Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Annu Rev Immunol ; 36: 549-578, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29677469

ABSTRACT

Signaling through the T cell antigen receptor (TCR) activates a series of tyrosine kinases. Directly associated with the TCR, the SRC family kinase LCK and the SYK family kinase ZAP-70 are essential for all downstream responses to TCR stimulation. In contrast, the TEC family kinase ITK is not an obligate component of the TCR cascade. Instead, ITK functions as a tuning dial, to translate variations in TCR signal strength into differential programs of gene expression. Recent insights into TEC kinase structure have provided a view into the molecular mechanisms that generate different states of kinase activation. In resting lymphocytes, TEC kinases are autoinhibited, and multiple interactions between the regulatory and kinase domains maintain low activity. Following TCR stimulation, newly generated signaling modules compete with the autoinhibited core and shift the conformational ensemble to the fully active kinase. This multidomain control over kinase activation state provides a structural mechanism to account for ITK's ability to tune the TCR signal.


Subject(s)
Lymphocyte Activation , Protein-Tyrosine Kinases/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Biomarkers , Humans , Lymphocyte Activation/immunology , Phospholipase C gamma/metabolism , Phosphorylation , Protein Binding , Protein Interaction Domains and Motifs , Protein-Tyrosine Kinases/chemistry , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , src-Family Kinases/metabolism
2.
Biochemistry ; 63(1): 94-106, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38091504

ABSTRACT

Bruton's Tyrosine Kinase (BTK) is a nonreceptor tyrosine kinase that belongs to the TEC family. Mutations in the BTK gene cause X-linked agammaglobulinemia (XLA) leading to an arrest in B-cell development. BTK is also a drug target for B-cell lymphomas that rely on an intact B-cell receptor signaling cascade for survival. All FDA approved drugs for BTK target the ATP binding site of the catalytic kinase domain, leading to potential adverse events due to off-target inhibition. In addition, acquired resistance mutations occur in a subset of patients, rendering available BTK inhibitors ineffective. Therefore, allosteric sites on BTK should be explored for drug development to target BTK more specifically and in combination with active site inhibitors. Virtual screening against nonactive site pockets and in vitro experiments resulted in a series of small molecules that bind to BTK outside of the active site. We characterized these compounds using biochemical and biophysical techniques and narrowed our focus to compound "C2". C2 activates full-length BTK and smaller multidomain BTK fragments but not the isolated kinase domain, consistent with an allosteric mode of action. Kinetic experiments reveal a C2-mediated decrease in Km and an increase in kcat leading to an overall increase in the catalytic efficiency of BTK. C2 is also capable of activating the BTK XLA mutants. These proof-of-principle data reveal that BTK can be targeted allosterically with small molecules, providing an alternative to active site BTK inhibitors.


Subject(s)
Protein-Tyrosine Kinases , Signal Transduction , Humans , Agammaglobulinaemia Tyrosine Kinase , Protein-Tyrosine Kinases/chemistry , Mutation , Binding Sites
3.
Proc Natl Acad Sci U S A ; 116(43): 21539-21544, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31591208

ABSTRACT

The pleckstrin homology (PH) domain is well known for its phospholipid targeting function. The PH-TEC homology (PHTH) domain within the TEC family of tyrosine kinases is also a crucial component of the autoinhibitory apparatus. The autoinhibitory surface on the PHTH domain has been previously defined, and biochemical investigations have shown that PHTH-mediated inhibition is mutually exclusive with phosphatidylinositol binding. Here we use hydrogen/deuterium exchange mass spectrometry, nuclear magnetic resonance (NMR), and evolutionary sequence comparisons to map where and how the PHTH domain affects the Bruton's tyrosine kinase (BTK) domain. The data map a PHTH-binding site on the activation loop face of the kinase C lobe, suggesting that the PHTH domain masks the activation loop and the substrate-docking site. Moreover, localized NMR spectral changes are observed for non-surface-exposed residues in the active site and on the distal side of the kinase domain. These data suggest that the association of PHTH induces allosteric conformational shifts in regions of the kinase domain that are critical for catalysis. Through statistical comparisons of diverse tyrosine kinase sequences, we identify residues unique to BTK that coincide with the experimentally determined PHTH-binding surface on the kinase domain. Our data provide a more complete picture of the autoinhibitory conformation adopted by full-length TEC kinases, creating opportunities to target the regulatory domains to control the function of these kinases in a biological setting.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/chemistry , Agammaglobulinaemia Tyrosine Kinase/metabolism , Agammaglobulinaemia Tyrosine Kinase/genetics , Allosteric Regulation , Binding Sites , Humans , Lipid Metabolism , Lipids/chemistry , Magnetic Resonance Spectroscopy , Models, Molecular , Pleckstrin Homology Domains , Protein Domains , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism
4.
Biochemistry ; 56(23): 2938-2949, 2017 06 13.
Article in English | MEDLINE | ID: mdl-28516764

ABSTRACT

Pleckstrin homology (PH) domains are well-known as phospholipid binding modules, yet evidence that PH domain function extends beyond lipid recognition is mounting. In this work, we characterize a protein binding function for the PH domain of interleukin-2-inducible tyrosine kinase (ITK), an immune cell specific signaling protein that belongs to the TEC family of nonreceptor tyrosine kinases. Its N-terminal PH domain is a well-characterized lipid binding module that localizes ITK to the membrane via phosphatidylinositol 3,4,5-trisphosphate (PIP3) binding. Using a combination of nuclear magnetic resonance spectroscopy and mutagenesis, we have mapped an autoregulatory protein interaction site on the ITK PH domain that makes direct contact with the catalytic kinase domain of ITK, inhibiting the phospho-transfer reaction. Moreover, we have elucidated an important interplay between lipid binding by the ITK PH domain and the stability of the autoinhibitory complex formed by full length ITK. The ITK activation loop in the kinase domain becomes accessible to phosphorylation to the exogenous kinase LCK upon binding of the ITK PH domain to PIP3. By clarifying the allosteric role of the ITK PH domain in controlling ITK function, we have expanded the functional repertoire of the PH domain generally and opened the door to alternative strategies to target this specific kinase in the context of immune cell signaling.


Subject(s)
Lipid Bilayers/metabolism , Models, Molecular , Phosphatidylinositol Phosphates/metabolism , Protein-Tyrosine Kinases/metabolism , Allosteric Regulation , Amino Acid Substitution , Animals , Binding Sites , Catalytic Domain , Enzyme Stability , Lipid Bilayers/chemistry , Mice , Mutagenesis, Site-Directed , Mutation , Nuclear Magnetic Resonance, Biomolecular , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Phosphatidylinositol Phosphates/chemistry , Phosphorylation , Pleckstrin Homology Domains , Protein Conformation , Protein Interaction Domains and Motifs , Protein Processing, Post-Translational , Protein Transport , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism
5.
PLoS Comput Biol ; 12(3): e1004826, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27010561

ABSTRACT

Bruton's tyrosine kinase (Btk) is a Tec family non-receptor tyrosine kinase that plays a critical role in immune signaling and is associated with the immunological disorder X-linked agammaglobulinemia (XLA). Our previous findings showed that the Tec kinases are allosterically activated by the adjacent N-terminal linker. A single tryptophan residue in the N-terminal 17-residue linker mediates allosteric activation, and its mutation to alanine leads to the complete loss of activity. Guided by hydrogen/deuterium exchange mass spectrometry results, we have employed Molecular Dynamics simulations, Principal Component Analysis, Community Analysis and measures of node centrality to understand the details of how a single tryptophan mediates allostery in Btk. A specific tryptophan side chain rotamer promotes the functional dynamic allostery by inducing coordinated motions that spread across the kinase domain. Either a shift in the rotamer population, or a loss of the tryptophan side chain by mutation, drastically changes the coordinated motions and dynamically isolates catalytically important regions of the kinase domain. This work also identifies a new set of residues in the Btk kinase domain with high node centrality values indicating their importance in transmission of dynamics essential for kinase activation. Structurally, these node residues appear in both lobes of the kinase domain. In the N-lobe, high centrality residues wrap around the ATP binding pocket connecting previously described Catalytic-spine residues. In the C-lobe, two high centrality node residues connect the base of the R- and C-spines on the αF-helix. We suggest that the bridging residues that connect the catalytic and regulatory architecture within the kinase domain may be a crucial element in transmitting information about regulatory spine assembly to the catalytic machinery of the catalytic spine and active site.


Subject(s)
Allosteric Regulation , Models, Chemical , Molecular Dynamics Simulation , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/ultrastructure , Tryptophan/chemistry , Agammaglobulinaemia Tyrosine Kinase , Allosteric Site , Amino Acid Sequence , Conserved Sequence , Enzyme Activation , Molecular Sequence Data , Motion , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Structure-Activity Relationship
6.
bioRxiv ; 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38187560

ABSTRACT

Inhibition of Bruton's tyrosine kinase (BTK) has proven to be highly effective in the treatment of B-cell malignancies such as chronic lymphocytic leukemia (CLL), autoimmune disorders and multiple sclerosis. Since the approval of the first BTK inhibitor (BTKi), Ibrutinib, several other inhibitors including Acalabrutinib, Zanubrutinib, Tirabrutinib and Pirtobrutinib have been clinically approved. All are covalent active site inhibitors, with the exception of the reversible active site inhibitor Pirtobrutinib. The large number of available inhibitors for the BTK target creates challenges in choosing the most appropriate BTKi for treatment. Side-by-side comparisons in CLL have shown that different inhibitors may differ in their treatment efficacy. Moreover, the nature of the resistance mutations that arise in patients appears to depend on the specific BTKi administered. We have previously shown that Ibrutinib binding to the kinase active site causes unanticipated long-range effects on the global conformation of BTK (Joseph, R.E., et al., 2020, https://doi.org/10.7554/eLife.60470 ). Here we show that binding of each of the five approved BTKi to the kinase active site brings about distinct allosteric changes that alter the conformational equilibrium of full-length BTK. Additionally, we provide an explanation for the resistance mutation bias observed in CLL patients treated with different BTKi and characterize the mechanism of action of two common resistance mutations: BTK T474I and L528W.

7.
J Med Chem ; 67(16): 13572-13593, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39119945

ABSTRACT

Targeted covalent inhibitors (TCIs) directing cysteine have historically relied on a narrow set of electrophilic "warheads". While Michael acceptors remain at the forefront of TCI design strategies, they show variable stability and selectivity under physiological conditions. Here, we show that the 2-sulfonylpyrimidine motif is an effective replacement for the acrylamide warhead of Ibrutinib, for the inhibition of Bruton's tyrosine kinase. In a few iterations, we discovered new derivatives, which inhibit BTK both in vitro and in cellulo at low nanomolar concentrations, on par with Ibrutinib. Several derivatives also displayed good plasma stability and reduced off-target binding in vitro across 135 tyrosine kinases. This proof-of-concept study on a well-studied kinase/TCI system highlights the 2-sulfonylpyrimidine group as a useful acrylamide replacement. In the future, it will be interesting to investigate its wider potential for developing TCIs with improved pharmacologies and selectivity profiles across structurally related protein families.


Subject(s)
Acrylamide , Agammaglobulinaemia Tyrosine Kinase , Protein Kinase Inhibitors , Pyrimidines , Humans , Acrylamide/chemistry , Acrylamide/pharmacology , Adenine/chemistry , Adenine/analogs & derivatives , Adenine/pharmacology , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/metabolism , Piperidines/chemistry , Piperidines/pharmacology , Piperidines/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Structure-Activity Relationship
8.
Immunol Rev ; 228(1): 74-92, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19290922

ABSTRACT

The control of cellular signaling cascades is of utmost importance in regulating the immune response. Exquisitely precise protein-protein interactions and chemical modification of substrates by enzymatic catalysis are the fundamental components of the signals that alert immune cells to the presence of a foreign antigen. In particular, the phosphorylation events induced by protein kinase activity must be spatially and temporally regulated by specific interactions to maintain a normal and effective immune response. High resolution structures of many protein kinases along with supporting biochemical data are providing significant insight into the intricate regulatory mechanisms responsible for controlling cellular signaling. The Tec family kinases are immunologically important kinases for which regulatory details are beginning to emerge. This review focuses on bringing together structural insights gained over the years to develop an understanding of how domain interactions both within the Tec kinases and between the Tec kinases and other signaling molecules control immune cell function.


Subject(s)
Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/metabolism , Signal Transduction , Models, Molecular , Protein Conformation , Protein Structure, Tertiary , Protein-Tyrosine Kinases/immunology
9.
J Immunol ; 184(8): 4228-35, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20237289

ABSTRACT

The Tec family tyrosine kinase (Itk), is a key component of the TCR signaling pathway. Biochemical studies have shown that Itk activation requires recruitment of Itk to the membrane via its pleckstrin homology domain, phosphorylation of Itk by the Src kinase, Lck, and binding of Itk to the SLP-76/LAT adapter complex. However, the regulation of Itk enzymatic activity by Itk domain interactions is not yet well understood. In this study, we show that full-length Itk self-associates in an intermolecular fashion. Using this information, we have designed an Itk variant that exhibits reduced self-association but maintains normal binding to exogenous ligands via each of its regulatory domains. When expressed in insect cells, the Itk substrate phospholipase Cgamma1 is phosphorylated more efficiently by the Itk variant than by wild-type Itk. Furthermore, expression of the Itk variant in primary murine T cells induced higher ERK activation and increased calcium flux following TCR stimulation compared with that of wild-type Itk. Our results indicate that the Tec kinase Itk is negatively regulated by intermolecular clustering and that disruption of this clustering leads to increased Itk kinase activity following TCR stimulation.


Subject(s)
CD4-Positive T-Lymphocytes/enzymology , CD4-Positive T-Lymphocytes/immunology , Models, Immunological , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Signal Transduction/immunology , Animals , Baculoviridae/enzymology , Baculoviridae/genetics , Baculoviridae/immunology , Cell Differentiation/genetics , Cell Differentiation/immunology , Cell Lineage/genetics , Cell Lineage/immunology , Down-Regulation/genetics , Down-Regulation/immunology , Enzyme Activation/genetics , Enzyme Activation/immunology , Genetic Vectors/immunology , Mice , NIH 3T3 Cells , Point Mutation , Protein-Tyrosine Kinases/deficiency , Protein-Tyrosine Kinases/genetics , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/physiology , Signal Transduction/genetics , Spodoptera/enzymology , Spodoptera/genetics , Spodoptera/immunology
10.
Article in English | MEDLINE | ID: mdl-22297986

ABSTRACT

The crystal structure of the interleukin-2 tyrosine kinase Src homology domain (Itk SH2) is described and it is found that unlike in studies of this domain using NMR spectroscopy, cis-trans-prolyl isomerization is not readily detected in the crystal structure. Based on similarities between the Itk SH2 crystal form and the cis form of the Itk SH2 NMR structure, it is concluded that it is likely that the prolyl imide bond at least in part adopts the cis conformation in the crystal form. However, the lack of high-resolution data and the dynamic nature of the proline-containing loop mean that the precise imide-bond conformation cannot be determined and prolyl cis-trans isomerization in the crystal cannot be ruled out. Given the preponderance of structures that have been solved by X-ray crystallography in the Protein Data Bank, this result supports the notion that prolyl isomerization in folded proteins has been underestimated among known structures. Interestingly, while the precise status of the proline residue is ambiguous, Itk SH2 crystallizes as a domain-swapped dimer. The domain-swapped structure of Itk SH2 is similar to the domain-swapped SH2 domains of Grb2 and Nck, with domain swapping occurring at theĀ ĆŸ-meander region of all three SH2 domains. Thus, for Itk SH2 structural analysis by NMR spectroscopy and X-ray crystallography revealed very different structural features: proline isomerization versus domain-swapped dimerization, respectively.


Subject(s)
Protein-Tyrosine Kinases/chemistry , src Homology Domains , Amino Acid Sequence , Animals , Crystallography, X-Ray , Mice , Models, Molecular , Molecular Sequence Data , Mutation , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Quaternary , Protein-Tyrosine Kinases/genetics
11.
Proc Natl Acad Sci U S A ; 106(50): 21143-8, 2009 Dec 15.
Article in English | MEDLINE | ID: mdl-19955438

ABSTRACT

Interleukin-2 tyrosine kinase (Itk) is a Tec family tyrosine kinase that mediates signaling processes after T cell receptor engagement. Activation of Itk requires recruitment to the membrane via its pleckstrin homology domain, phosphorylation of Itk by the Src kinase, Lck, and binding of Itk to the SLP-76/LAT adapter complex. After activation, Itk phosphorylates and activates phospholipase C-gamma1 (PLC-gamma1), leading to production of two second messengers, DAG and IP(3). We have previously shown that phosphorylation of PLC-gamma1 by Itk requires a direct, phosphotyrosine-independent interaction between the Src homology 2 (SH2) domain of PLC-gamma1 and the kinase domain of Itk. We now define this docking interface using a combination of mutagenesis and NMR spectroscopy and show that disruption of the Itk/PLCgamma1 docking interaction attenuates T cell signaling. The binding surface on PLCgamma1 that mediates recognition by Itk highlights a nonclassical binding activity of the well-studied SH2 domain providing further evidence that SH2 domains participate in important signaling interactions beyond recognition of phosphotyrosine.


Subject(s)
Phospholipase C gamma/metabolism , Protein-Tyrosine Kinases/metabolism , src Homology Domains , Animals , Cell Line , Insecta , Magnetic Resonance Spectroscopy , Mutagenesis , Phosphorylation , Protein Interaction Mapping , Protein-Tyrosine Kinases/genetics , Signal Transduction , T-Lymphocytes , Transfection
12.
J Struct Biol X ; 6: 100061, 2022.
Article in English | MEDLINE | ID: mdl-35128378

ABSTRACT

Cell surface receptors such as the T-cell receptor (TCR) and B-cell receptor (BCR) engage with external stimuli to transmit information into the cell and initiate a cascade of signaling events that lead to gene expression that drives the immune response. At the heart of controlling T- and B-cell cell signaling, phospholipase CƎĀ³ hydrolyzes membrane associated PIP2, leading to generation of the second messengers IP3 and DAG. These small molecules trigger mobilization of intracellular Ca2+ and promote transcription factor transport into the nucleus launching the adaptive immune response. The TEC family kinases are responsible for phosphorylating and activating PLCƎĀ³, and our group aims to understand mechanisms that regulate immune cell signal transduction by focusing on this kinase/phospholipase axis in T-cells and B-cells. Here, we review the current molecular level understanding of how the TEC kinases (ITK and BTK) and PLCƎĀ³1/2 are autoinhibited prior to activation of cell surface receptors, how TEC kinases are activated to specifically recognize the PLCƎĀ³ substrate, and how conformational changes induced by phosphorylation trigger PLCƎĀ³ activation.

13.
J Mol Biol ; 434(5): 167422, 2022 03 15.
Article in English | MEDLINE | ID: mdl-34954235

ABSTRACT

Mutations in PLCƎĀ³, a substrate of the tyrosine kinase BTK, are often found in patients who develop resistance to the BTK inhibitor Ibrutinib. However, the mechanisms by which these PLCƎĀ³ mutations cause Ibrutinib resistance are unclear. Under normal signaling conditions, BTK mediated phosphorylation of Y783 within the PLCƎĀ³ cSH2-linker promotes the intramolecular association of this site with the adjacent cSH2 domain resulting in active PLCƎĀ³. Thus, the cSH2-linker region in the center of the regulatory gamma specific array (ƎĀ³SA) of PLCƎĀ³ is a key feature controlling PLCƎĀ³ activity. Even in the unphosphorylated state this linker exists in a conformational equilibrium between free and bound to the cSH2 domain. The position of this equilibrium is optimized within the properly regulated PLCƎĀ³ enzyme but may be altered in the context of mutations. We therefore assessed the conformational status of four resistance associated mutations within the PLCƎĀ³ ƎĀ³SA and find that they each alter the conformational equilibrium of the ƎĀ³SA leading to a shift toward active PLCƎĀ³. Interestingly, two distinct modes of mutation induced activation are revealed by this panel of Ibrutinib resistance mutations. These findings, along with the recently determined structure of fully autoinhibited PLCƎĀ³, provide new insight into the nature of the conformational change that occurs within the ƎĀ³SA regulatory region to affect PLCƎĀ³ activation. Improving our mechanistic understanding of how B cell signaling escapes Ibrutinib treatment via mutations in PLCƎĀ³ will aid in the development of strategies to counter drug resistance.


Subject(s)
Drug Resistance, Neoplasm , Phospholipase C gamma , Piperidines , Protein Kinase Inhibitors , Adenine/analogs & derivatives , Agammaglobulinaemia Tyrosine Kinase/genetics , Agammaglobulinaemia Tyrosine Kinase/metabolism , Drug Resistance, Neoplasm/genetics , Humans , Phospholipase C gamma/chemistry , Phospholipase C gamma/genetics , Piperidines/pharmacology , Protein Kinase Inhibitors/pharmacology
14.
Biochemistry ; 50(2): 221-9, 2011 Jan 18.
Article in English | MEDLINE | ID: mdl-21138328

ABSTRACT

The regulatory spine is a set of conserved residues that are assembled and disassembled upon activation and inactivation of kinases. We recently identified the regulatory spine within the immunologically important Tec family kinases and have shown that in addition to the core spine residues within the kinase domain itself, contributions from the SH2-kinase linker region result in an extended spine structure for this kinase family. Disruption of the regulatory spine, either by mutation or by removal of the amino-terminal SH2-kinase linker region or by mutation of core spine residues, leads to inactivation of the Tec kinases. With a focus on the Tec family members, Itk and Btk, we now show that the gatekeeper residue is also critical for the assembly of the regulatory spine. Mutation of the bulky Itk F434 gatekeeper residue to alanine or glycine inactivates Itk. The activity of the Itk F434A mutant can be recovered by a secondary site mutation within the N-terminal lobe, specifically L432I. The Itk L432I mutation likely rescues the activity of the gatekeeper F434A mutation by promoting the assembly of the regulatory spine. We also show that mutation of the Itk and Btk gatekeeper residues to methionine is sufficient to activate the isolated kinase domains of Tec kinases in the absence of the amino-terminal SH2-kinase linker. Thus, shifting the conformational equilibrium between the assembled and disassembled states of the regulatory spine by changing the nature of the gatekeeper residue is key to regulating the activity of Tec kinases.


Subject(s)
Phenylalanine/genetics , Point Mutation , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Agammaglobulinaemia Tyrosine Kinase , Amino Acid Sequence , Animals , Mice , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Phenylalanine/chemistry , Phenylalanine/metabolism , Protein-Tyrosine Kinases/chemistry , src Homology Domains
15.
Article in English | MEDLINE | ID: mdl-21301103

ABSTRACT

Proline is a unique amino acid owing to the relatively small energy difference between the cis and trans conformations of its peptide bond. The X-Pro imide bond readily undergoes cis-trans isomerization in the context of short peptides as well as some proteins. However, the direct detection of cis-trans proline isomerization in folded proteins is technically challenging. NMR spectroscopy is well suited to the direct detection of proline isomerization in folded proteins. It is less clear how well X-ray crystallography can reveal this conformational exchange event in folded proteins. Conformational heterogeneity owing to cis-trans proline isomerization in the Src homology 2 (SH2) domain of the IL-2-inducible T-cell kinase (ITK) has been extensively characterized by NMR. Using the ITK SH2 domain as a test system, an attempt was made to determine whether proline isomerization could be detected in a crystal structure of the ITK SH2 domain. As a first step towards this goal, the purification, crystallization and preliminary characterization of the ITK SH2 domain are described.


Subject(s)
Protein-Tyrosine Kinases/chemistry , src Homology Domains , Animals , Crystallization , Crystallography, X-Ray , Mice , Molecular Conformation , Peptides/metabolism , Proline/chemistry , Proline/metabolism , X-Ray Diffraction
16.
Front Cell Dev Biol ; 9: 655489, 2021.
Article in English | MEDLINE | ID: mdl-34249912

ABSTRACT

Since Dr. Ogden Bruton's 1952 paper describing the first human primary immunodeficiency disease, the peripheral membrane binding signaling protein, aptly named Bruton's tyrosine kinase (BTK), has been the target of intense study. Dr. Bruton's description of agammaglobulinemia set the stage for ultimately understanding key signaling steps emanating from the B cell receptor. BTK is a multidomain tyrosine kinase and in the decades since Dr. Bruton's discovery it has become clear that genetic defects in the regulatory domains or the catalytic domain can lead to immunodeficiency. This finding underscores the intricate regulatory mechanisms within the BTK protein that maintain appropriate levels of signaling both in the resting B cell and during an immune challenge. In recent decades, BTK has become a target for clinical intervention in treating B cell malignancies. The survival reliance of B cell malignancies on B cell receptor signaling has allowed small molecules that target BTK to become essential tools in treating patients with hematological malignancies. The first-in-class Ibrutinib and more selective second-generation inhibitors all target the active site of the multidomain BTK protein. Therapeutic interventions targeting BTK have been successful but are plagued by resistance mutations that render drug treatment ineffective for some patients. This review will examine the molecular mechanisms that drive drug resistance, the long-range conformational effects of active site inhibitors on the BTK regulatory apparatus, and emerging opportunities to allosterically target the BTK kinase to improve therapeutic interventions using combination therapies.

17.
Elife ; 92020 11 23.
Article in English | MEDLINE | ID: mdl-33226337

ABSTRACT

Bruton's tyrosine kinase (BTK) is targeted in the treatment of B-cell disorders including leukemias and lymphomas. Currently approved BTK inhibitors, including Ibrutinib, a first-in-class covalent inhibitor of BTK, bind directly to the kinase active site. While effective at blocking the catalytic activity of BTK, consequences of drug binding on the global conformation of full-length BTK are unknown. Here, we uncover a range of conformational effects in full-length BTK induced by a panel of active site inhibitors, including large-scale shifts in the conformational equilibria of the regulatory domains. Additionally, we find that a remote Ibrutinib resistance mutation, T316A in the BTK SH2 domain, drives spurious BTK activity by destabilizing the compact autoinhibitory conformation of full-length BTK, shifting the conformational ensemble away from the autoinhibited form. Future development of BTK inhibitors will need to consider long-range allosteric consequences of inhibitor binding, including the emerging application of these BTK inhibitors in treating COVID-19.


Treatments for blood cancers, such as leukemia and lymphoma, rely heavily on chemotherapy, using drugs that target a vulnerable aspect of the cancer cells. B-cells, a type of white blood cell that produces antibodies, require a protein called Bruton's tyrosine kinase, or BTK for short, to survive. The drug ibrutinib (Imbruvica) is used to treat B-cell cancers by blocking BTK. The BTK protein consists of several regions. One of them, known as the kinase domain, is responsible for its activity as an enzyme (which allows it to modify other proteins by adding a 'tag' known as a phosphate group). The other regions of BTK, known as regulatory modules, control this activity. In BTK's inactive form, the regulatory modules attach to the kinase domain, blocking the regulatory modules from interacting with other proteins. When BTK is activated, it changes its conformation so the regulatory regions detach and become available for interactions with other proteins, at the same time exposing the active kinase domain. Ibrutinib and other BTK drugs in development bind to the kinase domain to block its activity. However, it is not known how this binding affects the regulatory modules. Previous efforts to study how drugs bind to BTK have used a version of the protein that only had the kinase domain, instead of the full-length protein. Now, Joseph et al. have studied full-length BTK and how it binds to five different drugs. The results reveal that ibrutinib and another drug called dasatinib both indirectly disrupt the normal position of the regulatory domains pushing BTK toward a conformation that resembles the activated state. By contrast, the three other compounds studied do not affect the inactive structure. Joseph et al. also examined a mutation in BTK that confers resistance against ibrutinib. This mutation increases the activity of BTK by disrupting the inactive structure, leading to B cells surviving better. Understanding how drug resistance mechanisms can work will lead to better drug treatment strategies for cancer. BTK is also a target in other diseases such as allergies or asthma and even COVID-19. If interactions between partner proteins and the regulatory domain are important in these diseases, then they may be better treated with drugs that maintain the regulatory modules in their inactive state. This research will help to design drugs that are better able to control BTK activity.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Catalytic Domain , Protein Conformation/drug effects , Protein Kinase Inhibitors/pharmacology , Adenine/analogs & derivatives , Adenine/chemistry , Adenine/metabolism , Adenine/pharmacology , Agammaglobulinaemia Tyrosine Kinase/chemistry , Agammaglobulinaemia Tyrosine Kinase/genetics , COVID-19/metabolism , COVID-19/prevention & control , COVID-19/virology , Dasatinib/chemistry , Dasatinib/metabolism , Dasatinib/pharmacology , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/prevention & control , Models, Molecular , Molecular Structure , Mutation , Piperidines/chemistry , Piperidines/metabolism , Piperidines/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , SARS-CoV-2/physiology , src Homology Domains/genetics
18.
J Mol Biol ; 373(5): 1281-92, 2007 Nov 09.
Article in English | MEDLINE | ID: mdl-17897671

ABSTRACT

Tec family non-receptor tyrosine kinases (Itk, Btk, Tec, Rlk and Bmx) are characterized by the presence of an autophosphorylation site within the non-catalytic Src homology 3 (SH3) domain. The full-length Itk mutant containing phenylalanine in place of the autophosphorylated tyrosine has been studied in Itk-deficient primary T cells. These studies revealed that the non-phosphorylated enzyme restores Itk mediated signaling only partially. In spite of these insights, the precise role of the Tec kinase autophosphorylation site is unclear and the mechanism of the autophosphorylation reaction within the Tec kinases is not known. Here, we show both in vitro and in vivo that Itk autophosphorylation on Y180 within the SH3 domain occurs exclusively via an intramolecular, in cis mechanism. Using an in vitro kinase assay, we show that mutation of the Itk autophosphorylation site Y180 to Phe decreases kinase activity of the full-length enzyme by increasing Km for a peptide substrate. Moreover, mutation of Y180 to Glu, a residue chosen to mimic the phosphorylated tyrosine, alters the ligand-binding capability of the Itk SH3 domain in a ligand-dependent fashion. NMR chemical shift mapping gives residue-specific structural insight into the effect of the Y180E mutation on ligand binding. These data provide a molecular level context with which to interpret in vivo functional data and allow development of a structural model for Itk autophosphorylation.


Subject(s)
Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/physiology , Amino Acid Substitution , Phosphorylation , Protein Binding , Signal Transduction , src Homology Domains
19.
Protein Expr Purif ; 60(2): 194-7, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18495488

ABSTRACT

Biochemical and biophysical characterization of kinases requires large quantities of purified protein. Here, we report the bacterial expression and purification of active Itk kinase domain (a Tec family kinase) using ArcticExpress cells that co-express the chaperonin system Cpn60/10 from Oleispira antarctica. We describe a simple one step MgCl2/ATP/KCl incubation procedure to remove the co-purifying chaperonin impurity. Chaperonin co-purification is a common problem encountered during protein purification and the simple incubation step described here completely overcomes this problem. The approach targets the chaperonin system rather than the protein of interest and is therefore widely applicable to other protein targets.


Subject(s)
Chaperonins/isolation & purification , Escherichia coli/genetics , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/isolation & purification , Animals , Electrophoresis, Polyacrylamide Gel , Mice , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification
20.
Structure ; 25(10): 1481-1494.e4, 2017 10 03.
Article in English | MEDLINE | ID: mdl-28867612

ABSTRACT

Capturing the functionally relevant forms of dynamic, multidomain proteins is extremely challenging. Bruton's tyrosine kinase (BTK), a kinase essential for B and mast cell function, has stubbornly resisted crystallization in its full-length form. Here, nuclear magnetic resonance and hydrogen-deuterium exchange mass spectrometry show that BTK adopts a closed conformation in dynamic equilibrium with open, active conformations. BTK lacks the phosphotyrosine regulatory tail of the SRC kinases, yet nevertheless achieves a phosphotyrosine-independent C-terminal latch. The unique proline-rich region is an internal "on" switch pushing the autoinhibited kinase toward its active state. Newly identified autoinhibitory contacts in the BTK pleckstrin homology domain are sensitive to phospholipid binding, which induces large-scale allosteric changes. The multiplicity of these regulatory contacts suggests a clear mechanism for gradual or "analog" kinase activation as opposed to a binary "on/off" switch. The findings illustrate how previously modeled information for recalcitrant full-length proteins can be expanded and validated with a convergent multidisciplinary experimental approach.


Subject(s)
Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/metabolism , Agammaglobulinaemia Tyrosine Kinase , Animals , Catalytic Domain , Deuterium Exchange Measurement , Magnetic Resonance Spectroscopy , Mice , Models, Molecular , Phosphotyrosine/metabolism , Protein Conformation , Protein Domains
SELECTION OF CITATIONS
SEARCH DETAIL