Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Gen Comp Endocrinol ; 305: 113642, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33039406

ABSTRACT

Thyroid hormones (THs) are ancient signaling molecules that contribute to the regulation of metabolism, energy homeostasis and growth. In vertebrates, the hypothalamus-pituitary-thyroid (HPT) axis links the corresponding organs through hormonal signals, including thyrotropin releasing factor (TRF), and thyroid stimulating hormone (TSH) that ultimately activates the synthesis and secretion of THs from the thyroid gland. Although this axis is conserved among most vertebrates, the identity of the hypothalamic TRF that positively regulates TSH synthesis and secretion varies. We review the evolution of the hypothalamic factors that induce TSH secretion, including thyrotropin-releasing hormone (TRH), corticotrophin-releasing hormone (CRH), urotensin-1-3, and sauvagine, and non-mammalian glucagon-like peptide in metazoans. Each of these peptides is part of an extracellular communication unit likely composed of at least 3 elements: the peptide, G-protein coupled receptor and bioavailability regulator, set up on the central neuroendocrine articulation. The bioavailability regulators include a TRH-specific ecto-peptidase, pyroglutamyl peptidase II, and a CRH-binding protein, that together with peptide secretion/transport rate and transduction coupling and efficiency at receptor level shape TRF signal intensity and duration. These vertebrate TRF communication units were coopted from bilaterian ancestors. The bona fide elements appeared early in chordates, and are either used alternatively, in parallel, or sequentially, in different vertebrate classes to control centrally the activity of the HPT axis. Available data also suggest coincidence between apparition of ligand and bioavailability regulator.


Subject(s)
Thyrotropin-Releasing Hormone , Thyrotropin , Animals , Corticotropin-Releasing Hormone , Hypothalamus , Thyroid Gland
2.
Neurobiol Learn Mem ; 140: 17-26, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28185871

ABSTRACT

Intense training refers to training mediated by emotionally arousing experiences, such as aversive conditioning motivated by relatively high intensities of foot-shock, which produces a strong memory that is highly resistant to extinction. Intense training protects memory consolidation against the amnestic effects of a wide variety of treatments, administered systemically or directly into brain structures. The mechanisms of this protective effect are unknown. To determine a potential neurobiological correlate of the protective effect of intense training, rats were trained in a one-trial step-through inhibitory avoidance task using different intensities of foot-shock (0.0, 0.5, 1.0, and 2.0mA). Some rats from each group were sacrificed 45min after training for immunohistochemical Arc protein detection in dorsal and ventral striatum; other rats were tested for extinction during six consecutive days, starting 48h after training. The results showed that training with 1.0 and 2.0mA produced optimal retention scores, which were significantly higher than those of the 0.5 and 0.0mA groups. Also, a higher resistance to extinction was obtained with 2.0mA than with the other intensities. A high number of neurons expressed Arc in ventral, but not in dorsal striatum in both the 1.0 and 2.0mA groups, with a larger area of Arc signal in the latter group. We conclude that an increased Arc expression may be related to enhanced synaptic plasticity in the ventral striatum, suggesting that it may be one of the physiological substrates of enhanced learning.


Subject(s)
Avoidance Learning/physiology , Conditioning, Operant/physiology , Corpus Striatum/metabolism , Cytoskeletal Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Animals , Electroshock , Immunohistochemistry , Membrane Glycoproteins , Neuronal Plasticity/physiology , Rats , Rats, Wistar , Receptors, Interleukin-1 , Ventral Striatum/metabolism
3.
Rev Endocr Metab Disord ; 17(4): 545-558, 2016 12.
Article in English | MEDLINE | ID: mdl-27515033

ABSTRACT

The activity of the hypothalamus-pituitary-thyroid axis (HPT) is coordinated by hypophysiotropic thyrotropin releasing hormone (TRH) neurons present in the paraventricular nucleus of the hypothalamus. Hypophysiotropic TRH neurons act as energy sensors. TRH controls the synthesis and release of thyrotropin, which activates the synthesis and secretion of thyroid hormones; in target tissues, transporters and deiodinases control their local availability. Thyroid hormones regulate many functions, including energy homeostasis. This review discusses recent evidence that covers several aspects of TRH role in HPT axis regulation. Knowledge about the mechanisms of TRH signaling has steadily increased. New transcription factors engaged in TRH gene expression have been identified, and advances made on how they interact with signaling pathways and define the dynamics of TRH neurons response to acute and/or long-term influences. Albeit yet incomplete, the relationship of TRH neurons activity with positive energy balance has emerged. The importance of tanycytes as a central relay for the feedback control of the axis, as well as for HPT responses to alterations in energy balance, and other stimuli has been reinforced. Finally, some studies have started to shed light on the interference of prenatal and postnatal stress and nutrition on HPT axis programing, which have confirmed the axis susceptibility to early insults.


Subject(s)
Thyroid Gland/metabolism , Thyroid Gland/pathology , Thyrotropin-Releasing Hormone/metabolism , Animals , Ependymoglial Cells/metabolism , Ependymoglial Cells/pathology , Humans , Hypothalamus/metabolism , Hypothalamus/pathology , Signal Transduction/physiology
4.
Metabolites ; 14(6)2024 May 26.
Article in English | MEDLINE | ID: mdl-38921437

ABSTRACT

Thyrotropin-releasing hormone (TRH; pGlu-His-Pro-NH2) is an intercellular signal produced mainly by neurons. Among the multiple pharmacological effects of TRH, that on food intake is not well understood. We review studies demonstrating that peripheral injection of TRH generally produces a transient anorexic effect, discuss the pathways that might initiate this effect, and explain its short half-life. In addition, central administration of TRH can produce anorexic or orexigenic effects, depending on the site of injection, that are likely due to interaction with TRH receptor 1. Anorexic effects are most notable when TRH is injected into the hypothalamus and the nucleus accumbens, while the orexigenic effect has only been detected by injection into the brain stem. Functional evidence points to TRH neurons that are prime candidate vectors for TRH action on food intake. These include the caudal raphe nuclei projecting to the dorsal motor nucleus of the vagus, and possibly TRH neurons from the tuberal lateral hypothalamus projecting to the tuberomammillary nuclei. For other TRH neurons, the anatomical or physiological context and impact of TRH in each synaptic domain are still poorly understood. The manipulation of TRH expression in well-defined neuron types will facilitate the discovery of its role in food intake control in each anatomical scene.

5.
Biochim Biophys Acta ; 1809(3): 191-9, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21266205

ABSTRACT

Expression of hypophysiotropic TRH, that controls thyroid axis activity, is increased by cold exposure; this effect is mimicked in rat hypothalamic cells incubated with norepinephrine or cAMP analogs. TRH proximal promoter contains three putative CRE: Site-4 or CRE-1 that overlaps an element recognized by thyroid hormone receptors, CRE-2 with adjacent sequences GC box or CACCC recognized by Sp/Krüppel factors (extended CRE-2), and AP-1 sites flanking a GRE(1/2). To evaluate the role of each element in the cAMP response, these sites were mutated or deleted in rat TRH promoter linked to luciferase gene (TRH-luc) and co-transfected with ß-gal expression vector in various cell lines; C6 cells gave the highest response to forskolin. Basal activity was most affected by mutations or deletion of CRE-2 site, or CACCC (50-75% of wild type-WT). Forskolin-induced 3× stimulation in WT which decreased 25% with CRE-1 or AP-1 deletions, but 50% when CRE-2 or its 5' adjacent GC box was altered. SH-SY5Y cells co-transfected with CREB-expression vector increased dB-cAMP response in the wild type but not in the CRE-2 mutated plasmid; cotransfecting CREB-A (a dominant negative expression vector) strongly diminished basal or cAMP response. Primary cultures of hypothalamic cells transfected with plasmids containing deletions of CRE-1, CRE-2, or extended CRE-2 failed to respond to forskolin when CRE-2 was modified. These results corroborate the CRE-2 site as the main cAMP-response element of rat TRH promoter, not exclusive of transcription factors of hypothalamic cells, and stress the relevance of adjacent Sp-1 sites, important mediators of some metabolic hormones.


Subject(s)
Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP/pharmacology , Kruppel-Like Transcription Factors/genetics , Response Elements/genetics , Sp Transcription Factors/genetics , Thyrotropin-Releasing Hormone/genetics , Transcription, Genetic/drug effects , Animals , Base Sequence , Cell Line , Gene Expression Regulation/drug effects , Humans , Mice , Molecular Sequence Data , Point Mutation/genetics , Rats , Transfection
6.
J Pharmacol Exp Ther ; 342(1): 222-31, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22532627

ABSTRACT

Thyrotropin-releasing hormone (TRH; pGlu-His-Pro-NH(2)) has multiple, but transient, homeostatic functions in the brain. It is hydrolyzed in vitro by pyroglutamyl peptidase II (PPII), a narrow specificity ectoenzyme with a preferential localization in the brain, but evidence that PPII controls TRH communication in the brain in vivo is scarce. We therefore studied in male Wistar rats the distribution of PPII mRNA in the septum and the consequence of PPII inhibition on the analeptic effect of TRH injected into the medial septum. Twelve to 14% of cell profiles expressed PPII mRNA in the medial septum-diagonal band of Broca; in this region the specific activity of PPII was relatively high. Twenty to 35% of PPII mRNA-labeled profiles were positive for TRH-receptor 1 (TRH-R1) mRNA. The intramedial septum injection of TRH reduced, in a dose-dependent manner, the duration of ethanol-induced loss of righting reflex (LORR). Injection of the PPII inhibitor pGlu-Asn-Pro-7-amido-4-methylcoumarin into the medial septum enhanced the effect of TRH. The injection of a phosphinic TRH analog, a higher-affinity inhibitor of PPII, diminished the duration of LORR by itself. In contrast, the intraseptal injection of pGlu-Asp-Pro-NH(2), a peptide that did not inhibit PPII activity, or an inhibitor of prolyl oligopeptidase did not change the duration of LORR. We conclude that in the medial septum PPII activity may limit TRH action, presumably by reducing the concentration of TRH in the extracellular fluid around cells coexpressing PPII and TRH-R1.


Subject(s)
Aminopeptidases/antagonists & inhibitors , Central Nervous System Stimulants/pharmacology , Pyrrolidonecarboxylic Acid/analogs & derivatives , Septum of Brain/drug effects , Septum of Brain/enzymology , Thyrotropin-Releasing Hormone/pharmacology , Aminopeptidases/genetics , Aminopeptidases/metabolism , Animals , Male , Peptides/pharmacology , Prolyl Oligopeptidases , Pyrrolidonecarboxylic Acid/antagonists & inhibitors , Pyrrolidonecarboxylic Acid/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Wistar , Receptors, Thyrotropin-Releasing Hormone/genetics , Receptors, Thyrotropin-Releasing Hormone/metabolism , Reflex, Righting/genetics , Septum of Brain/metabolism , Serine Endopeptidases/pharmacology
7.
Brain Res ; 1796: 148083, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36108782

ABSTRACT

The dorsomedial nucleus of the hypothalamus (DMH) is part of the brain circuits that modulate organism responses to the circadian cycle, energy balance, and psychological stress. A large group of thyrotropin-releasing hormone (Trh) neurons is localized in the DMH; they comprise about one third of the DMH neurons that project to the lateral hypothalamus area (LH). We tested their response to various paradigms. In male Wistar rats, food restriction during adulthood, or chronic variable stress (CVS) during adolescence down-regulated adult DMH Trh mRNA levels compared to those in sedentary animals fed ad libitum; two weeks of voluntary wheel running during adulthood enhanced DMH Trh mRNA levels compared to pair-fed rats. Except for their magnitude, female responses to exercise were like those in male rats; in contrast, in female rats CVS did not change DMH Trh mRNA levels. A very strong negative correlation between DMH Trh mRNA levels and serum corticosterone concentration in rats of either sex was lost in CVS rats. CVS canceled the response to food restriction, but not that to exercise in either sex. TRH receptor 1 (Trhr) cells were numerous along the rostro-caudal extent of the medial LH. In either sex, fasting during adulthood reduced DMH Trh mRNA levels, and increased LH Trhr mRNA levels, suggesting fasting may inhibit the activity of TRHDMH->LH neurons. Thus, in Wistar rats DMH Trh mRNA levels are regulated by negative energy balance, exercise and chronic variable stress through sex-dependent and -independent pathways.


Subject(s)
Hypothalamus , Thyrotropin-Releasing Hormone , Animals , Female , Male , Rats , Corticosterone , Hypothalamus/metabolism , Mediodorsal Thalamic Nucleus , Motor Activity , Rats, Wistar , Receptors, Thyrotropin-Releasing Hormone/genetics , Receptors, Thyrotropin-Releasing Hormone/metabolism , RNA, Messenger/metabolism , Thyrotropin-Releasing Hormone/genetics , Thyrotropin-Releasing Hormone/metabolism
8.
BMC Genomics ; 12: 222, 2011 May 10.
Article in English | MEDLINE | ID: mdl-21569245

ABSTRACT

BACKGROUND: During murine hypothalamic development, different neuroendocrine cell phenotypes are generated in overlapping periods; this suggests that cell-type specific developmental programs operate to achieve complete maturation. A balance between programs that include cell proliferation, cell cycle withdrawal as well as epigenetic regulation of gene expression characterizes neurogenesis. Thyrotropin releasing hormone (TRH) is a peptide that regulates energy homeostasis and autonomic responses. To better understand the molecular mechanisms underlying TRH neuron development, we performed a genome wide study of its transcriptome during fetal hypothalamic development. RESULTS: In primary cultures, TRH cells constitute 2% of the total fetal hypothalamic cell population. To purify these cells, we took advantage of the fact that the segment spanning -774 to +84 bp of the Trh gene regulatory region confers specific expression of the green fluorescent protein (GFP) in the TRH cells. Transfected TRH cells were purified by fluorescence activated cell sorting, various cell preparations pooled, and their transcriptome compared to that of GFP- hypothalamic cells. TRH cells undergoing the terminal phase of differentiation, expressed genes implicated in protein biosynthesis, intracellular signaling and transcriptional control. Among the transcription-associated transcripts, we identified the transcription factors Klf4, Klf10 and Atf3, which were previously uncharacterized within the hypothalamus. CONCLUSION: To our knowledge, this is one of the first reports identifying transcripts with a potentially important role during the development of a specific hypothalamic neuronal phenotype. This genome-scale study forms a rational foundation for identifying genes that might participate in the development and function of hypothalamic TRH neurons.


Subject(s)
Fetus/cytology , Fetus/metabolism , Gene Expression Profiling , Hypothalamus/metabolism , Neurons/metabolism , Thyrotropin-Releasing Hormone/genetics , Animals , Embryo, Mammalian , Hypothalamus/cytology , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/metabolism , Neurons/cytology , Oligonucleotide Array Sequence Analysis , Organ Specificity , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Wistar
9.
Front Endocrinol (Lausanne) ; 12: 746924, 2021.
Article in English | MEDLINE | ID: mdl-34745011

ABSTRACT

The hypothalamus-pituitary-thyroid-axis (HPT) is one of the main neuroendocrine axes that control energy expenditure. The activity of hypophysiotropic thyrotropin releasing hormone (TRH) neurons is modulated by nutritional status, energy demands and stress, all of which are sex dependent. Sex dimorphism has been associated with sex steroids whose concentration vary along the life-span, but also to sex chromosomes that define not only sexual characteristics but the expression of relevant genes. In this review we describe sex differences in basal HPT axis activity and in its response to stress and to metabolic challenges in experimental animals at different stages of development, as well as some of the limited information available on humans. Literature review was accomplished by searching in Pubmed under the following words: "sex dimorphic" or "sex differences" or "female" or "women" and "thyrotropin" or "thyroid hormones" or "deiodinases" and "energy homeostasis" or "stress". The most representative articles were discussed, and to reduce the number of references, selected reviews were cited.


Subject(s)
Energy Metabolism/physiology , Hypothalamo-Hypophyseal System/physiology , Sex Characteristics , Stress, Physiological/physiology , Thyroid Gland/physiology , Adaptation, Physiological/physiology , Animals , Female , Humans , Male
10.
Endocrinology ; 162(8)2021 08 01.
Article in English | MEDLINE | ID: mdl-34043769

ABSTRACT

The hypothalamus-pituitary-thyroid (HPT) axis regulates energy balance through the pleiotropic action of thyroid hormones. HPT basal activity and stimulation by cold or voluntary exercise are repressed by previous chronic stress in adults. Maternal separation (MS) modifies HPT basal activity; we thus studied the response of the axis to energy demands and analyzed possible epigenetic changes on Trh promoter. Nonhandled (NH) or MS male Wistar rats were cold exposed 1 h at adulthood; Trh expression in the hypothalamic paraventricular nucleus (PVN) and serum thyrotropin (TSH) concentration were increased only in NH rats. Two weeks of voluntary exercise decreased fat mass and increased Trh expression, and thyroid hormones concentration changed proportionally to running distance in NH male rats and MS male rats. Although NH females ran more than MS and much more than males, exercise decreased body weight and fat mass only in NH rats with no change on any parameter of the HPT axis but increased Pomc expression in arcuate-nucleus of NH and Npy in MS females. Overall, the methylation pattern of PVN Trh gene promoter was similar in NH males and females; MS modified methylation of specific CpG sites, a thyroid hormone receptor (THR)-binding site present after the initiation site was hypomethylated in MS males; in MS females, the THR binding site of the proximal promoter (site 4) and 2 sites in the first intron were hypermethylated. Our studies showed that, in a sex-dimorphic manner, MS blunted the responses of HPT axis to energy demands in adult animals and caused methylation changes on Trh promoter that could alter T3 feedback.


Subject(s)
DNA Methylation , Maternal Deprivation , Sex Characteristics , Thyroid Hormones/metabolism , Thyrotropin-Releasing Hormone/genetics , Animals , Energy Metabolism , Female , Hypothalamo-Hypophyseal System/metabolism , Male , Pro-Opiomelanocortin/genetics , Rats, Wistar , Stress, Psychological/metabolism , Thyroid Gland/metabolism
11.
Front Biosci (Landmark Ed) ; 25(7): 1305-1323, 2020 03 01.
Article in English | MEDLINE | ID: mdl-32114434

ABSTRACT

Starvation induces tertiary hypothyroidism in adult rodents. Response of the hypothalamus-pituitary-thyroid (HPT) axis to starvation is stronger in adult males than in females. To improve the description of this sexual dimorphism, we analyzed the dynamics of HPT axis response to fasting at multiple levels. In adult rats of the same cohort, 24 and 48 h of starvation inhibited paraventricular nucleus Trh expression and serum concentrations of TSH and T4 earlier in males than in females, with lower intensity in females than in males. In adult females fasted for 36-72 h, serum TSH concentration decreased after 36 h, when the activity of thyrotropin-releasing hormone (TRH)-degrading ectoenzyme was increased in the median eminence. The kinetics of these events were distinct from those previously observed in male rats. We suggest that the sex difference in TSH secretion kinetics is driven not only at the level of paraventricular nucleus TRH neurons, but also by differences in post-secretory catabolism of TRH, with enhancement of TRH-degrading activity more sustained in male than female animals.


Subject(s)
Fasting/metabolism , Gene Expression Regulation , Paraventricular Hypothalamic Nucleus/metabolism , Thyroid Gland/metabolism , Animals , Female , Male , Rats, Wistar , Receptors, Corticotropin-Releasing Hormone/genetics , Receptors, Corticotropin-Releasing Hormone/metabolism , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Receptors, Thyrotropin-Releasing Hormone/genetics , Receptors, Thyrotropin-Releasing Hormone/metabolism , Sex Factors , Thyrotropin/blood , Thyrotropin/metabolism , Thyrotropin-Releasing Hormone/genetics , Thyrotropin-Releasing Hormone/metabolism , Time Factors
12.
Front Pharmacol ; 11: 640, 2020.
Article in English | MEDLINE | ID: mdl-32457627

ABSTRACT

Thyrotropin releasing hormone (TRH: Glp-His-Pro-NH2) is a peptide mainly produced by brain neurons. In mammals, hypophysiotropic TRH neurons of the paraventricular nucleus of the hypothalamus integrate metabolic information and drive the secretion of thyrotropin from the anterior pituitary, and thus the activity of the thyroid axis. Other hypothalamic or extrahypothalamic TRH neurons have less understood functions although pharmacological studies have shown that TRH has multiple central effects, such as promoting arousal, anorexia and anxiolysis, as well as controlling gastric, cardiac and respiratory autonomic functions. Two G-protein-coupled TRH receptors (TRH-R1 and TRH-R2) transduce TRH effects in some mammals although humans lack TRH-R2. TRH effects are of short duration, in part because the peptide is hydrolyzed in blood and extracellular space by a M1 family metallopeptidase, the TRH-degrading ectoenzyme (TRH-DE), also called pyroglutamyl peptidase II. TRH-DE is enriched in various brain regions but is also expressed in peripheral tissues including the anterior pituitary and the liver, which secretes a soluble form into blood. Among the M1 metallopeptidases, TRH-DE is the only member with a very narrow specificity; its best characterized biological substrate is TRH, making it a target for the specific manipulation of TRH activity. Two other substrates of TRH-DE, Glp-Phe-Pro-NH2 and Glp-Tyr-Pro-NH2, are also present in many tissues. Analogs of TRH resistant to hydrolysis by TRH-DE have prolonged central efficiency. Structure-activity studies allowed the identification of residues critical for activity and specificity. Research with specific inhibitors has confirmed that TRH-DE controls TRH actions. TRH-DE expression by ß2-tanycytes of the median eminence of the hypothalamus allows the control of TRH flux into the hypothalamus-pituitary portal vessels and may regulate serum thyrotropin secretion. In this review we describe the critical evidences that suggest that modification of TRH-DE activity in tanycytes, and/or in other brain regions, may generate beneficial consequences in some central and metabolic disorders and identify potential drawbacks and missing information needed to test these hypotheses.

13.
iScience ; 23(3): 100921, 2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32143135

ABSTRACT

Based on the type-I cannabinoid receptor (CB1) content of hypophysiotropic axons and the involvement of tanycytes in the regulation of the hypothalamic-pituitary-thyroid (HPT) axis, we hypothesized that endocannabinoids are involved in the tanycyte-induced regulation of TRH release in the median eminence (ME). We demonstrated that CB1-immunoreactive TRH axons were associated to DAGLα-immunoreactive tanycyte processes in the external zone of ME and showed that endocannabinoids tonically inhibit the TRH release in this tissue. We showed that glutamate depolarizes the tanycytes, increases their intracellular Ca2+ level and the 2-AG level of the ME via AMPA and kainite receptors and glutamate transport. Using optogenetics, we demonstrated that glutamate released from TRH neurons influences the tanycytes in the ME. In summary, tanycytes regulate TRH secretion in the ME via endocannabinoid release, whereas TRH axons regulate tanycytes by glutamate, suggesting the existence of a reciprocal microcircuit between tanycytes and TRH terminals that controls TRH release.

14.
Psychoneuroendocrinology ; 34(2): 259-272, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18951722

ABSTRACT

Wistar rats subjected to dehydration-induced anorexia (DIA), with 2.5% NaCl solution as drinking water for 7 days, decrease by 80% their food intake and present some changes common to pair-fed food restricted rats (FFR) such as: weight loss, decreased serum leptin and expression of orexigenic arcuate peptides, increasing the anorexigenic ones and serum corticosterone levels. In contrast, the response of the HPT axis differs: DIA animals have increased TRH expression in PVN and present primary as opposed to the tertiary hypothyroidism of the FFR. Exclusive to DIA is the activation of CRHergic neurons in the lateral hypothalamus (LH) that project to PVN. Since TRH neurons of the PVN contain CRH receptors, we hypothesized that the differences in the response of the HPT axis to DIA could be due to CRH regulating TRHergic neurons. CRH effect was first evaluated on TRH expression of cultured hypothalamic cells where TRH mRNA levels increased after 1h with 0.1nM of CRH. We then measured the mRNA levels of CRH receptors in the PVN of male and female rats subjected to DIA; only those of CRH-R2 were modulated (down-regulated). The CRH-R2 antagonist antisauvagine-30 was therefore injected into the PVN of male rats, during the 7 days of DIA. Antisauvagine-30 induced a higher food intake than controls, and impeded the changes produced by DIA on the HPT axis: PVN TRH mRNA, and serum TH and TSH levels were decreased to similar values of FFR animals. Results corroborate the anorexigenic effect of CRH and show its role, acting through CRH-R2 receptors, in the activation of TRHergic PVN neurons caused by DIA. These new data further supports clinical trials with CRH-R2 antagonists in anorexia nervosa patients.


Subject(s)
Anorexia/chemically induced , Anorexia/metabolism , Feeding Behavior , Pituitary Gland/physiology , Receptors, Corticotropin-Releasing Hormone/metabolism , Thyroid Gland/physiology , Animals , Cells, Cultured , Dehydration/complications , Down-Regulation , Female , Male , Paraventricular Hypothalamic Nucleus/metabolism , Peptide Fragments/pharmacology , RNA, Messenger/metabolism , Rats , Rats, Wistar , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors , Sex Characteristics , Thyrotropin-Releasing Hormone/metabolism
15.
Neurosci Lett ; 449(3): 211-4, 2009 Jan 16.
Article in English | MEDLINE | ID: mdl-19013213

ABSTRACT

Ecto-peptidases hydrolyze peptides in the extracellular fluid of the brain. This process is critical for defining the strength of peptidergic communication. A few studies suggest that brain ecto-peptidase activities are regulated by brain function but the extracellular messengers involved are generally unknown. Pyroglutamyl peptidase II (PPII) is specific for thyrotropin releasing hormone (TRH), a tripeptide with multiple homeostatic functions in brain. The purpose of this study was to identify regulators of brain PPII activity. Electrical stimulation (multiple tetani) did not change PPII activity in cortical or hippocampal slices. However, in hippocampal slices, blockade of calcium channels with high magnesium, or of L-type calcium channels (LTCC) or NMDA receptors, decreased PPII activity, while blockade of AMPA or GABA(A) receptors did not. Blockade of NMDA receptors did not change PPII mRNA levels but decreased PPII levels. The activity of another ecto-peptidase, aminopeptidase N, was also down regulated by a magnesium blockade, not regulated by NMDA receptor blockade and increased by LTCC blockade. The data show a differential regulation of the activity of ecto-peptidases by that of Ca(2+) channel and that synaptic activity, through the NMDA receptor, specifically regulates that of pyroglutamyl peptidase II.


Subject(s)
Aminopeptidases/metabolism , Hippocampus/enzymology , Pyrrolidonecarboxylic Acid/analogs & derivatives , Receptors, N-Methyl-D-Aspartate/physiology , Up-Regulation/physiology , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology , Animals , Calcium Channel Agonists/pharmacology , Cerebral Cortex/drug effects , Cerebral Cortex/enzymology , Dizocilpine Maleate/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Hippocampus/drug effects , In Vitro Techniques , Magnesium/pharmacology , Male , Pyrrolidonecarboxylic Acid/metabolism , Rats , Rats, Wistar , Up-Regulation/drug effects
16.
Article in English | MEDLINE | ID: mdl-31354623

ABSTRACT

Neonatal stress contributes to the development of obesity and has long-lasting effects on elements of the hypothalamus-pituitary-thyroid (HPT) axis. Given the importance of thyroid hormones in metabolic regulation, we studied the effects of maternal separation and a high-fat/high-carbohydrate diet (HFC), offered from puberty or adulthood, on HPT axis activity of adult male and female Wistar rats. Pups were non-handled (NH) or maternally separated (MS) 3 h/day at postnatal days (Pd) 2-21. In a first experiment, at Pd60, rats had access to chow or an HFC diet (cookies, peanuts, chow) for 1 month. Male and female NH and MS rats that consumed the HFC diet increased their caloric intake, body weight, and serum insulin levels; fat weight increased in all groups except in MS males, and serum leptin concentration increased only in females. Mediobasal hypothalamus (MBH) Pomc expression increased in NH-HFC females and Npy decreased in NH-HFC males. MS males showed insulinemia and hypercortisolemia that was attenuated by the HFC diet. The HPT axis activity response to an HFC diet was sex-specific; expression of MBH thyrotropin-releasing hormone-degrading ectoenzyme (Trhde) increased in NH and MS males; serum TSH concentration decreased in NH males, and T4 increased in NH females. In a second experiment, rats were fed chow or an HFC diet from Pd30 or 60 until Pd160 and exposed to 1 h restraint before sacrifice. Regardless of neonatal stress, age of diet exposition, or sex, the HFC diet increased body and fat weight and serum leptin concentration; it induced insulinemia in males, but in females only in Pd30 rats. The HFC diet's capacity to curtail the hypothalamus-pituitary-adrenal axis response to restraint was impaired in MS males. In restrained rats, expression of Trh in the paraventricular nucleus of the hypothalamus, Dio2 and Trhde in MBH, and serum thyroid hormone concentration were altered differently depending on sex, age of diet exposition, and neonatal stress. In conclusion, metabolic alterations associated to an HFC-diet-induced obesity are affected by sex or time of exposition, while various parameters of the HPT axis activity are additionally altered by MS, pointing to the complex interplay that these developmental influences exert on HPT axis activity in adult rats.

17.
Article in English | MEDLINE | ID: mdl-31293518

ABSTRACT

Central and peripheral mechanisms that modulate energy intake, partition and expenditure determine energy homeostasis. Thyroid hormones (TH) regulate energy expenditure through the control of basal metabolic rate and thermogenesis; they also modulate food intake. TH concentrations are regulated by the hypothalamus-pituitary-thyroid (HPT) axis, and by transport and metabolism in blood and target tissues. In mammals, hypophysiotropic thyrotropin-releasing hormone (TRH) neurons of the paraventricular nucleus of the hypothalamus integrate energy-related information. They project to the external zone of the median eminence (ME), a brain circumventricular organ rich in neuron terminal varicosities and buttons, tanycytes, other glial cells and capillaries. These capillary vessels form a portal system that links the base of the hypothalamus with the anterior pituitary. Tanycytes of the medio-basal hypothalamus express a repertoire of proteins involved in transport, sensing, and metabolism of TH; among them is type 2 deiodinase, a source of 3,3',5-triiodo-L-thyronine necessary for negative feedback on TRH neurons. Tanycytes subtypes are distinguished by position and phenotype. The end-feet of ß2-tanycytes intermingle with TRH varicosities and terminals in the external layer of the ME and terminate close to the ME capillaries. Besides type 2 deiodinase, ß2-tanycytes express the TRH-degrading ectoenzyme (TRH-DE); this enzyme likely controls the amount of TRH entering portal vessels. TRH-DE is rapidly upregulated by TH, contributing to TH negative feedback on HPT axis. Alterations in energy balance also regulate the expression and activity of TRH-DE in the ME, making ß2-tanycytes a hub for energy-related regulation of HPT axis activity. ß2-tanycytes also express TRH-R1, which mediates positive effects of TRH on TRH-DE activity and the size of ß2-tanycyte end-feet contacts with the basal lamina adjacent to ME capillaries. These end-feet associations with ME capillaries, and TRH-DE activity, appear to coordinately control HPT axis activity. Thus, down-stream of neuronal control of TRH release by action potentials arrival in the external layer of the median eminence, imbricated intercellular processes may coordinate the flux of TRH into the portal capillaries. In conclusion, ß2-tanycytes appear as a critical cellular element for the somatic and post-secretory control of TRH flux into portal vessels, and HPT axis regulation in mammals.

18.
Article in English | MEDLINE | ID: mdl-31297093

ABSTRACT

The activity of the hypothalamus-pituitary-thyroid (HPT) axis is inhibited by energy deficit, by acute or chronic stress, but activated by cold exposure or exercise. Because stress curtails acute cold induced activation of HPT, we evaluated the effect of chronic stress on HPT axis response to voluntary exercise, a persistent energy-demanding situation. Adult male and female Wistar rats were exposed to restraint stress, 30 min/day for 2 weeks, or to isolation (Iso) [post-natal day [PND] 30-63]. Exercise was performed (7 p.m.-7 a.m.) in a running wheel, sedentary controls stayed in individual cages (Sed); at 7 a.m. they were housed with their cage mate or individually (Iso); food intake by the exercised group was measured day and night to pair-fed Sed. At sacrifice, hormones, mRNA levels and tissue weights were quantified. Control or restrained adult rats had access to running wheel daily for 2 weeks. Compared to C, exercise decreased white adipose tissue (WAT) mass in females and males, increased hypothalamic paraventricular nucleus (PVN)-Trh expression in males proportionally to exercise performed, and increased TSH and T4 serum concentration in females. These changes were not detected in restrained groups. Starting at PND 63 control (2/cage) and isolated (1/cage) rats either exercised on 10 alternated nights or were sedentary. In control male animals, compared to Sed rats, exercise did not decrease WAT mass, nor changed HPT axis activity, but increased Pomc and deiodinase 2 (Dio2) expression in mediobasal hypothalamus (MBH), adrenergic receptor ß3 and uncoupling protein-1 in brown adipose tissue. In control female animals, exercise decreased WAT mass, increased Pomc, Dio2, and Trhde expression in MBH, and TSH serum concentration. Iso females had lower TSH and T4 serum concentration, Dio2 and Trhde expression in MBH than controls. The stress response was higher in isolated males than females, but in males it did not alter the effects of exercise, in contrast to isolated females that had a blunted response to exercise compared to controls. In conclusion, chronic stress interferes with metabolic effects produced by exercise, such as loss of WAT mass, coincident with dampening of HPT activity.

19.
Psychoneuroendocrinology ; 33(2): 198-213, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18079066

ABSTRACT

Thyrotropin-releasing hormone (TRH) was first described for its neuroendocrine role in controlling the hypothalamus-pituitary-thyroid axis (HPT). Anatomical and pharmacological data evidence its participation as a neuromodulator in the central nervous system. Administration of TRH induces various behavioural effects including arousal, locomotion, analepsy, and in certain paradigms, it reduces fear behaviours. In this work we studied the possible involvement of TRHergic neurons in anxiety tests. We first tested whether an ICV injection of TRH had behavioural effects on anxiety in the defensive burying test (DBT). Corticosterone serum levels were quantified to evaluate the stress response and, the activity of the HPT axis to distinguish the endocrine response of TRH injection. Compared to a saline injection, TRH reduced cumulative burying, and decreased serum corticosterone levels, supporting anxiolytic-like effects of TRH administration. The response of TRH neurons was evaluated in brain regions involved in the stress circuitry of animals submitted to the DBT and to the elevated plus maze (EPM), tests that allow to correlate biochemical parameters with anxiety-like behaviour. In the DBT, the response of Wistar rats was compared with that of the stress-hypersensitive Wistar Kyoto (WKY) strain. Behavioural parameters were analysed in recorded videos. Animals were sacrificed 30 or 60min after test completion. In various limbic areas, the relative mRNA levels of TRH, its receptors TRH-R1 and -R2, and its inactivating ectoenzyme pyroglutamyl peptidase II (PPII), were determined by RT-PCR, TRH tissue content by radioimmunoassay (RIA). The extent of the stress response was evaluated by measuring the expression profile of CRH, CRH-R1 and GR mRNA in the paraventricular nucleus (PVN) of the hypothalamus and in amygdala, corticosterone levels in serum. As these tests demand increased physical activity, the response of the HPT axis was also evaluated. Both tasks increased the levels of serum corticosterone. WKY rats showed higher anxiety-like behaviour in the DBT than Wistar, as well as increased PVN mRNA levels of CRH and GR. TRH mRNA levels increased in the PVN and TSH values remained unchanged in both strains although TRH content decreased in the medial basal hypothalamus of Wistar rats only. TRH content was measured in several limbic regions but only amygdala showed specific task-related changes after DBT exposure of both strains: increased TRH content. Expression of TRH mRNA decreased in the amygdala of Wistar, suggesting inhibition of TRHergic neuronal activity in this region. The participation of amygdalar TRH neurons in anxiety was confirmed in the EPM where TRH expression and release correlated with the number of entries, and the % of time spent in open arms, supporting an anxiolytic role of these TRH-neurons. These results contribute to the understanding of the involvement of TRH during emotionally charged situations and shed light on the participation of particular circuits in related behaviours.


Subject(s)
Amygdala/metabolism , Anxiety/metabolism , Behavior, Animal/physiology , Displacement, Psychological , Thyrotropin-Releasing Hormone/metabolism , Adaptation, Psychological , Amygdala/cytology , Analysis of Variance , Animals , Corticosterone/blood , Corticotropin-Releasing Hormone/genetics , Corticotropin-Releasing Hormone/metabolism , Defense Mechanisms , Gene Expression Profiling , Hypothalamo-Hypophyseal System/metabolism , Injections, Intraventricular , Male , Neurons/metabolism , Pituitary-Adrenal System/metabolism , RNA, Messenger/analysis , Rats , Rats, Inbred WKY , Rats, Wistar , Reaction Time/physiology , Receptors, Corticotropin-Releasing Hormone/genetics , Receptors, Corticotropin-Releasing Hormone/metabolism , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Species Specificity , Statistics, Nonparametric , Thyroid Hormones/blood , Thyrotropin-Releasing Hormone/administration & dosage
20.
Peptides ; 29(11): 1953-64, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18703099

ABSTRACT

Ecto-peptidases modulate the action of peptides in the extracellular space. The relationship between peptide receptor and ecto-peptidase localization, and the physiological role of peptidases is poorly understood. Current evidence suggests that pyroglutamyl peptidase II (PPII) inactivates neuronally released thyrotropin-releasing hormone (TRH). The impact of PPII localization in the anterior pituitary on the endocrine activities of TRH is unknown. We have studied whether PPII influences TRH signaling in anterior pituitary cells in primary culture. In situ hybridization (ISH) experiments showed that PPII mRNA was expressed only in 5-6% of cells. ISH for PPII mRNA combined with immunocytochemistry for prolactin, beta-thyrotropin, or growth hormone, showed that 66% of PPII mRNA expressing cells are lactotrophs, 34% somatotrophs while none are thyrotrophs. PPII activity was reduced using a specific phosphorothioate antisense oligodeoxynucleotide or inhibitors. Compared with mock or scrambled oligodeoxynucleotide-treated controls, knock-down of PPII expression by antisense targeting increased TRH-induced release of prolactin, but not of thyrotropin. Similar data were obtained with either a transition-state or a tight binding inhibitor. These results demonstrate that PPII expression in lactotrophs coincides with its ability to control prolactin release. It may play a specialized role in TRH signaling in the anterior pituitary. Anterior pituitary ecto-peptidases may fulfill unique functions associated with their restricted cell-specific expression.


Subject(s)
Aminopeptidases/physiology , Pituitary Gland, Anterior/enzymology , Prolactin/metabolism , Pyrrolidonecarboxylic Acid/analogs & derivatives , Thyrotropin-Releasing Hormone/physiology , Animals , Cells, Cultured , Female , In Situ Hybridization , RNA, Messenger/metabolism , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL