and CAPPS/SAGE (Canadian Asthma Primary Prevention Study/Study of Asthma, Genetics and Environment) (n = 1,602 and 186 subjects, respectively). We assessed expression quantitative trait locus effects in human lung specimens and blood, as well as associations among air pollution exposure, methylation, and transcriptomic patterns. MEASUREMENTS AND MAIN RESULTS: In the European cohorts, 186 SNPs had an interaction P < 1 × 10-4 and a look-up evaluation of these disclosed 8 SNPs in 4 loci, with an interaction P < 0.05 in the large CHS study, but not in CAPPS/SAGE. Three SNPs within adenylate cyclase 2 (ADCY2) showed the same direction of the interaction effect and were found to influence ADCY2 gene expression in peripheral blood (P = 4.50 × 10-4). One other SNP with P < 0.05 for interaction in CHS, rs686237, strongly influenced UDP-Gal:betaGlcNAc ß-1,4-galactosyltransferase, polypeptide 5 (B4GALT5) expression in lung tissue (P = 1.18 × 10-17). Air pollution exposure was associated with differential discs, large homolog 2 (DLG2) methylation and expression. CONCLUSIONS: Our results indicated that gene-environment interactions are important for asthma development and provided supportive evidence for interaction with air pollution for ADCY2, B4GALT5, and DLG2.


Subject(s)
Air Pollution/statistics & numerical data , Asthma/epidemiology , Gene-Environment Interaction , Vehicle Emissions , Asthma/genetics , Child , Europe/epidemiology , Female , Follow-Up Studies , Humans , Male , North America/epidemiology , Polymorphism, Single Nucleotide
14.
J Allergy Clin Immunol ; 139(1): 112-121, 2017 01.
Article in English | MEDLINE | ID: mdl-27321436

ABSTRACT

BACKGROUND: Allergic disease affects 30% to 40% of the world's population, and its development is determined by the interplay between environmental and inherited factors. Air pollution, primarily consisting of diesel exhaust emissions, has increased at a similar rate to allergic disease. Exposure to diesel exhaust may play a role in the development and progression of allergic disease, in particular allergic respiratory disease. One potential mechanism underlying the connection between air pollution and increased allergic disease incidence is DNA methylation, an epigenetic process with the capacity to integrate gene-environment interactions. OBJECTIVE: We sought to investigate the effect of allergen and diesel exhaust exposure on bronchial epithelial DNA methylation. METHODS: We performed a randomized crossover-controlled exposure study to allergen and diesel exhaust in humans, and measured single-site (CpG) resolution global DNA methylation in bronchial epithelial cells. RESULTS: Exposure to allergen alone, diesel exhaust alone, or allergen and diesel exhaust together (coexposure) led to significant changes in 7 CpG sites at 48 hours. However, when the same lung was exposed to allergen and diesel exhaust but separated by approximately 4 weeks, significant changes in more than 500 sites were observed. Furthermore, sites of differential methylation differed depending on which exposure was experienced first. Functional analysis of differentially methylated CpG sites found genes involved in transcription factor activity, protein metabolism, cell adhesion, and vascular development, among others. CONCLUSIONS: These findings suggest that specific exposures can prime the lung for changes in DNA methylation induced by a subsequent insult.


Subject(s)
Air Pollutants/toxicity , Allergens/toxicity , Bronchi/drug effects , DNA Methylation/drug effects , Respiratory Mucosa/drug effects , Vehicle Emissions/toxicity , Adult , Antigens, Dermatophagoides/toxicity , Asthma/genetics , Asthma/metabolism , Betula/immunology , Bronchi/metabolism , CpG Islands , Female , Humans , Inhalation Exposure/adverse effects , Male , Middle Aged , Phleum/immunology , Plant Proteins/toxicity , Respiratory Mucosa/metabolism , Young Adult
15.
Hum Mol Genet ; 24(6): 1528-39, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25381334

ABSTRACT

X-chromosome inactivation (XCI) achieves dosage compensation between males and females through the silencing of the majority of genes on one of the female X chromosomes. Thus, the female X chromosomes provide a unique opportunity to study euchromatin and heterochromatin of allelic regions within the same nuclear environment. We examined the interplay of DNA methylation (DNAm) with CpG density, transcriptional activity and chromatin state at genes on the X chromosome using over 1800 female samples analysed with the Illumina Infinium Human Methylation450 BeadChip. DNAm was used to predict an inactivation status for 63 novel transcription start sites (TSSs) across 27 tissues. There was high concordance of inactivation status across tissues, with 62% of TSSs subject to XCI in all 27 tissues examined, whereas 9% escaped from XCI in all tissues, and the remainder showed variable escape from XCI between females in subsets of tissues. Inter-female and twin data supported a model of predominately cis-acting influences on inactivation status. The level of expression from the inactive X relative to the active X correlated with the amount of female promoter DNAm to a threshold of ∼30%, beyond which genes were consistently subject to inactivation. The inactive X showed lower DNAm than the active X at intragenic and intergenic regions for genes subject to XCI, but not at genes that escape from inactivation. Our categorization of genes that escape from X inactivation provides candidates for sex-specific differences in disease.


Subject(s)
Chromatin/metabolism , Chromosomes, Human, X , CpG Islands , DNA Methylation , X Chromosome Inactivation , DNA, Intergenic , Female , Gene Expression Regulation , Humans , Oligonucleotide Array Sequence Analysis , Organ Specificity , Promoter Regions, Genetic , Transcription, Genetic
16.
BMC Bioinformatics ; 17: 120, 2016 Mar 08.
Article in English | MEDLINE | ID: mdl-26956433

ABSTRACT

BACKGROUND: Confounding due to cellular heterogeneity represents one of the foremost challenges currently facing Epigenome-Wide Association Studies (EWAS). Statistical methods leveraging the tissue-specificity of DNA methylation for deconvoluting the cellular mixture of heterogenous biospecimens offer a promising solution, however the performance of such methods depends entirely on the library of methylation markers being used for deconvolution. Here, we introduce a novel algorithm for Identifying Optimal Libraries (IDOL) that dynamically scans a candidate set of cell-specific methylation markers to find libraries that optimize the accuracy of cell fraction estimates obtained from cell mixture deconvolution. RESULTS: Application of IDOL to training set consisting of samples with both whole-blood DNA methylation data (Illumina HumanMethylation450 BeadArray (HM450)) and flow cytometry measurements of cell composition revealed an optimized library comprised of 300 CpG sites. When compared existing libraries, the library identified by IDOL demonstrated significantly better overall discrimination of the entire immune cell landscape (p = 0.038), and resulted in improved discrimination of 14 out of the 15 pairs of leukocyte subtypes. Estimates of cell composition across the samples in the training set using the IDOL library were highly correlated with their respective flow cytometry measurements, with all cell-specific R (2)>0.99 and root mean square errors (RMSEs) ranging from [0.97 % to 1.33 %] across leukocyte subtypes. Independent validation of the optimized IDOL library using two additional HM450 data sets showed similarly strong prediction performance, with all cell-specific R (2)>0.90 and R M S E<4.00 %. In simulation studies, adjustments for cell composition using the IDOL library resulted in uniformly lower false positive rates compared to competing libraries, while also demonstrating an improved capacity to explain epigenome-wide variation in DNA methylation within two large publicly available HM450 data sets. CONCLUSIONS: Despite consisting of half as many CpGs compared to existing libraries for whole blood mixture deconvolution, the optimized IDOL library identified herein resulted in outstanding prediction performance across all considered data sets and demonstrated potential to improve the operating characteristics of EWAS involving adjustments for cell distribution. In addition to providing the EWAS community with an optimized library for whole blood mixture deconvolution, our work establishes a systematic and generalizable framework for the assembly of libraries that improve the accuracy of cell mixture deconvolution.


Subject(s)
Algorithms , CpG Islands/genetics , DNA Methylation , Gene Library , Leukocytes/metabolism , Adult , Flow Cytometry , Genome, Human , Humans , Leukocytes/cytology
18.
J Card Fail ; 22(5): 347-55, 2016 May.
Article in English | MEDLINE | ID: mdl-26879888

ABSTRACT

BACKGROUND: Heart failure (HF)-related exercise intolerance is thought to be perpetuated by peripheral skeletal muscle functional, structural, and metabolic abnormalities. We analyzed specific dynamics of muscle contraction in patients with HF compared with healthy, sedentary controls. METHODS: Isometric and isokinetic muscle parameters were measured in the dominant upper and lower limbs of 45 HF patients and 15 healthy age-matched controls. Measurements included peak torque normalized to body weight, work normalized to body weight, power, time to peak torque, and acceleration and deceleration to maximum strength times. Body morphometry (dual energy X-ray absorptiometry scan) and circulating fatty acids and ceramides (lipodomics) were analyzed in a subset of subjects (18 HF and 9 controls). RESULTS: Extension and flexion time-to-peak torque was longer in the lower limbs of HF patients. Furthermore, acceleration and deceleration times in the lower limbs were also prolonged in HF subjects. HF subjects had increased adiposity and decreased lean muscle mass compared with controls. Decreased circulating unsaturated fatty acids and increased ceramides were found in subjects with HF. CONCLUSIONS: Delayed torque development suggests skeletal muscle impairments that may reflect abnormal neuromuscular functional coupling. These impairments may be further compounded by increased adiposity and inflammation associated with increased ceramides.


Subject(s)
Ceramides/blood , Heart Failure/blood , Muscle, Skeletal/physiopathology , Adiposity , Adult , Biomechanical Phenomena , Fatty Acids, Unsaturated/blood , Heart Failure/complications , Heart Failure/physiopathology , Humans , Lower Extremity/physiopathology , Muscle Contraction/physiology , Muscle Strength/physiology , Torque
19.
Dev Psychopathol ; 28(4pt2): 1385-1399, 2016 11.
Article in English | MEDLINE | ID: mdl-26847422

ABSTRACT

Internationally adopted adolescents who are adopted as young children from conditions of poverty and deprivation have poorer physical and mental health outcomes than do adolescents conceived, born, and raised in the United States by families similar to those who adopt internationally. Using a sample of Russian and Eastern European adoptees to control for Caucasian race and US birth, and nonadopted offspring of well-educated and well-resourced parents to control for postadoption conditions, we hypothesized that the important differences in environments, conception to adoption, might be reflected in epigenetic patterns between groups, specifically in DNA methylation. Thus, we conducted an epigenome-wide association study to compare DNA methylation profiles at approximately 416,000 individual CpG loci from peripheral blood mononuclear cells of 50 adopted youth and 33 nonadopted youth. Adopted youth averaged 22 months at adoption, and both groups averaged 15 years at testing; thus, roughly 80% of their lives were lived in similar circumstances. Although concurrent physical health did not differ, cell-type composition predicted using the DNA methylation data revealed a striking difference in the white blood cell-type composition of the adopted and nonadopted youth. After correcting for cell type and removing invariant probes, 30 CpG sites in 19 genes were more methylated in the adopted group. We also used an exploratory functional analysis that revealed that 223 gene ontology terms, clustered in neural and developmental categories, were significantly enriched between groups.


Subject(s)
Adoption , CpG Islands/genetics , DNA Methylation , Leukocytes, Mononuclear/metabolism , Adolescent , Age Factors , Child , Female , Humans , Male , Parents , Russia , United States
SELECTION OF CITATIONS
SEARCH DETAIL