Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.192
Filter
Add more filters

Publication year range
1.
Annu Rev Biochem ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594926

ABSTRACT

Molecular docking has become an essential part of a structural biologist's and medicinal chemist's toolkits. Given a chemical compound and the three-dimensional structure of a molecular target-for example, a protein-docking methods fit the compound into the target, predicting the compound's bound structure and binding energy. Docking can be used to discover novel ligands for a target by screening large virtual compound libraries. Docking can also provide a useful starting point for structure-based ligand optimization or for investigating a ligand's mechanism of action. Advances in computational methods, including both physics-based and machine learning approaches, as well as in complementary experimental techniques, are making docking an even more powerful tool. We review how docking works and how it can drive drug discovery and biological research. We also describe its current limitations and ongoing efforts to overcome them.

2.
Cell ; 187(8): 2010-2028.e30, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38569542

ABSTRACT

Gut inflammation involves contributions from immune and non-immune cells, whose interactions are shaped by the spatial organization of the healthy gut and its remodeling during inflammation. The crosstalk between fibroblasts and immune cells is an important axis in this process, but our understanding has been challenged by incomplete cell-type definition and biogeography. To address this challenge, we used multiplexed error-robust fluorescence in situ hybridization (MERFISH) to profile the expression of 940 genes in 1.35 million cells imaged across the onset and recovery from a mouse colitis model. We identified diverse cell populations, charted their spatial organization, and revealed their polarization or recruitment in inflammation. We found a staged progression of inflammation-associated tissue neighborhoods defined, in part, by multiple inflammation-associated fibroblasts, with unique expression profiles, spatial localization, cell-cell interactions, and healthy fibroblast origins. Similar signatures in ulcerative colitis suggest conserved human processes. Broadly, we provide a framework for understanding inflammation-induced remodeling in the gut and other tissues.


Subject(s)
Colitis, Ulcerative , Colitis , Animals , Humans , Mice , Colitis/metabolism , Colitis/pathology , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , In Situ Hybridization, Fluorescence/methods , Inflammation/metabolism , Inflammation/pathology , Cell Communication , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/pathology
3.
Cell ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38876107

ABSTRACT

Vector-borne diseases are a leading cause of death worldwide and pose a substantial unmet medical need. Pathogens binding to host extracellular proteins (the "exoproteome") represents a crucial interface in the etiology of vector-borne disease. Here, we used bacterial selection to elucidate host-microbe interactions in high throughput (BASEHIT)-a technique enabling interrogation of microbial interactions with 3,324 human exoproteins-to profile the interactomes of 82 human-pathogen samples, including 30 strains of arthropod-borne pathogens and 8 strains of related non-vector-borne pathogens. The resulting atlas revealed 1,303 putative interactions, including hundreds of pairings with potential roles in pathogenesis, including cell invasion, tissue colonization, immune evasion, and host sensing. Subsequent functional investigations uncovered that Lyme disease spirochetes recognize epidermal growth factor as an environmental cue of transcriptional regulation and that conserved interactions between intracellular pathogens and thioredoxins facilitate cell invasion. In summary, this interactome atlas provides molecular-level insights into microbial pathogenesis and reveals potential host-directed targets for next-generation therapeutics.

4.
Cell ; 186(20): 4325-4344.e26, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37652010

ABSTRACT

KCR channelrhodopsins (K+-selective light-gated ion channels) have received attention as potential inhibitory optogenetic tools but more broadly pose a fundamental mystery regarding how their K+ selectivity is achieved. Here, we present 2.5-2.7 Å cryo-electron microscopy structures of HcKCR1 and HcKCR2 and of a structure-guided mutant with enhanced K+ selectivity. Structural, electrophysiological, computational, spectroscopic, and biochemical analyses reveal a distinctive mechanism for K+ selectivity; rather than forming the symmetrical filter of canonical K+ channels achieving both selectivity and dehydration, instead, three extracellular-vestibule residues within each monomer form a flexible asymmetric selectivity gate, while a distinct dehydration pathway extends intracellularly. Structural comparisons reveal a retinal-binding pocket that induces retinal rotation (accounting for HcKCR1/HcKCR2 spectral differences), and design of corresponding KCR variants with increased K+ selectivity (KALI-1/KALI-2) provides key advantages for optogenetic inhibition in vitro and in vivo. Thus, discovery of a mechanism for ion-channel K+ selectivity also provides a framework for next-generation optogenetics.


Subject(s)
Channelrhodopsins , Rhinosporidium , Humans , Channelrhodopsins/chemistry , Channelrhodopsins/genetics , Channelrhodopsins/metabolism , Channelrhodopsins/ultrastructure , Cryoelectron Microscopy , Ion Channels , Potassium/metabolism , Rhinosporidium/chemistry
5.
Cell ; 185(9): 1506-1520.e17, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35385687

ABSTRACT

Schistosomes cause morbidity and death throughout the developing world due to the massive numbers of eggs female worms deposit into the blood of their host. Studies dating back to the 1920s show that female schistosomes rely on constant physical contact with a male worm both to become and remain sexually mature; however, the molecular details governing this process remain elusive. Here, we uncover a nonribosomal peptide synthetase that is induced in male worms upon pairing with a female and find that it is essential for the ability of male worms to stimulate female development. We demonstrate that this enzyme generates ß-alanyl-tryptamine that is released by paired male worms. Furthermore, synthetic ß-alanyl-tryptamine can replace male worms to stimulate female sexual development and egg laying. These data reveal that peptide-based pheromone signaling controls female schistosome sexual maturation, suggesting avenues for therapeutic intervention and uncovering a role for nonribosomal peptides as metazoan signaling molecules.


Subject(s)
Peptides , Pheromones , Schistosoma/growth & development , Animals , Female , Male , Peptide Biosynthesis, Nucleic Acid-Independent , Tryptamines
6.
Cell ; 185(21): 4008-4022.e14, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36150393

ABSTRACT

The continual evolution of SARS-CoV-2 and the emergence of variants that show resistance to vaccines and neutralizing antibodies threaten to prolong the COVID-19 pandemic. Selection and emergence of SARS-CoV-2 variants are driven in part by mutations within the viral spike protein and in particular the ACE2 receptor-binding domain (RBD), a primary target site for neutralizing antibodies. Here, we develop deep mutational learning (DML), a machine-learning-guided protein engineering technology, which is used to investigate a massive sequence space of combinatorial mutations, representing billions of RBD variants, by accurately predicting their impact on ACE2 binding and antibody escape. A highly diverse landscape of possible SARS-CoV-2 variants is identified that could emerge from a multitude of evolutionary trajectories. DML may be used for predictive profiling on current and prospective variants, including highly mutated variants such as Omicron, thus guiding the development of therapeutic antibody treatments and vaccines for COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Humans , Mutation , Pandemics , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
7.
Cell ; 185(14): 2559-2575.e28, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35688146

ABSTRACT

A central goal of genetics is to define the relationships between genotypes and phenotypes. High-content phenotypic screens such as Perturb-seq (CRISPR-based screens with single-cell RNA-sequencing readouts) enable massively parallel functional genomic mapping but, to date, have been used at limited scales. Here, we perform genome-scale Perturb-seq targeting all expressed genes with CRISPR interference (CRISPRi) across >2.5 million human cells. We use transcriptional phenotypes to predict the function of poorly characterized genes, uncovering new regulators of ribosome biogenesis (including CCDC86, ZNF236, and SPATA5L1), transcription (C7orf26), and mitochondrial respiration (TMEM242). In addition to assigning gene function, single-cell transcriptional phenotypes allow for in-depth dissection of complex cellular phenomena-from RNA processing to differentiation. We leverage this ability to systematically identify genetic drivers and consequences of aneuploidy and to discover an unanticipated layer of stress-specific regulation of the mitochondrial genome. Our information-rich genotype-phenotype map reveals a multidimensional portrait of gene and cellular function.


Subject(s)
Genomics , Single-Cell Analysis , CRISPR-Cas Systems/genetics , Chromosome Mapping , Genotype , Phenotype , Single-Cell Analysis/methods
8.
Cell ; 185(11): 1905-1923.e25, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35523183

ABSTRACT

Tumor evolution is driven by the progressive acquisition of genetic and epigenetic alterations that enable uncontrolled growth and expansion to neighboring and distal tissues. The study of phylogenetic relationships between cancer cells provides key insights into these processes. Here, we introduced an evolving lineage-tracing system with a single-cell RNA-seq readout into a mouse model of Kras;Trp53(KP)-driven lung adenocarcinoma and tracked tumor evolution from single-transformed cells to metastatic tumors at unprecedented resolution. We found that the loss of the initial, stable alveolar-type2-like state was accompanied by a transient increase in plasticity. This was followed by the adoption of distinct transcriptional programs that enable rapid expansion and, ultimately, clonal sweep of stable subclones capable of metastasizing. Finally, tumors develop through stereotypical evolutionary trajectories, and perturbing additional tumor suppressors accelerates progression by creating novel trajectories. Our study elucidates the hierarchical nature of tumor evolution and, more broadly, enables in-depth studies of tumor progression.


Subject(s)
Neoplasms , Animals , Genes, ras , Mice , Neoplasms/genetics , Phylogeny , Exome Sequencing
9.
Cell ; 185(4): 690-711.e45, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35108499

ABSTRACT

Single-cell (sc)RNA-seq, together with RNA velocity and metabolic labeling, reveals cellular states and transitions at unprecedented resolution. Fully exploiting these data, however, requires kinetic models capable of unveiling governing regulatory functions. Here, we introduce an analytical framework dynamo (https://github.com/aristoteleo/dynamo-release), which infers absolute RNA velocity, reconstructs continuous vector fields that predict cell fates, employs differential geometry to extract underlying regulations, and ultimately predicts optimal reprogramming paths and perturbation outcomes. We highlight dynamo's power to overcome fundamental limitations of conventional splicing-based RNA velocity analyses to enable accurate velocity estimations on a metabolically labeled human hematopoiesis scRNA-seq dataset. Furthermore, differential geometry analyses reveal mechanisms driving early megakaryocyte appearance and elucidate asymmetrical regulation within the PU.1-GATA1 circuit. Leveraging the least-action-path method, dynamo accurately predicts drivers of numerous hematopoietic transitions. Finally, in silico perturbations predict cell-fate diversions induced by gene perturbations. Dynamo, thus, represents an important step in advancing quantitative and predictive theories of cell-state transitions.


Subject(s)
Single-Cell Analysis , Transcriptome/genetics , Algorithms , Female , Gene Expression Regulation , HL-60 Cells , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Humans , Kinetics , Models, Biological , RNA, Messenger/metabolism , Staining and Labeling
10.
Cell ; 185(2): 361-378.e25, 2022 01 20.
Article in English | MEDLINE | ID: mdl-34982960

ABSTRACT

Nuclear pore complexes (NPCs) mediate the nucleocytoplasmic transport of macromolecules. Here we provide a structure of the isolated yeast NPC in which the inner ring is resolved by cryo-EM at sub-nanometer resolution to show how flexible connectors tie together different structural and functional layers. These connectors may be targets for phosphorylation and regulated disassembly in cells with an open mitosis. Moreover, some nucleoporin pairs and transport factors have similar interaction motifs, which suggests an evolutionary and mechanistic link between assembly and transport. We provide evidence for three major NPC variants that may foreshadow functional specializations at the nuclear periphery. Cryo-electron tomography extended these studies, providing a model of the in situ NPC with a radially expanded inner ring. Our comprehensive model reveals features of the nuclear basket and central transporter, suggests a role for the lumenal Pom152 ring in restricting dilation, and highlights structural plasticity that may be required for transport.


Subject(s)
Adaptation, Physiological , Nuclear Pore/metabolism , Saccharomyces cerevisiae/physiology , Amino Acid Motifs , Amino Acid Sequence , Fluorescence , Molecular Docking Simulation , Nuclear Envelope/metabolism , Nuclear Pore/chemistry , Nuclear Pore Complex Proteins/chemistry , Nuclear Pore Complex Proteins/metabolism , Protein Domains , Reproducibility of Results , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism
11.
Cell ; 185(4): 672-689.e23, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35114111

ABSTRACT

ChRmine, a recently discovered pump-like cation-conducting channelrhodopsin, exhibits puzzling properties (large photocurrents, red-shifted spectrum, and extreme light sensitivity) that have created new opportunities in optogenetics. ChRmine and its homologs function as ion channels but, by primary sequence, more closely resemble ion pump rhodopsins; mechanisms for passive channel conduction in this family have remained mysterious. Here, we present the 2.0 Å resolution cryo-EM structure of ChRmine, revealing architectural features atypical for channelrhodopsins: trimeric assembly, a short transmembrane-helix 3, a twisting extracellular-loop 1, large vestibules within the monomer, and an opening at the trimer interface. We applied this structure to design three proteins (rsChRmine and hsChRmine, conferring further red-shifted and high-speed properties, respectively, and frChRmine, combining faster and more red-shifted performance) suitable for fundamental neuroscience opportunities. These results illuminate the conduction and gating of pump-like channelrhodopsins and point the way toward further structure-guided creation of channelrhodopsins for applications across biology.


Subject(s)
Channelrhodopsins/chemistry , Channelrhodopsins/metabolism , Ion Channel Gating , Animals , Channelrhodopsins/ultrastructure , Cryoelectron Microscopy , Female , HEK293 Cells , Humans , Male , Mice, Inbred C57BL , Models, Molecular , Optogenetics , Phylogeny , Rats, Sprague-Dawley , Schiff Bases/chemistry , Sf9 Cells , Structure-Activity Relationship
12.
Cell ; 184(1): 120-132.e14, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33382968

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has claimed the lives of over one million people worldwide. The causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a member of the Coronaviridae family of viruses that can cause respiratory infections of varying severity. The cellular host factors and pathways co-opted during SARS-CoV-2 and related coronavirus life cycles remain ill defined. To address this gap, we performed genome-scale CRISPR knockout screens during infection by SARS-CoV-2 and three seasonal coronaviruses (HCoV-OC43, HCoV-NL63, and HCoV-229E). These screens uncovered host factors and pathways with pan-coronavirus and virus-specific functional roles, including major dependency on glycosaminoglycan biosynthesis, sterol regulatory element-binding protein (SREBP) signaling, bone morphogenetic protein (BMP) signaling, and glycosylphosphatidylinositol biosynthesis, as well as a requirement for several poorly characterized proteins. We identified an absolute requirement for the VMP1, TMEM41, and TMEM64 (VTT) domain-containing protein transmembrane protein 41B (TMEM41B) for infection by SARS-CoV-2 and three seasonal coronaviruses. This human coronavirus host factor compendium represents a rich resource to develop new therapeutic strategies for acute COVID-19 and potential future coronavirus pandemics.


Subject(s)
Coronavirus Infections/genetics , Genome-Wide Association Study , SARS-CoV-2/physiology , A549 Cells , Cell Line , Clustered Regularly Interspaced Short Palindromic Repeats , Coronavirus 229E, Human/physiology , Coronavirus Infections/virology , Coronavirus NL63, Human/physiology , Coronavirus OC43, Human/physiology , Gene Knockout Techniques , HEK293 Cells , Host-Pathogen Interactions/drug effects , Humans , Membrane Proteins/metabolism , Metabolic Networks and Pathways/drug effects , Protein Interaction Mapping
13.
Cell ; 184(9): 2503-2519.e17, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33838111

ABSTRACT

A general approach for heritably altering gene expression has the potential to enable many discovery and therapeutic efforts. Here, we present CRISPRoff-a programmable epigenetic memory writer consisting of a single dead Cas9 fusion protein that establishes DNA methylation and repressive histone modifications. Transient CRISPRoff expression initiates highly specific DNA methylation and gene repression that is maintained through cell division and differentiation of stem cells to neurons. Pairing CRISPRoff with genome-wide screens and analysis of chromatin marks establishes rules for heritable gene silencing. We identify single guide RNAs (sgRNAs) capable of silencing the large majority of genes including those lacking canonical CpG islands (CGIs) and reveal a wide targeting window extending beyond annotated CGIs. The broad ability of CRISPRoff to initiate heritable gene silencing even outside of CGIs expands the canonical model of methylation-based silencing and enables diverse applications including genome-wide screens, multiplexed cell engineering, enhancer silencing, and mechanistic exploration of epigenetic inheritance.


Subject(s)
CRISPR-Cas Systems , Cellular Reprogramming , Epigenesis, Genetic , Epigenome , Gene Editing , Induced Pluripotent Stem Cells/cytology , Neurons/cytology , Cell Differentiation , CpG Islands , DNA Methylation , Gene Silencing , Histone Code , Humans , Induced Pluripotent Stem Cells/metabolism , Neurons/metabolism , Protein Processing, Post-Translational
14.
Cell ; 180(1): 50-63.e12, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31923399

ABSTRACT

Mucosal barrier immunity is essential for the maintenance of the commensal microflora and combating invasive bacterial infection. Although immune and epithelial cells are thought to be the canonical orchestrators of this complex equilibrium, here, we show that the enteric nervous system (ENS) plays an essential and non-redundant role in governing the antimicrobial protein (AMP) response. Using confocal microscopy and single-molecule fluorescence in situ mRNA hybridization (smFISH) studies, we observed that intestinal neurons produce the pleiotropic cytokine IL-18. Strikingly, deletion of IL-18 from the enteric neurons alone, but not immune or epithelial cells, rendered mice susceptible to invasive Salmonella typhimurium (S.t.) infection. Mechanistically, unbiased RNA sequencing and single-cell sequencing revealed that enteric neuronal IL-18 is specifically required for homeostatic goblet cell AMP production. Together, we show that neuron-derived IL-18 signaling controls tissue-wide intestinal immunity and has profound consequences on the mucosal barrier and invasive bacterial killing.


Subject(s)
Immunity, Mucosal/immunology , Interleukin-18/immunology , Intestinal Mucosa/immunology , Animals , Cytokines/immunology , Enteric Nervous System/immunology , Enteric Nervous System/metabolism , Epithelial Cells/immunology , Female , Goblet Cells/immunology , Interleukin-18/biosynthesis , Intestinal Mucosa/metabolism , Intestine, Small/immunology , Male , Mice , Mice, Inbred C57BL , Neurons/immunology , Rats , Rats, Sprague-Dawley , Salmonella Infections/immunology , Salmonella typhimurium/immunology , Signal Transduction/immunology
15.
Immunity ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906145

ABSTRACT

Tissues are exposed to diverse inflammatory challenges that shape future inflammatory responses. While cellular metabolism regulates immune function, how metabolism programs and stabilizes immune states within tissues and tunes susceptibility to inflammation is poorly understood. Here, we describe an innate immune metabolic switch that programs long-term intestinal tolerance. Intestinal interleukin-18 (IL-18) stimulation elicited tolerogenic macrophages by preventing their proinflammatory glycolytic polarization via metabolic reprogramming to fatty acid oxidation (FAO). FAO reprogramming was triggered by IL-18 activation of SLC12A3 (NCC), leading to sodium influx, release of mitochondrial DNA, and activation of stimulator of interferon genes (STING). FAO was maintained in macrophages by a bistable switch that encoded memory of IL-18 stimulation and by intercellular positive feedback that sustained the production of macrophage-derived 2'3'-cyclic GMP-AMP (cGAMP) and epithelial-derived IL-18. Thus, a tissue-reinforced metabolic switch encodes durable immune tolerance in the gut and may enable reconstructing compromised immune tolerance in chronic inflammation.

16.
Cell ; 175(3): 695-708.e13, 2018 10 18.
Article in English | MEDLINE | ID: mdl-30293865

ABSTRACT

We have uncovered the existence of extracellular vesicle (EV)-mediated signaling between cell types within the adipose tissue (AT) proper. This phenomenon became evident in our attempts at generating an adipocyte-specific knockout of caveolin 1 (cav1) protein. Although we effectively ablated the CAV1 gene in adipocytes, cav1 protein remained abundant. With the use of newly generated mouse models, we show that neighboring endothelial cells (ECs) transfer cav1-containing EVs to adipocytes in vivo, which reciprocate by releasing EVs to ECs. AT-derived EVs contain proteins and lipids capable of modulating cellular signaling pathways. Furthermore, this mechanism facilitates transfer of plasma constituents from ECs to the adipocyte. The transfer event is physiologically regulated by fasting/refeeding and obesity, suggesting EVs participate in the tissue response to changes in the systemic nutrient state. This work offers new insights into the complex signaling mechanisms that exist among adipocytes, stromal vascular cells, and, potentially, distal organs.


Subject(s)
Adipocytes/metabolism , Endothelial Cells/metabolism , Extracellular Vesicles/metabolism , Fasting/metabolism , Signal Transduction , Animals , Caveolin 1/genetics , Caveolin 1/metabolism , Cell Line , Cells, Cultured , Endothelium, Vascular/cytology , Male , Mice , Mice, Inbred C57BL
17.
Immunity ; 56(1): 93-106.e6, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36574773

ABSTRACT

Improved identification of anti-tumor T cells is needed to advance cancer immunotherapies. CD39 expression is a promising surrogate of tumor-reactive CD8+ T cells. Here, we comprehensively profiled CD39 expression in human lung cancer. CD39 expression enriched for CD8+ T cells with features of exhaustion, tumor reactivity, and clonal expansion. Flow cytometry of 440 lung cancer biospecimens revealed weak association between CD39+ CD8+ T cells and tumoral features, such as programmed death-ligand 1 (PD-L1), tumor mutation burden, and driver mutations. Immune checkpoint blockade (ICB), but not cytotoxic chemotherapy, increased intratumoral CD39+ CD8+ T cells. Higher baseline frequency of CD39+ CD8+ T cells conferred improved clinical outcomes from ICB therapy. Furthermore, a gene signature of CD39+ CD8+ T cells predicted benefit from ICB, but not chemotherapy, in a phase III clinical trial of non-small cell lung cancer. These findings highlight CD39 as a proxy of tumor-reactive CD8+ T cells in human lung cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Immune Checkpoint Inhibitors/therapeutic use , CD8-Positive T-Lymphocytes , Immunotherapy
18.
Immunity ; 56(7): 1649-1663.e5, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37236188

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (alloHSCT) from donors lacking C-C chemokine receptor 5 (CCR5Δ32/Δ32) can cure HIV, yet mechanisms remain speculative. To define how alloHSCT mediates HIV cure, we performed MHC-matched alloHSCT in SIV+, anti-retroviral therapy (ART)-suppressed Mauritian cynomolgus macaques (MCMs) and demonstrated that allogeneic immunity was the major driver of reservoir clearance, occurring first in peripheral blood, then peripheral lymph nodes, and finally in mesenteric lymph nodes draining the gastrointestinal tract. While allogeneic immunity could extirpate the latent viral reservoir and did so in two alloHSCT-recipient MCMs that remained aviremic >2.5 years after stopping ART, in other cases, it was insufficient without protection of engrafting cells afforded by CCR5-deficiency, as CCR5-tropic virus spread to donor CD4+ T cells despite full ART suppression. These data demonstrate the individual contributions of allogeneic immunity and CCR5 deficiency to HIV cure and support defining targets of alloimmunity for curative strategies independent of HSCT.


Subject(s)
HIV Infections , Hematopoietic Stem Cell Transplantation , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Macaca fascicularis , Viral Load
19.
Nat Immunol ; 20(6): 747-755, 2019 06.
Article in English | MEDLINE | ID: mdl-31061531

ABSTRACT

Despite gathering evidence that ubiquitylation can direct non-degradative outcomes, most investigations of ubiquitylation in T cells have focused on degradation. Here, we integrated proteomic and transcriptomic datasets from primary mouse CD4+ T cells to establish a framework for predicting degradative or non-degradative outcomes of ubiquitylation. Di-glycine remnant profiling was used to reveal ubiquitylated proteins, which in combination with whole-cell proteomic and transcriptomic data allowed prediction of protein degradation. Analysis of ubiquitylated proteins identified by di-glycine remnant profiling indicated that activation of CD4+ T cells led to an increase in non-degradative ubiquitylation. This correlated with an increase in non-proteasome-targeted K29, K33 and K63 polyubiquitin chains. This study revealed over 1,200 proteins that were ubiquitylated in primary mouse CD4+ T cells and highlighted the relevance of non-proteasomally targeted ubiquitin chains in T cell signaling.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Lymphocyte Activation/immunology , Proteome , Proteomics , Animals , Gene Expression Profiling , Lymphocyte Activation/genetics , Mass Spectrometry , Mice , Polyubiquitin/metabolism , Proteomics/methods , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Transcriptome , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL