Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Infect Dis ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38843052

ABSTRACT

BACKGROUND: The immunological determinants of delayed viral clearance and intra-host viral evolution that drive the development of new pathogenic virus strains in immunocompromised individuals are unknown. Therefore, we longitudinally studied SARS-CoV-2-specific immune responses in relation to viral-clearance and evolution in immunocompromised individuals. METHODS: Among Omicron-infected immunocompromised individuals, we determined SARS-CoV-2-specific T- and B-cell responses, anti-spike IgG(3) titers, neutralization titers, and monoclonal antibody (mAb)-resistance-associated mutations. The 28-day post-enrollment nasopharyngeal specimen defined early (RT-PCR negative ≤28 days) or late (RT-PCR- positive >28 days) viral-clearance. RESULTS: Of 30 patients included (median age 61.9 years [IQR 47.4-72.3], 50% females), 20 (66.7%) received mAb-therapy. Thirteen (43.3%) demonstrated early and 17 (56.7%) late viral-clearance. Early viral-clearance patients and patients without resistance-associated mutations had significantly higher baseline IFN-γ release and early viral-clearance patients had a higher frequency of SARS-CoV-2-specific B-cells at baseline. In non-mAb-treated patients, day 7 IgG and neutralization titers were significantly higher in those with early versus late viral-clearance. CONCLUSION: An early robust adaptive immune response is vital for efficient viral-clearance and associated with less emergence of mAb-resistance-associated mutations in Omicron-infected immunocompromised patients. This emphasizes the importance of early SARS-CoV-2-specific T- and B-cell responses and thereby provides a rationale for development of novel therapeutic approaches.

2.
BMC Genomics ; 25(1): 433, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693476

ABSTRACT

BACKGROUND: The increasing burden of dengue virus on public health due to more explosive and frequent outbreaks highlights the need for improved surveillance and control. Genomic surveillance of dengue virus not only provides important insights into the emergence and spread of genetically diverse serotypes and genotypes, but it is also critical to monitor the effectiveness of newly implemented control strategies. Here, we present DengueSeq, an amplicon sequencing protocol, which enables whole-genome sequencing of all four dengue virus serotypes. RESULTS: We developed primer schemes for the four dengue virus serotypes, which can be combined into a pan-serotype approach. We validated both approaches using genetically diverse virus stocks and clinical specimens that contained a range of virus copies. High genome coverage (>95%) was achieved for all genotypes, except DENV2 (genotype VI) and DENV 4 (genotype IV) sylvatics, with similar performance of the serotype-specific and pan-serotype approaches. The limit of detection to reach 70% coverage was 10-100 RNA copies/µL for all four serotypes, which is similar to other commonly used primer schemes. DengueSeq facilitates the sequencing of samples without known serotypes, allows the detection of multiple serotypes in the same sample, and can be used with a variety of library prep kits and sequencing instruments. CONCLUSIONS: DengueSeq was systematically evaluated with virus stocks and clinical specimens spanning the genetic diversity within each of the four dengue virus serotypes. The primer schemes can be plugged into existing amplicon sequencing workflows to facilitate the global need for expanded dengue virus genomic surveillance.


Subject(s)
Dengue Virus , Genome, Viral , Serogroup , Whole Genome Sequencing , Dengue Virus/genetics , Dengue Virus/isolation & purification , Dengue Virus/classification , Whole Genome Sequencing/methods , Humans , Genotype , Dengue/virology , Dengue/diagnosis , High-Throughput Nucleotide Sequencing/methods , RNA, Viral/genetics
3.
J Med Virol ; 96(1): e29397, 2024 01.
Article in English | MEDLINE | ID: mdl-38235923

ABSTRACT

Mpox is an emerging zoonotic disease which has now spread to over 113 countries as of August 2023, with over 89,500 confirmed human cases. The Netherlands had one of the highest incidence rates in Europe during the peak of the outbreak. In this study, we generated 158 near-complete mpox virus (MPXV) genomes (12.4% of nationwide cases) that were collected throughout the Netherlands from the start of the outbreak in May 2022 to August 2023 to track viral evolution and investigate outbreak dynamics. We detected 14 different viral lineages, suggesting multiple introductions followed by rapid initial spread within the country. The estimated evolutionary rate was relatively high compared to previously described in orthopoxvirus literature, with an estimated 11.58 mutations per year. Genomic rearrangement events occurred at a rate of 0.63% and featured a large deletion event. In addition, based on phylogenetics, we identified multiple potential transmission clusters which could be supported by direct source- and contact tracing data. This led to the identification of at least two main transmission locations at the beginning of the outbreak. We conclude that whole genome sequencing of MPXV is essential to enhance our understanding of outbreak dynamics and evolution of a relatively understudied and emerging zoonotic pathogen.


Subject(s)
Genomics , Monkeypox virus , Humans , Netherlands/epidemiology , Disease Outbreaks , Europe
4.
Eur J Clin Microbiol Infect Dis ; 42(6): 701-713, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37017810

ABSTRACT

Rapid identification of the rise and spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern remains critical for monitoring of the efficacy of diagnostics, therapeutics, vaccines, and control strategies. A wide range of SARS-CoV-2 next-generation sequencing (NGS) methods have been developed over the last years, but cross-sequence technology benchmarking studies have been scarce. In the current study, 26 clinical samples were sequenced using five protocols: AmpliSeq SARS-CoV-2 (Illumina), EasySeq RC-PCR SARS-CoV-2 (Illumina/NimaGen), Ion AmpliSeq SARS-CoV-2 (Thermo Fisher), custom primer sets (Oxford Nanopore Technologies (ONT)), and capture probe-based viral metagenomics (Roche/Illumina). Studied parameters included genome coverage, depth of coverage, amplicon distribution, and variant calling. The median SARS-CoV-2 genome coverage of samples with cycle threshold (Ct) values of 30 and lower ranged from 81.6 to 99.8% for, respectively, the ONT protocol and Illumina AmpliSeq protocol. Correlation of coverage with PCR Ct values varied per protocol. Amplicon distribution signatures differed across the methods, with peak differences of up to 4 log10 at disbalanced positions in samples with high viral loads (Ct values ≤ 23). Phylogenetic analyses of consensus sequences showed clustering independent of the workflow used. The proportion of SARS-CoV-2 reads in relation to background sequences, as a (cost-)efficiency metric, was the highest for the EasySeq protocol. The hands-on time was the lowest when using EasySeq and ONT protocols, with the latter additionally having the shortest sequence runtime. In conclusion, the studied protocols differed on a variety of the studied metrics. This study provides data that assist laboratories when selecting protocols for their specific setting.


Subject(s)
COVID-19 , Nanopore Sequencing , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Phylogeny , Genome, Viral , High-Throughput Nucleotide Sequencing/methods , Whole Genome Sequencing/methods
5.
Euro Surveill ; 28(17)2023 04.
Article in English | MEDLINE | ID: mdl-37103788

ABSTRACT

Since May 2022, over 21,000 mpox cases have been reported from 29 EU/EEA countries, predominantly among men who have sex with men (MSM). The Netherlands was the fourth most affected country in Europe, with more than 1,200 cases and a crude notification rate of 70.7 per million population. The first national case was reported on 10 May, yet potential prior transmission remains unknown. Insight into prolonged undetected transmission can help to understand the current outbreak dynamics and aid future public health interventions. We performed a retrospective study and phylogenetic analysis to elucidate whether undetected transmission of human mpox virus (hMPXV) occurred before the first reported cases in Amsterdam and Rotterdam. In 401 anorectal and ulcer samples from visitors to centres for sexual health in Amsterdam or Rotterdam dating back to 14 February 2022, we identified two new cases, the earliest from 6 May. This coincides with the first cases reported in the United Kingdom, Spain and Portugal. We found no evidence of widespread hMPXV transmission in Dutch sexual networks of MSM before May 2022. Likely, the mpox outbreak expanded across Europe within a short period in the spring of 2022 through an international highly intertwined network of sexually active MSM.


Subject(s)
Mpox (monkeypox) , Sexual and Gender Minorities , Male , Humans , Homosexuality, Male , Netherlands/epidemiology , Retrospective Studies , Mpox (monkeypox)/epidemiology , Phylogeny , Disease Outbreaks
6.
Emerg Infect Dis ; 28(5): 1012-1016, 2022 05.
Article in English | MEDLINE | ID: mdl-35271792

ABSTRACT

We report a severe acute respiratory syndrome coronavirus 2 superspreading event in the Netherlands after distancing rules were lifted in nightclubs, despite requiring a negative test or vaccination. This occurrence illustrates the potential for rapid dissemination of variants in largely unvaccinated populations under such conditions. We detected subsequent community transmission of this strain.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Genomics , Humans , Netherlands/epidemiology , SARS-CoV-2/genetics
7.
Euro Surveill ; 27(29)2022 07.
Article in English | MEDLINE | ID: mdl-35866435

ABSTRACT

Since May 2022, an international monkeypox (MPX) outbreak has been ongoing in more than 50 countries. While most cases are men who have sex with men, transmission is not restricted to this population. In this report, we describe the case of a male child younger than 10 years with MPX in the Netherlands. Despite thorough source tracing, a likely source of infection has not been identified. No secondary cases were identified in close contacts.


Subject(s)
Mpox (monkeypox) , Child , Humans , Male , Mpox (monkeypox)/diagnosis , Mpox (monkeypox)/epidemiology , Monkeypox virus , Netherlands/epidemiology
8.
Euro Surveill ; 26(40)2021 10.
Article in English | MEDLINE | ID: mdl-34622759

ABSTRACT

We evaluated routine testing with SARS-CoV-2 Delta variant-specific RT-PCR in regional hospital laboratories in addition to centralised national genomic surveillance in the Netherlands during June and July 2021. The increase of the Delta variant detected by RT-PCR correlated well with data from genomic surveillance and was available ca 2 weeks earlier. This rapid identification of the relative abundance and increase of SARS-CoV-2 variants of concern may have important benefits for implementation of local public health measures.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/virology , Genomics , Humans , Netherlands/epidemiology , Polymerase Chain Reaction , RNA, Viral/genetics , SARS-CoV-2/genetics
11.
Emerg Infect Dis ; 21(9): 1667-9, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26291986

ABSTRACT

Notification of 2 imported cases of infection with Middle East respiratory syndrome coronavirus in the Netherlands triggered comprehensive monitoring of contacts. Observed low rates of virus transmission and the psychological effect of contact monitoring indicate that thoughtful assessment of close contacts is prudent and must be guided by clinical and epidemiologic risk factors.


Subject(s)
Contact Tracing , Coronavirus Infections/epidemiology , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Respiratory Tract Infections/epidemiology , Travel , Adolescent , Adult , Aged , Child , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Female , Humans , Male , Middle Aged , Netherlands/epidemiology , Respiratory Tract Infections/prevention & control , Respiratory Tract Infections/virology , Saudi Arabia , Surveys and Questionnaires , Young Adult
12.
J Virol ; 88(3): 1694-702, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24257603

ABSTRACT

Avian influenza viruses are capable of crossing the species barrier and infecting humans. Although evidence of human-to-human transmission of avian influenza viruses to date is limited, evolution of variants toward more-efficient human-to-human transmission could result in a new influenza virus pandemic. In both the avian influenza A(H5N1) and the recently emerging avian influenza A(H7N9) viruses, the polymerase basic 2 protein (PB2) E627K mutation appears to be of key importance for human adaptation. During a large influenza A(H7N7) virus outbreak in the Netherlands in 2003, the A(H7N7) virus isolated from a fatal human case contained the PB2 E627K mutation as well as a hemagglutinin (HA) K416R mutation. In this study, we aimed to investigate whether these mutations occurred in the avian or the human host by Illumina Ultra-Deep sequencing of three previously uninvestigated clinical samples obtained from the fatal case. In addition, we investigated three chicken samples, two of which were obtained from the source farm. Results showed that the PB2 E627K mutation was not present in any of the chicken samples tested. Surprisingly, the avian samples were characterized by the presence of influenza virus defective RNA segments, suggestive for the synthesis of defective interfering viruses during infection in poultry. In the human samples, the PB2 E627K mutation was identified with increasing frequency during infection. Our results strongly suggest that human adaptation marker PB2 E627K has emerged during virus infection of a single human host, emphasizing the importance of reducing human exposure to avian influenza viruses to reduce the likelihood of viral adaptation to humans.


Subject(s)
Amino Acid Substitution , Influenza A Virus, H7N7 Subtype/enzymology , Influenza A Virus, H7N7 Subtype/pathogenicity , Influenza in Birds/virology , Influenza, Human/virology , Poultry Diseases/virology , RNA-Dependent RNA Polymerase/genetics , Viral Proteins/genetics , Animals , Chickens , Fatal Outcome , High-Throughput Nucleotide Sequencing , Humans , Influenza A Virus, H7N7 Subtype/genetics , Influenza A Virus, H7N7 Subtype/isolation & purification , Male , Mutation Rate , Mutation, Missense , RNA-Dependent RNA Polymerase/metabolism , Viral Proteins/metabolism , Virulence
13.
Emerg Themes Epidemiol ; 11: 16, 2014.
Article in English | MEDLINE | ID: mdl-25328533

ABSTRACT

BACKGROUND: In May 2014, Middle East respiratory syndrome coronavirus (MERS-CoV) infection, with closely related viral genomes, was diagnosed in two Dutch residents, returning from a pilgrimage to Medina and Mecca, Kingdom of Saudi Arabia (KSA). These patients travelled with a group of 29 other Dutch travellers. We conducted an epidemiological assessment of the travel group to identify likely source(s) of infection and presence of potential risk factors. METHODS: All travellers, including the two cases, completed a questionnaire focussing on potential human, animal and food exposures to MERS-CoV. The questionnaire was modified from the WHO MERS-CoV questionnaire, taking into account the specific route and activities of the travel group. RESULTS: Twelve non-cases drank unpasteurized camel milk and had contact with camels. Most travellers, including one of the two patients (Case 1), visited local markets, where six of them consumed fruits. Two travellers, including Case 1, were exposed to coughing patients when visiting a hospital in Medina. Four travellers, including Case 1, visited two hospitals in Mecca. All travellers had been in contact with Case 1 while he was sick, with initially non-respiratory complaints. The cases were found to be older than the other travellers and both had co-morbidities. CONCLUSIONS: This epidemiological study revealed the complexity of MERS-CoV outbreak investigations with multiple potential exposures to MERS-CoV reported such as healthcare visits, camel exposure, and exposure to untreated food products. Exposure to MERS-CoV during a hospital visit is considered a likely source of infection for Case 1 but not for Case 2. For Case 2, the most likely source could not be determined. Exposure to MERS-CoV via direct contact with animals or dairy products seems unlikely for the two Dutch cases. Furthermore, exposure to a common but still unidentified source cannot be ruled out. More comprehensive research into sources of infection in the Arabian Peninsula is needed to strengthen and specify the prevention of MERS-CoV infections.

14.
J Infect Dis ; 207(5): 730-5, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23230058

ABSTRACT

Outbreaks of highly pathogenic avian influenza in poultry can cause severe economic damage and represent a public health threat. Development of efficient containment measures requires an understanding of how these influenza viruses are transmitted between farms. However, the actual mechanisms of interfarm transmission are largely unknown. Dispersal of infectious material by wind has been suggested, but never demonstrated, as a possible cause of transmission between farms. Here we provide statistical evidence that the direction of spread of avian influenza A(H7N7) is correlated with the direction of wind at date of infection. Using detailed genetic and epidemiological data, we found the direction of spread by reconstructing the transmission tree for a large outbreak in the Netherlands in 2003. We conservatively estimate the contribution of a possible wind-mediated mechanism to the total amount of spread during this outbreak to be around 18%.


Subject(s)
Disease Outbreaks , Influenza A Virus, H7N7 Subtype/isolation & purification , Influenza in Birds/epidemiology , Influenza in Birds/transmission , Poultry Diseases/epidemiology , Poultry Diseases/transmission , Wind , Animals , Influenza A Virus, H7N7 Subtype/genetics , Influenza in Birds/virology , Molecular Epidemiology , Netherlands/epidemiology , Poultry , Poultry Diseases/virology , RNA, Viral/genetics
15.
medRxiv ; 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37873191

ABSTRACT

Background: The increasing burden of dengue virus on public health due to more explosive and frequent outbreaks highlights the need for improved surveillance and control. Genomic surveillance of dengue virus not only provides important insights into the emergence and spread of genetically diverse serotypes and genotypes, but it is also critical to monitor the effectiveness of newly implemented control strategies. Here, we present DengueSeq, an amplicon sequencing protocol, which enables whole-genome sequencing of all four dengue virus serotypes. Results: We developed primer schemes for the four dengue virus serotypes, which can be combined into a pan-serotype approach. We validated both approaches using genetically diverse virus stocks and clinical specimens that contained a range of virus copies. High genome coverage (>95%) was achieved for all genotypes, except DENV2 (genotype VI) and DENV 4 (genotype IV) sylvatics, with similar performance of the serotype-specific and pan-serotype approaches. The limit of detection to reach 70% coverage was 101-102 RNA copies/µL for all four serotypes, which is similar to other commonly used primer schemes. DengueSeq facilitates the sequencing of samples without known serotypes, allows the detection of multiple serotypes in the same sample, and can be used with a variety of library prep kits and sequencing instruments. Conclusions: DengueSeq was systematically evaluated with virus stocks and clinical specimens spanning the genetic diversity within each of the four dengue virus serotypes. The primer schemes can be plugged into existing amplicon sequencing workflows to facilitate the global need for expanded dengue virus genomic surveillance.

16.
J Virol ; 85(20): 10598-604, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21849451

ABSTRACT

Although increasing data have become available that link human adaptation with specific molecular changes in nonhuman influenza viruses, the molecular changes of these viruses during a large highly pathogenic avian influenza virus (HPAI) outbreak in poultry along with avian-to-human transmission have never been documented. By comprehensive virologic analysis of combined veterinary and human samples obtained during a large HPAI A (H7N7) outbreak in the Netherlands in 2003, we mapped the acquisition of human adaptation markers to identify the public health risk associated with an HPAI outbreak in poultry. Full-length hemagglutinin (HA), neuraminidase (NA), and PB2 sequencing of A (H7N7) viruses obtained from 45 human cases showed amino acid variations at different codons in HA (n=20), NA (n=23), and PB2 (n=23). Identification of the avian sources of human virus infections based on 232 farm sequences demonstrated that for each gene about 50% of the variation was already present in poultry. Polygenic accumulation and farm-to-farm spread of known virulence and human adaptation markers in A (H7N7) virus-infected poultry occurred prior to farm-to-human transmission. These include the independent emergence of HA A143T mutants, accumulation of four NA mutations, and farm-to-farm spread of virus variants harboring mammalian host determinants D701N and S714I in PB2. This implies that HPAI viruses with pandemic potential can emerge directly from poultry. Since the public health risk of an avian influenza virus outbreak in poultry can rapidly change, we recommend virologic monitoring for human adaptation markers among poultry as well as among humans during the course of an outbreak in poultry.


Subject(s)
Disease Outbreaks , Genetic Variation , Influenza A Virus, H7N7 Subtype/classification , Influenza in Birds/epidemiology , Influenza in Birds/virology , Influenza, Human/epidemiology , Influenza, Human/virology , Amino Acid Substitution , Animals , Evolution, Molecular , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Influenza A Virus, H7N7 Subtype/genetics , Influenza A Virus, H7N7 Subtype/isolation & purification , Mutation, Missense , Netherlands/epidemiology , Neuraminidase/genetics , Poultry , RNA-Dependent RNA Polymerase/genetics , Sequence Analysis, DNA , Viral Proteins/genetics , Virulence
17.
J Clin Microbiol ; 49(7): 2651-5, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21593267

ABSTRACT

Adamantane and oseltamivir resistance among influenza viruses is a major concern to public health officials. To determine the prevalence of antiviral-resistant influenza viruses in Guangdong, China, 244 seasonal A (H1N1) and 222 pandemic A (H1N1) 2009 viruses were screened for oseltamivir resistance by a fluorescence-based neuraminidase (NA) inhibition assay along with NA gene sequencing. Also, 147 seasonal A (H1N1) viruses were sequenced to detect adamantane resistance markers in M2. Adamantane-resistant seasonal A (H1N1) viruses clustering to clade 2C were dominant in 2008, followed by oseltamivir-resistant seasonal A (H1N1) viruses, clustering to clade 2B during January and May 2009. In June 2009, a lineage of double-resistant seasonal A (H1N1) viruses emerged, until it was replaced by the pandemic A (H1N1) 2009 viruses. The lineage most likely resulted from reassortment under the pressure of the overuse of adamantanes. As all viruses were resistant to at least one of the two types of antiviral agents, the need for close monitoring of the prevalence of antiviral resistance is stressed.


Subject(s)
Adamantane/pharmacology , Drug Resistance, Viral , Influenza A Virus, H1N1 Subtype/drug effects , Influenza, Human/virology , Oseltamivir/pharmacology , China , Cluster Analysis , Genotype , Humans , Influenza A Virus, H1N1 Subtype/isolation & purification , Microbial Sensitivity Tests/methods , Molecular Sequence Data , Neuraminidase/genetics , Neuraminidase/metabolism , Sequence Analysis, DNA , Viral Matrix Proteins/genetics , Viral Proteins/genetics , Viral Proteins/metabolism
18.
J Virol ; 84(8): 3752-8, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20130063

ABSTRACT

In the first 6 months of the H1N1 swine-origin influenza virus (S-OIV) pandemic, the vast majority of infections were relatively mild. It has been postulated that mutations in the viral genome could result in more virulent viruses, leading to a more severe pandemic. Mutations E627K and D701N in the PB2 protein have previously been identified as determinants of avian and pandemic influenza virus virulence in mammals. These mutations were absent in S-OIVs detected early in the 2009 pandemic. Here, using reverse genetics, mutations E627K, D701N, and E677G were introduced into the prototype S-OIV A/Netherlands/602/2009, and their effects on virus replication, virulence, and transmission were investigated. Mutations E627K and D701N caused increased reporter gene expression driven by the S-OIV polymerase complex. None of the three mutations affected virus replication in vitro. The mutations had no major impact on virus replication in the respiratory tracts of mice and ferrets or on pathogenesis. All three mutant viruses were transmitted via aerosols or respiratory droplets in ferrets. Thus, the impact of key known virulence markers in PB2 in the context of current S-OIVs was surprisingly small. This study does not exclude the possibility of emergence of S-OIVs with other virulence-associated mutations in the future. We conclude that surveillance studies aimed at detecting S-OIVs with increased virulence or transmission should not rely solely on virulence markers identified in the past but should include detailed characterization of virus phenotypes, guided by genetic signatures of viruses detected in severe cases of disease in humans.


Subject(s)
Amino Acid Substitution/genetics , Influenza A Virus, H1N1 Subtype/pathogenicity , Mutation, Missense , Orthomyxoviridae Infections/transmission , Orthomyxoviridae Infections/virology , Viral Proteins/physiology , Virulence Factors/physiology , Animals , Female , Ferrets , Genetic Engineering , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza, Human/virology , Mice , Mice, Inbred BALB C , Mutagenesis, Site-Directed , Respiratory System/virology , Viral Load , Viral Proteins/genetics , Virulence , Virulence Factors/genetics , Virus Replication
19.
J Virol ; 84(22): 11802-13, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20844044

ABSTRACT

The clinical impact of the 2009 pandemic influenza A(H1N1) virus (pdmH1N1) has been relatively low. However, amino acid substitution D222G in the hemagglutinin of pdmH1N1 has been associated with cases of severe disease and fatalities. D222G was introduced in a prototype pdmH1N1 by reverse genetics, and the effect on virus receptor binding, replication, antigenic properties, and pathogenesis and transmission in animal models was investigated. pdmH1N1 with D222G caused ocular disease in mice without further indications of enhanced virulence in mice and ferrets. pdmH1N1 with D222G retained transmissibility via aerosols or respiratory droplets in ferrets and guinea pigs. The virus displayed changes in attachment to human respiratory tissues in vitro, in particular increased binding to macrophages and type II pneumocytes in the alveoli and to tracheal and bronchial submucosal glands. Virus attachment studies further indicated that pdmH1N1 with D222G acquired dual receptor specificity for complex α2,3- and α2,6-linked sialic acids. Molecular dynamics modeling of the hemagglutinin structure provided an explanation for the retention of α2,6 binding. Altered receptor specificity of the virus with D222G thus affected interaction with cells of the human lower respiratory tract, possibly explaining the observed association with enhanced disease in humans.


Subject(s)
Amino Acid Substitution , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza, Human/metabolism , Influenza, Human/virology , Receptors, Virus/metabolism , Amino Acid Motifs , Animals , Binding Sites , Cell Line , Disease Models, Animal , Dogs , Female , Ferrets , Guinea Pigs , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza, Human/epidemiology , Influenza, Human/transmission , Male , Mice , Mice, Inbred BALB C , Models, Molecular , N-Acetylneuraminic Acid/chemistry , N-Acetylneuraminic Acid/metabolism , Pandemics , Receptors, Virus/chemistry , Turkeys , Virulence , Virus Attachment
20.
Antimicrob Resist Infect Control ; 10(1): 23, 2021 01 29.
Article in English | MEDLINE | ID: mdl-33514422

ABSTRACT

BACKGROUND: Clostridioides difficile is the most common cause of nosocomial diarrhea. Ribotyping of cultured strains by a PCR-based test is used to study potential transmission between patients. We aimed to develop a rapid test that can be applied directly on fecal samples for simultaneous detection and ribotyping of C. difficile, as well as detection of toxin genes. METHODS: We developed a highly specific and sensitive primer set for simultaneous detection and ribotyping of C. difficile directly on total fecal DNA. Toxin genes were detected with primers adapted from Persson et al. (Clin Microbiol Infect 14(11):1057-1064). Our study set comprised 130 fecal samples: 65 samples with positive qPCR for C. difficile toxin A/B genes and 65 C. difficile qPCR negative samples. PCR products were analyzed by capillary gel electrophoresis. RESULTS: Ribosomal DNA fragment peak profiles and toxin genes were detected in all 65 C. difficile positive fecal samples and in none of the 65 C. difficile negative samples. The 65 samples were assigned to 27 ribotypes by the Dutch reference laboratory. Our peak profiles corresponded to these ribotypes, except for two samples. During a C. difficile outbreak, patients were correctly allocated to the outbreak-cluster based on the results of direct fecal ribotyping, before C. difficile isolates were cultured and conventionally typed. CONCLUSION: C. difficile ribotyping directly on fecal DNA is feasible, with sensitivity and specificity comparable to that of diagnostic toxin gene qPCR and with ribotype assignment similar to that obtained by conventional typing on DNA from cultured isolates. This supports simultaneous diagnosis and typing to recognize an outbreak.


Subject(s)
Bacterial Toxins/genetics , Clostridioides difficile/classification , Clostridium Infections , Ribotyping , Bacterial Typing Techniques , Clostridium Infections/diagnosis , Clostridium Infections/microbiology , Disease Outbreaks , Feces/microbiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL