Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
Add more filters

Publication year range
1.
Mol Cell ; 82(13): 2385-2400.e9, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35594856

ABSTRACT

Inflammation observed in SARS-CoV-2-infected patients suggests that inflammasomes, proinflammatory intracellular complexes, regulate various steps of infection. Lung epithelial cells express inflammasome-forming sensors and constitute the primary entry door of SARS-CoV-2. Here, we describe that the NLRP1 inflammasome detects SARS-CoV-2 infection in human lung epithelial cells. Specifically, human NLRP1 is cleaved at the Q333 site by multiple coronavirus 3CL proteases, which triggers inflammasome assembly and cell death and limits the production of infectious viral particles. Analysis of NLRP1-associated pathways unveils that 3CL proteases also inactivate the pyroptosis executioner Gasdermin D (GSDMD). Subsequently, caspase-3 and GSDME promote alternative cell pyroptosis. Finally, analysis of pyroptosis markers in plasma from COVID-19 patients with characterized severe pneumonia due to autoantibodies against, or inborn errors of, type I interferons (IFNs) highlights GSDME/caspase-3 as potential markers of disease severity. Overall, our findings identify NLRP1 as a sensor of SARS-CoV-2 infection in lung epithelia.


Subject(s)
COVID-19 , Coronavirus 3C Proteases , Epithelial Cells , Inflammasomes , NLR Proteins , SARS-CoV-2 , COVID-19/genetics , COVID-19/metabolism , COVID-19/virology , Caspase 3/metabolism , Coronavirus 3C Proteases/genetics , Coronavirus 3C Proteases/metabolism , Epithelial Cells/metabolism , Humans , Inflammasomes/genetics , Inflammasomes/metabolism , Lung/metabolism , Lung/virology , NLR Proteins/genetics , NLR Proteins/metabolism , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Phosphate-Binding Proteins/genetics , Phosphate-Binding Proteins/metabolism , Pore Forming Cytotoxic Proteins/genetics , Pore Forming Cytotoxic Proteins/metabolism , Pyroptosis , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity
2.
Immunol Rev ; 322(1): 98-112, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38193358

ABSTRACT

Human autoantibodies (auto-Abs) neutralizing type I IFNs were first discovered in a woman with disseminated shingles and were described by Ion Gresser from 1981 to 1984. They have since been found in patients with diverse conditions and are even used as a diagnostic criterion in patients with autoimmune polyendocrinopathy syndrome type 1 (APS-1). However, their apparent lack of association with viral diseases, including shingles, led to wide acceptance of the conclusion that they had no pathological consequences. This perception began to change in 2020, when they were found to underlie about 15% of cases of critical COVID-19 pneumonia. They have since been shown to underlie other severe viral diseases, including 5%, 20%, and 40% of cases of critical influenza pneumonia, critical MERS pneumonia, and West Nile virus encephalitis, respectively. They also seem to be associated with shingles in various settings. These auto-Abs are present in all age groups of the general population, but their frequency increases with age to reach at least 5% in the elderly. We estimate that at least 100 million people worldwide carry auto-Abs neutralizing type I IFNs. Here, we briefly review the history of the study of these auto-Abs, focusing particularly on their known causes and consequences.


Subject(s)
COVID-19 , Herpes Zoster , Interferon Type I , Polyendocrinopathies, Autoimmune , Female , Humans , Aged , Autoantibodies
3.
Genet Med ; 26(2): 101028, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37978863

ABSTRACT

PURPOSE: Persistent human papillomavirus infection (PHPVI) causes cutaneous, anogenital, and mucosal warts. Cutaneous warts include common warts, Treeman syndrome, and epidermodysplasia verruciformis, among others. Although more reports of monogenic predisposition to PHPVI have been published with the development of genomic technologies, genetic testing is rarely incorporated into clinical assessments. To encourage broader molecular testing, we compiled a list of the various monogenic etiologies of PHPVI. METHODS: We conducted a systematic literature review to determine the genetic, immunological, and clinical characteristics of patients with PHPVI. RESULTS: The inclusion criteria were met by 261 of 40,687 articles. In 842 patients, 83 PHPVI-associated genes were identified, including 42, 6, and 35 genes with strong, moderate, and weak evidence for causality, respectively. Autosomal recessive inheritance predominated (69%). PHPVI onset age was 10.8 ± 8.6 years, with an interquartile range of 5 to 14 years. GATA2,IL2RG,DOCK8, CXCR4, TMC6, TMC8, and CIB1 are the most frequently reported PHPVI-associated genes with strong causality. Most genes (74 out of 83) belong to a catalog of 485 inborn errors of immunity-related genes, and 40 genes (54%) are represented in the nonsyndromic and syndromic combined immunodeficiency categories. CONCLUSION: PHPVI has at least 83 monogenic etiologies and a genetic diagnosis is essential for effective management.


Subject(s)
Epidermodysplasia Verruciformis , Papillomavirus Infections , Warts , Humans , Child, Preschool , Child , Adolescent , Papillomavirus Infections/complications , Papillomavirus Infections/genetics , Warts/genetics , Warts/complications , Epidermodysplasia Verruciformis/genetics , Epidermodysplasia Verruciformis/complications , Skin , Syndrome , Membrane Proteins/genetics , Guanine Nucleotide Exchange Factors
4.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Article in English | MEDLINE | ID: mdl-33408250

ABSTRACT

Genetic variants underlying life-threatening diseases, being unlikely to be transmitted to the next generation, are gradually and selectively eliminated from the population through negative selection. We study the determinants of this evolutionary process in human genes underlying monogenic diseases by comparing various negative selection scores and an integrative approach, CoNeS, at 366 loci underlying inborn errors of immunity (IEI). We find that genes underlying autosomal dominant (AD) or X-linked IEI have stronger negative selection scores than those underlying autosomal recessive (AR) IEI, whose scores are not different from those of genes not known to be disease causing. Nevertheless, genes underlying AR IEI that are lethal before reproductive maturity with complete penetrance have stronger negative selection scores than other genes underlying AR IEI. We also show that genes underlying AD IEI by loss of function have stronger negative selection scores than genes underlying AD IEI by gain of function, while genes underlying AD IEI by haploinsufficiency are under stronger negative selection than other genes underlying AD IEI. These results are replicated in 1,140 genes underlying inborn errors of neurodevelopment. Finally, we propose a supervised classifier, SCoNeS, which predicts better than state-of-the-art approaches whether a gene is more likely to underlie an AD or AR disease. The clinical outcomes of monogenic inborn errors, together with their mode and mechanisms of inheritance, determine the levels of negative selection at their corresponding loci. Integrating scores of negative selection may facilitate the prioritization of candidate genes and variants in patients suspected to carry an inborn error.


Subject(s)
Immunity/genetics , Metabolism, Inborn Errors/genetics , Selection, Genetic/genetics , Genes, Dominant/genetics , Genes, Recessive/genetics , Genetic Variation/genetics , Genetic Variation/immunology , Humans , Metabolism, Inborn Errors/immunology , Metabolism, Inborn Errors/pathology
5.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Article in English | MEDLINE | ID: mdl-34702736

ABSTRACT

We describe an unvaccinated child at risk for life-threatening COVID-19 due to an inherited deficiency of IRF9, which governs ISGF-3-dependent responses to type I and III interferons (IFN). She was admitted, with a high nasal SARS-CoV-2 load on day 1 of upper respiratory tract infection. She was viremic on day 2 and received casirivimab and imdevimab. Her clinical manifestations and viremia disappeared on days 3 and 4, respectively. Circulating SARS-CoV-2 virus induced the expression of IFN-stimulated genes in leukocytes on day 1, whereas the secretion of blood type I IFNs, which peaked on day 4, did not. Antibody-mediated SARS-CoV-2 neutralization is, therefore, sufficient to overcome a deficiency of antiviral IFNs.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/therapy , Interferon-Stimulated Gene Factor 3, gamma Subunit/deficiency , Interferon-Stimulated Gene Factor 3, gamma Subunit/genetics , SARS-CoV-2/immunology , Antibodies, Neutralizing/therapeutic use , Child, Preschool , Female , Humans , Immunocompromised Host , Mutation , Viral Load
6.
J Clin Immunol ; 43(2): 406-420, 2023 02.
Article in English | MEDLINE | ID: mdl-36308662

ABSTRACT

Fulminant viral hepatitis (FVH) caused by hepatitis A virus (HAV) is a life-threatening disease that typically strikes otherwise healthy individuals. The only known genetic etiology of FVH is inherited IL-18BP deficiency, which unleashes IL-18-dependent lymphocyte cytotoxicity and IFN-γ production. We studied two siblings who died from a combination of early-onset inflammatory bowel disease (EOIBD) and FVH due to HAV. The sibling tested was homozygous for the W100G variant of IL10RB previously described in an unrelated patient with EOIBD. We show here that the out-of-frame IL10RB variants seen in other EOIBD patients disrupt cellular responses to IL-10, IL-22, IL-26, and IFN-λs in overexpression conditions and in homozygous cells. By contrast, the impact of in-frame disease-causing variants varies between cases. When overexpressed, the W100G variant impairs cellular responses to IL-10, but not to IL-22, IL-26, or IFN-λ1, whereas cells homozygous for W100G do not respond to IL-10, IL-22, IL-26, or IFN-λ1. As IL-10 is a potent antagonist of IFN-γ in phagocytes, these findings suggest that the molecular basis of FVH in patients with IL-18BP or IL-10RB deficiency may involve excessive IFN-γ activity during HAV infections of the liver. Inherited IL-10RB deficiency, and possibly inherited IL-10 and IL-10RA deficiencies, confer a predisposition to FVH, and patients with these deficiencies should be vaccinated against HAV and other liver-tropic viruses.


Subject(s)
Hepatitis, Viral, Human , Interleukin-10 , Humans , Interleukin-10/genetics , Siblings , Interferon-gamma/genetics
7.
J Clin Immunol ; 43(5): 921-932, 2023 07.
Article in English | MEDLINE | ID: mdl-36821021

ABSTRACT

BACKGROUND: Cryptococcosis is a potentially life-threatening fungal disease caused by encapsulated yeasts of the genus Cryptococcus, mostly C. neoformans or C. gattii. Cryptococcal meningitis is the most frequent clinical manifestation in humans. Neutralizing autoantibodies (auto-Abs) against granulocyte-macrophage colony-stimulating factor (GM-CSF) have recently been discovered in otherwise healthy adult patients with cryptococcal meningitis, mostly caused by C. gattii. We hypothesized that three Colombian patients with cryptococcal meningitis caused by C. neoformans in two of them would carry high plasma levels of neutralizing auto-Abs against GM-CSF. METHODS: We reviewed medical and laboratory records, performed immunological evaluations, and tested for anti-cytokine auto-Abs three previously healthy HIV-negative adults with disseminated cryptococcosis. RESULTS: Peripheral blood leukocyte subset levels and serum immunoglobulin concentrations were within the normal ranges. We detected high levels of neutralizing auto-Abs against GM-CSF in the plasma of all three patients. CONCLUSIONS: We report three Colombian patients with disseminated cryptococcosis associated with neutralizing auto-Abs against GM-CSF. Further studies should evaluate the genetic contribution to anti-GM-CSF autoantibody production and the role of the GM-CSF signaling pathway in the immune response to Cryptococcus spp.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Meningitis, Cryptococcal , Adult , Humans , Granulocyte-Macrophage Colony-Stimulating Factor , Meningitis, Cryptococcal/diagnosis , Autoantibodies , Colombia , Cryptococcosis/diagnosis
8.
J Clin Immunol ; 43(6): 1093-1103, 2023 08.
Article in English | MEDLINE | ID: mdl-37209324

ABSTRACT

Autoantibodies (auto-Abs) neutralizing type I interferons (IFNs) are found in the blood of at least 15% of unvaccinated patients with life-threatening COVID-19 pneumonia. We report here the presence of auto-Abs neutralizing type I IFNs in the bronchoalveolar lavage (BAL) of 54 of the 415 unvaccinated patients (13%) with life-threatening COVID-19 pneumonia tested. The 54 individuals with neutralizing auto-Abs in the BAL included 45 (11%) with auto-Abs against IFN-α2, 37 (9%) with auto-Abs against IFN-ω, 54 (13%) with auto-Abs against IFN-α2 and/or ω, and five (1%) with auto-Abs against IFN-ß, including three (0.7%) with auto-Abs neutralizing IFN-α2, IFN-ω, and IFN-ß, and two (0.5%) with auto-Abs neutralizing IFN-α2 and IFN-ß. Auto-Abs against IFN-α2 also neutralize the other 12 subtypes of IFN-α. Paired plasma samples were available for 95 patients. All seven patients with paired samples who had detectable auto-Abs in BAL also had detectable auto-Abs in plasma, and one patient had auto-Abs detectable only in blood. Auto-Abs neutralizing type I IFNs are, therefore, present in the alveolar space of at least 10% of patients with life-threatening COVID-19 pneumonia. These findings suggest that these auto-Abs impair type I IFN immunity in the lower respiratory tract, thereby contributing to hypoxemic COVID-19 pneumonia.


Subject(s)
COVID-19 , Interferon Type I , Humans , Autoantibodies , Interferon-alpha , Bronchoalveolar Lavage
9.
J Clin Immunol ; 43(1): 123-135, 2023 01.
Article in English | MEDLINE | ID: mdl-36044171

ABSTRACT

Mendelian susceptibility to mycobacterial disease (MSMD) is a rare genetic disorder characterized by impaired immunity against intracellular pathogens, such as mycobacteria, attenuated Mycobacterium bovis-Bacillus Calmette-Guérin (BCG) vaccine strains, and environmental mycobacteria in otherwise healthy individuals. Retrospective study reviewed the clinical, immunological, and genetic characteristics of patients with MSMD in Mexico. Overall, 22 patients diagnosed with MSMD from 2006 to 2021 were enrolled: 14 males (64%) and eight females. After BCG vaccination, 12 patients (70%) developed BCG infection. Furthermore, 6 (22%) patients developed bacterial infections mainly caused by Salmonella, as what is described next in the text is fungal infections, particularly Histoplasma. Seven patients died of disseminated BCG disease. Thirteen different pathogenic variants were identified in IL12RB1 (n = 13), IFNGR1 (n = 3), and IFNGR2 (n = 1) genes. Interleukin-12Rß1 deficiency is the leading cause of MSMD in our cohort. Morbidity and mortality were primarily due to BCG infection.


Subject(s)
Mycobacterium Infections , Mycobacterium bovis , Male , Female , Humans , Retrospective Studies , BCG Vaccine , Genetic Predisposition to Disease , Mexico/epidemiology , Receptors, Interleukin-12/genetics , Mycobacterium Infections/epidemiology , Mycobacterium Infections/genetics
10.
N Engl J Med ; 382(3): 256-265, 2020 01 16.
Article in English | MEDLINE | ID: mdl-31940699

ABSTRACT

Deficiency of ubiquitin-specific peptidase 18 (USP18) is a severe type I interferonopathy. USP18 down-regulates type I interferon signaling by blocking the access of Janus-associated kinase 1 (JAK1) to the type I interferon receptor. The absence of USP18 results in unmitigated interferon-mediated inflammation and is lethal during the perinatal period. We describe a neonate who presented with hydrocephalus, necrotizing cellulitis, systemic inflammation, and respiratory failure. Exome sequencing identified a homozygous mutation at an essential splice site on USP18. The encoded protein was expressed but devoid of negative regulatory ability. Treatment with ruxolitinib was followed by a prompt and sustained recovery. (Funded by King Saud University and others.).


Subject(s)
Hereditary Autoinflammatory Diseases/drug therapy , Interferons/metabolism , Interleukins/metabolism , Janus Kinase 1/antagonists & inhibitors , Janus Kinase Inhibitors/therapeutic use , Loss of Function Mutation , Pyrazoles/therapeutic use , Ubiquitin Thiolesterase/deficiency , Homozygote , Humans , Hydrocephalus/genetics , Infant, Newborn , Male , Nitriles , Pyrimidines , Receptors, Interferon/metabolism , Remission Induction , Shock, Septic/genetics , Signal Transduction/genetics , Ubiquitin Thiolesterase/genetics , Exome Sequencing
11.
N Engl J Med ; 382(5): 437-445, 2020 01 30.
Article in English | MEDLINE | ID: mdl-31995689

ABSTRACT

BACKGROUND: Cytomegalovirus (CMV) can cause severe disease in children and adults with a variety of inherited or acquired T-cell immunodeficiencies, who are prone to multiple infections. It can also rarely cause disease in otherwise healthy persons. The pathogenesis of idiopathic CMV disease is unknown. Inbred mice that lack the gene encoding nitric oxide synthase 2 (Nos2) are susceptible to the related murine CMV infection. METHODS: We studied a previously healthy 51-year-old man from Iran who after acute CMV infection had an onset of progressive CMV disease that led to his death 29 months later. We hypothesized that the patient may have had a novel type of inborn error of immunity. Thus, we performed whole-exome sequencing and tested candidate mutant alleles experimentally. RESULTS: We found a homozygous frameshift mutation in NOS2 encoding a truncated NOS2 protein that did not produce nitric oxide, which determined that the patient had autosomal recessive NOS2 deficiency. Moreover, all NOS2 variants that we found in homozygosity in public databases encoded functional proteins, as did all other variants with an allele frequency greater than 0.001. CONCLUSIONS: These findings suggest that inherited NOS2 deficiency was clinically silent in this patient until lethal infection with CMV. Moreover, NOS2 appeared to be redundant for control of other pathogens in this patient. (Funded by the National Center for Advancing Translational Sciences and others.).


Subject(s)
Cytomegalovirus Infections , Frameshift Mutation , Nitric Oxide Synthase Type II/deficiency , Fatal Outcome , Female , Genotype , Homozygote , Humans , Loss of Function Mutation , Male , Middle Aged , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Pedigree , Exome Sequencing
12.
J Clin Immunol ; 42(3): 459-470, 2022 04.
Article in English | MEDLINE | ID: mdl-35083626

ABSTRACT

Recent studies reported the presence of pre-existing autoantibodies (auto-Abs) neutralizing type I interferons (IFNs) in at least 15% of patients with critical COVID-19 pneumonia. In one study, these auto-Abs were found in almost 20% of deceased patients across all ages. We aimed to assess the prevalence and clinical impact of the auto-Abs to type I IFNs in the Seine-Saint-Denis district, which was one of the most affected areas by COVID-19 in France during the first wave. We tested for the presence of auto-Abs neutralizing type I IFNs in a cohort of patients admitted for critical COVID-19 pneumonia during the first wave in the spring of 2020 in the medicine departments at Robert Ballanger Hospital, Aulnay sous Bois. We found circulating auto-Abs that neutralized 100 pg/mL IFN-α2 and/or IFN-ω in the plasma (diluted 1/10) of 7.9% (11 of 139) of the patients hospitalized for critical COVID-19. The presence of neutralizing auto-Abs was associated with an increased risk of mortality, as these auto-Abs were detected in 21% of patients who died from COVID-19 pneumonia. Deceased patients with and without auto-Abs did not present overt clinical differences. These results confirm both the importance of type I IFN immunity in host defense against SARS-CoV-2 infection and the usefulness of detection of auto-Abs neutralizing type I IFNs in the management of patients.


Subject(s)
COVID-19 , Interferon Type I , Autoantibodies , COVID-19/epidemiology , Hospitals , Humans , SARS-CoV-2
13.
Immun Ageing ; 19(1): 57, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36384671

ABSTRACT

BACKGROUND: Although older adults are at a high risk of severe or critical Covid-19, there are many cases of unvaccinated centenarians who had a silent infection or recovered from mild or moderate Covid-19. We studied three Brazilian supercentenarians, older than 110 years, who survived Covid-19 in 2020 before being vaccinated. RESULTS: Despite their advanced age, humoral immune response analysis showed that these individuals displayed robust levels of IgG and neutralizing antibodies (NAbs) against SARS-CoV-2. Enrichment of plasma proteins and metabolites related to innate immune response and host defense was also observed. None presented autoantibodies (auto-Abs) to type I interferon (IFN). Furthermore, these supercentenarians do not carry rare variants in genes underlying the known inborn errors of immunity, including particular inborn errors of type I IFN. CONCLUSION: These observations suggest that their Covid-19 resilience might be a combination of their genetic background and their innate and adaptive immunity.

14.
Proc Natl Acad Sci U S A ; 116(38): 19055-19063, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31484767

ABSTRACT

Juvenile-onset recurrent respiratory papillomatosis (JRRP) is a rare and debilitating childhood disease that presents with recurrent growth of papillomas in the upper airway. Two common human papillomaviruses (HPVs), HPV-6 and -11, are implicated in most cases, but it is still not understood why only a small proportion of children develop JRRP following exposure to these common viruses. We report 2 siblings with a syndromic form of JRRP associated with mild dermatologic abnormalities. Whole-exome sequencing of the patients revealed a private homozygous mutation in NLRP1, encoding Nucleotide-Binding Domain Leucine-Rich Repeat Family Pyrin Domain-Containing 1. We find the NLRP1 mutant allele to be gain of function (GOF) for inflammasome activation, as demonstrated by the induction of inflammasome complex oligomerization and IL-1ß secretion in an overexpression system. Moreover, patient-derived keratinocytes secrete elevated levels of IL-1ß at baseline. Finally, both patients displayed elevated levels of inflammasome-induced cytokines in the serum. Six NLRP1 GOF mutations have previously been described to underlie 3 allelic Mendelian diseases with differing phenotypes and modes of inheritance. Our results demonstrate that an autosomal recessive, syndromic form of JRRP can be associated with an NLRP1 GOF mutation.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/genetics , Gain of Function Mutation , Homozygote , Papillomavirus Infections/genetics , Papillomavirus Infections/pathology , Respiratory Tract Infections/genetics , Respiratory Tract Infections/pathology , Child, Preschool , Cytokines/metabolism , Female , Humans , Infant , Inflammasomes , Keratinocytes/cytology , Keratinocytes/immunology , Keratinocytes/metabolism , Male , NLR Proteins , Pedigree , Siblings , Syndrome
15.
Nature ; 517(7532): 89-93, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25307056

ABSTRACT

Intracellular ISG15 is an interferon (IFN)-α/ß-inducible ubiquitin-like modifier which can covalently bind other proteins in a process called ISGylation; it is an effector of IFN-α/ß-dependent antiviral immunity in mice. We previously published a study describing humans with inherited ISG15 deficiency but without unusually severe viral diseases. We showed that these patients were prone to mycobacterial disease and that human ISG15 was non-redundant as an extracellular IFN-γ-inducing molecule. We show here that ISG15-deficient patients also display unanticipated cellular, immunological and clinical signs of enhanced IFN-α/ß immunity, reminiscent of the Mendelian autoinflammatory interferonopathies Aicardi-Goutières syndrome and spondyloenchondrodysplasia. We further show that an absence of intracellular ISG15 in the patients' cells prevents the accumulation of USP18, a potent negative regulator of IFN-α/ß signalling, resulting in the enhancement and amplification of IFN-α/ß responses. Human ISG15, therefore, is not only redundant for antiviral immunity, but is a key negative regulator of IFN-α/ß immunity. In humans, intracellular ISG15 is IFN-α/ß-inducible not to serve as a substrate for ISGylation-dependent antiviral immunity, but to ensure USP18-dependent regulation of IFN-α/ß and prevention of IFN-α/ß-dependent autoinflammation.


Subject(s)
Cytokines/metabolism , Inflammation/prevention & control , Interferon Type I/immunology , Intracellular Space/metabolism , Ubiquitins/metabolism , Adolescent , Alleles , Child , Cytokines/deficiency , Cytokines/genetics , Endopeptidases/chemistry , Endopeptidases/metabolism , Female , Gene Expression Regulation , Humans , Inflammation/genetics , Inflammation/immunology , Interferon Type I/metabolism , Male , Pedigree , S-Phase Kinase-Associated Proteins/metabolism , Signal Transduction , Ubiquitin Thiolesterase , Ubiquitination , Ubiquitins/deficiency , Ubiquitins/genetics , Viruses/immunology
16.
Hum Genet ; 139(6-7): 877-884, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32285199

ABSTRACT

In rare cases, hepatitis A virus (HAV) and hepatitis B virus (HBV) can cause fulminant viral hepatitis (FVH), characterized by massive hepatocyte necrosis and an inflammatory infiltrate. Other viral etiologies of FVH are rarer. FVH is life-threatening, but the patients are typically otherwise healthy, and normally resistant to other microbes. Only a small minority of infected individuals develop FVH, and this is the key issue to be addressed for this disease. In mice, mouse hepatitis virus 3 (MHV3) infection is the main model for dissecting FVH pathogenesis. Susceptibility to MHV3 differs between genetic backgrounds, with high and low mortality in C57BL6 and A/J mice, respectively. FVH pathogenesis in mice is related to uncontrolled inflammation and fibrinogen deposition. In humans, FVH is typically sporadic, but rare familial forms also exist, suggesting that there may be causal monogenic inborn errors. A recent study reported a single-gene inborn error of human immunity underlying FVH. A patient with autosomal recessive complete IL-18BP deficiency was shown to have FVH following HAV infection. The mechanism probably involves enhanced IL-18- and IFN-γ-dependent killing of hepatocytes by NK and CD8 T cytotoxic cells. Proof-of-principle that FVH can be genetic is important clinically, for the affected patients and their families, and immunologically, for the study of immunity to viruses in the liver. Moreover, the FVH-causing IL18BP genotype suggests that excessive IL-18 immunity may be a general mechanism underlying FVH, perhaps through the enhancement of IFN-γ immunity.


Subject(s)
Cytokines/immunology , Hepadnaviridae/genetics , Hepatitis, Viral, Human/genetics , Hepatitis, Viral, Human/pathology , Hepadnaviridae/pathogenicity , Hepatitis, Viral, Human/immunology , Hepatitis, Viral, Human/virology , Humans
17.
Clin Infect Dis ; 68(11): 1938-1941, 2019 05 17.
Article in English | MEDLINE | ID: mdl-30778533

ABSTRACT

Biallelic mutations in the ITK gene cause a T-cell primary immunodeficiency with Epstein-Barr virus (EBV)-lymphoproliferative disorders. We describe a novel association of a homozygous ITK mutation with ß-human papillomavirus (HPV)-positive epidermodysplasia verruciformis. Thus, loss of function in ITK can result in broad dysregulation of T-cell responses to oncogenic viruses, including ß-HPV and EBV.


Subject(s)
Epidermodysplasia Verruciformis/genetics , Hodgkin Disease/etiology , Loss of Function Mutation , Protein-Tyrosine Kinases/deficiency , Protein-Tyrosine Kinases/genetics , T-Lymphocytes/pathology , Acitretin/therapeutic use , Adult , Alleles , Drug Therapy , Epidermodysplasia Verruciformis/drug therapy , Epidermodysplasia Verruciformis/immunology , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/immunology , Female , Genetic Association Studies , Hodgkin Disease/drug therapy , Hodgkin Disease/immunology , Homozygote , Humans , Keratolytic Agents/therapeutic use , Lymphoproliferative Disorders/genetics , Lymphoproliferative Disorders/pathology , Lymphoproliferative Disorders/virology , Male , Papillomaviridae , Siblings , Tomography, X-Ray Computed
19.
J Clin Immunol ; 39(4): 376-390, 2019 05.
Article in English | MEDLINE | ID: mdl-31123910

ABSTRACT

Live-attenuated vaccines (LAVs) can protect humans against 12 viral and three bacterial diseases. By definition, any clinical infection caused by a LAV that is sufficiently severe to require medical intervention attests to an inherited or acquired immunodeficiency that must be diagnosed or identified. Self-healing infections can also result from milder forms of immunodeficiency. We review here the inherited forms of immunodeficiency underlying severe infections of LAVs. Inborn errors of immunity (IEIs) underlying bacille Calmette-Guérin (BCG), oral poliovirus (OPV), vaccine measles virus (vMeV), and oral rotavirus vaccine (ORV) disease have been described from 1951, 1963, 1966, and 2009 onward, respectively. For each of these four LAVs, the underlying IEIs show immunological homogeneity despite genetic heterogeneity. Specifically, BCG disease is due to inborn errors of IFN-γ immunity, OPV disease to inborn errors of B cell immunity, vMeV disease to inborn errors of IFN-α/ß and IFN-λ immunity, and ORV disease to adaptive immunity. Severe reactions to the other 11 LAVs have been described yet remain "idiopathic," in the absence of known underlying inherited or acquired immunodeficiencies, and are warranted to be the focus of research efforts. The study of IEIs underlying life-threatening LAV infections is clinically important for the affected patients and their families, as well as immunologically, for the study of the molecular and cellular basis of host defense against both attenuated and parental pathogens.

20.
J Clin Immunol ; 39(5): 527, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31175480

ABSTRACT

The original version of this article unfortunately contained mistake in the following sentence in the Abstract.

SELECTION OF CITATIONS
SEARCH DETAIL