Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Appl Environ Microbiol ; 89(5): e0027123, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37098952

ABSTRACT

Broilers in intensive systems may lack commensal microbes that have coevolved with chickens in nature. This study evaluated the effects of microbial inocula and delivery methods applied to day-old chicks on the development of the cecal microbiota. Specifically, chicks were inoculated with cecal contents or microbial cultures, and the efficacies of three delivery methods (oral gavage, spraying inoculum into the bedding, and cohousing) were evaluated. Also, a competitive study evaluated the colonization ability of bacteria sourced from extensive or intensive poultry production systems. The microbiota of inoculated birds presented higher phylogenetic diversity values (PD) and higher relative abundance values of Bacteroidetes, compared with a control. Additionally, a reduction in the ileal villus height/crypt depth ratio and increased cecal IL-6, IL-10, propionate, and valerate concentrations were observed in birds that were inoculated with cecal contents. Across the experiments, the chicks in the control groups presented higher relative abundance values of Escherichia/Shigella than did the inoculated birds. Specific microbes from intensively or extensively raised chickens were able to colonize the ceca, and inocula from intensive production systems promoted higher relative abundance values of Escherichia/Shigella. We concluded that Alistipes, Bacteroides, Barnesiella, Mediterranea, Parabacteroides, Megamonas, and Phascolarctobacterium are effective colonizers of the broiler ceca. In addition, oral gavage, spray, and cohousing can be used as delivery methods for microbial transplantation, as indicated by their effects on the cecal microbiota, intestinal morphology, short-chain fatty acids concentration, and cytokine/chemokine levels. These findings will guide future research on the development of next-generation probiotics that are able to colonize and persist in the chicken intestinal tract after a single exposure. IMPORTANCE The strict biosecurity procedures employed in the poultry industry may inadvertently hinder the transmission of beneficial commensal bacteria that chickens would encounter in natural environments. This research aims at identifying bacteria that can colonize and persist in the chicken gut after a single exposure. We evaluated different microbial inocula that were obtained from healthy adult chicken donors as well as three delivery methods for their effects on microbiota composition and bird physiology. In addition, we conducted a competitive assay to test the colonization abilities of bacteria sourced from intensively versus extensively raised chickens. Our results indicated that some bacteria are consistently increased in birds that are exposed to microbial inoculations. These bacteria can be isolated and employed in future research on the development of next-generation probiotics that contain species that are highly adapted to the chicken gut.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Chickens/microbiology , Gastrointestinal Microbiome/physiology , Phylogeny , Intestinal Mucosa , Cecum/microbiology , Animal Feed/analysis , Diet/veterinary
2.
Appl Environ Microbiol ; 89(3): e0162822, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36809030

ABSTRACT

Changes in the gut microbiota have been linked to metabolic endotoxemia as a contributing mechanism in the development of obesity and type 2 diabetes. Although identifying specific microbial taxa associated with obesity and type 2 diabetes remains difficult, certain bacteria may play an important role in initiating metabolic inflammation during disease development. The enrichment of the family Enterobacteriaceae, largely represented by Escherichia coli, induced by a high-fat diet (HFD) has been correlated with impaired glucose homeostasis; however, whether the enrichment of Enterobacteriaceae in a complex gut microbial community in response to an HFD contributes to metabolic disease has not been established. To investigate whether the expansion of Enterobacteriaceae amplifies HFD-induced metabolic disease, a tractable mouse model with the presence or absence of a commensal E. coli strain was established. With an HFD treatment, but not a standard-chow diet, the presence of E. coli significantly increased body weight and adiposity and induced impaired glucose tolerance. In addition, E. coli colonization led to increased inflammation in liver and adipose and intestinal tissue under an HFD regimen. With a modest effect on gut microbial composition, E. coli colonization resulted in significant changes in the predicted functional potential of microbial communities. The results demonstrated the role of commensal E. coli in glucose homeostasis and energy metabolism in response to an HFD, indicating contributions of commensal bacteria to the pathogenesis of obesity and type 2 diabetes. The findings of this research identified a targetable subset of the microbiota in the treatment of people with metabolic inflammation. IMPORTANCE Although identifying specific microbial taxa associated with obesity and type 2 diabetes remains difficult, certain bacteria may play an important role in initiating metabolic inflammation during disease development. Here, we used a mouse model distinguishable by the presence or absence of a commensal Escherichia coli strain in combination with a high-fat diet challenge to investigate the impact of E. coli on host metabolic outcomes. This is the first study to show that the addition of a single bacterial species to an animal already colonized with a complex microbial community can increase severity of metabolic outcomes. This study is of interest to a wide group of researchers because it provides compelling evidence to target the gut microbiota for therapeutic purposes by which personalized medicines can be made for treating metabolic inflammation. The study also provides an explanation for variability in studies investigating host metabolic outcomes and immune response to diet interventions.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Animals , Mice , Escherichia coli/physiology , Diet, High-Fat/adverse effects , Obesity/microbiology , Bacteria , Inflammation , Enterobacteriaceae , Disease Models, Animal , Glucose/metabolism , Mice, Inbred C57BL
3.
Appl Environ Microbiol ; 88(24): e0159322, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36448784

ABSTRACT

Early-life antibiotic exposure is associated with diverse long-term adverse health outcomes. Despite the immunomodulatory effects of gastrointestinal fungi, the impact of antibiotics on the fungal community (mycobiome) has received little attention. The objectives of this study were to determine the impact of commonly prescribed infant antibiotic treatments on the microbial loads and structures of bacterial and fungal communities in the gastrointestinal tract. Thirty-two piglets were divided into four treatment groups: amoxicillin (A), amoxicillin-clavulanic acid (AC), gentamicin-ampicillin (GA), and flavored placebo (P). Antibiotics were administered orally starting on postnatal day (PND) 1 until PND 8, except for GA, which was given on PNDs 5 and 6 intramuscularly. Fecal swabs were collected from piglets on PNDs 3 and 8, and sow feces were collected 1 day after farrowing. The impacts of antibiotics on bacterial and fungal communities were assessed by sequencing the 16S rRNA and the internal transcribed spacer 2 (ITS2) rRNA genes, respectively, and quantitative PCR was performed to determine total bacterial and fungal loads. Antibiotics did not alter the α-diversity (P = 0.834) or ß-diversity (P = 0.565) of fungal communities on PND 8. AC increased the ratio of total fungal/total bacterial loads on PND 8 (P = 0.027). There was strong clustering of piglets by litter on PND 8 (P < 0.001), which corresponded to significant differences in the sow mycobiome, especially the presence of Kazachstania slooffiae. In summary, we observed a strong litter effect and showed that the maternal mycobiome is essential for shaping the piglet mycobiome in early life. IMPORTANCE This work provides evidence that although the fungal community composition is not altered by antibiotics, the overall fungal load increases with the administration of amoxicillin-clavulanic acid. Additionally, we show that the maternal fungal community is important in establishing the fungal community in piglets.


Subject(s)
Gastrointestinal Microbiome , Mycobiome , Animals , Female , Amoxicillin-Potassium Clavulanate Combination/pharmacology , Anti-Bacterial Agents/pharmacology , Fungi , RNA, Ribosomal, 16S/genetics , Swine
4.
Appl Environ Microbiol ; 88(10): e0029522, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35475671

ABSTRACT

To maintain food safety and flock health in broiler chicken production, biosecurity approaches to keep chicken barns free of pathogens are important. Canadian broiler chicken producers must deep clean their barns with chemical disinfectants at least once annually (full disinfection [FD]) and may wash with water (water wash [WW]) throughout the year. However, many producers use FD after each flock, assuming a greater efficacy of more stringent cleaning protocols, although little information is known regarding how these two cleaning practices affect pathogen population and gut microbiota. In the present study, a crossover experiment over four production cycles was conducted in seven commercial chicken barns to compare WW and FD. We evaluated the effects of barn cleaning methods on commercial broiler performance, cecal microbiota composition, Campylobacter and Salmonella occurrence, and Campylobacter jejuni and Clostridium perfringens abundance, as well as on short-chain fatty acid (SCFA) concentrations in the month-old broiler gut. The 30-day body weight and mortality rate were not affected by the barn cleaning methods. The WW resulted in a modest but significant effect on the structure of broiler cecal microbiota (weighted-UniFrac; adonis P = 0.05, and unweighted-UniFrac; adonis P = 0.01), with notable reductions in C. jejuni occurrence and abundance. In addition, the WW group had increased cecal acetate, butyrate, and total SCFA concentrations, which were negatively correlated with C. jejuni abundance. Our results suggest that WW may result in enhanced activity of the gut microbiota and reduced zoonotic transmission of C. jejuni in broiler production relative to FD in the absence of a disease challenge. IMPORTANCE We compared the effects of barn FD and WW methods on gut microbial community structures and pathogen prevalence of broiler chickens in a nonchallenging commercial production setting. The results revealed that barn cleaning methods had little impact on the 30-day body weight and mortality rate of broiler chickens. In addition, the FD treatment had a subtle but significant effect on the broiler cecal microbiota with increased abundances of Campylobacter and decreased SCFA concentrations, which would support the adoption of WW as a standard practice. Thus, compared to FD, WW can be beneficial to broiler chicken production by inhibiting zoonotic pathogen colonization in the chicken gut with reduced cost and labor of cleaning.


Subject(s)
Campylobacter Infections , Campylobacter jejuni , Disinfectants , Poultry Diseases , Animals , Body Weight , Campylobacter Infections/prevention & control , Campylobacter Infections/veterinary , Canada , Chickens , Disinfectants/pharmacology , Poultry Diseases/prevention & control , Water/pharmacology
5.
Am J Physiol Regul Integr Comp Physiol ; 321(3): R303-R316, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34259034

ABSTRACT

Neonatal antibiotics administered to human infants initiate gut microbiota dysbiosis that may have long-term effects on body weight and metabolism. We examined antibiotic-induced adaptations in pancreatic islets of the piglet, a well-accepted model of human infant microbiota and pancreas development. Neonatal piglets randomized to amoxicillin [30 mg/kg body wt/day; n = 7, antibiotic (ANTI)] or placebo [vehicle control; n = 7, control (CON)] from postnatal day (PND)0-13 were euthanized at PND7, 14, and 49. The metabolic phenotype along with functional, immunohistological, and transcriptional phenotypes of the pancreatic islets were studied. The gut microbiome was characterized by 16S rRNA gene sequencing, and microbial metabolites and microbiome-sensitive host molecules were measured. Compared with CON, ANTI PND7 piglets had elevated transcripts of genes involved in glucagon-like peptide 1 ((GLP-1) synthesis or signaling in islets (P < 0.05) coinciding with higher plasma GLP-1 (P = 0.11), along with increased tumor necrosis factor α (Tnf) (P < 0.05) and protegrin 1 (Npg1) (P < 0.05). Antibiotic-induced relative increases in Escherichia, Coprococcus, Ruminococcus, Dehalobacterium, and Oscillospira of the ileal microbiome at PND7 normalized after antibiotic withdrawal. In ANTI islets at PND14, the expression of key regulators pancreatic and duodenal homeobox 1 (Pdx1), insulin-like growth factor-2 (Igf2), and transcription factor 7-like 2 (Tcf7l2) was downregulated, preceding a 40% reduction of ß-cell area (P < 0.01) and islet insulin content at PND49 (P < 0.05). At PND49, a twofold elevated plasma insulin concentration (P = 0.07) was observed in ANTI compared with CON. We conclude that antibiotic treatment of neonatal piglets elicited gut microbial changes accompanied by phasic alterations in key regulatory genes in pancreatic islets at PND7 and 14. By PND49, reduced ß-cell area and islet insulin content were accompanied by elevated nonfasted insulin despite normoglycemia, indicative of islet stress.


Subject(s)
Anti-Bacterial Agents/pharmacology , Gastrointestinal Microbiome/drug effects , Glucagon-Like Peptide 1/metabolism , Insulin-Secreting Cells/drug effects , Animals , Gastrointestinal Microbiome/physiology , Glucagon/drug effects , Glucagon/metabolism , Insulin/blood , Insulin-Secreting Cells/metabolism , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Swine
6.
Br J Nutr ; 125(1): 50-61, 2021 01 14.
Article in English | MEDLINE | ID: mdl-32792032

ABSTRACT

Dietary choline, which is converted to phosphatidylcholine (PC) in intestinal enterocytes, may benefit inflammatory bowel disease patients who typically have reduced intestinal choline and PC. The present study investigated the effect of dietary choline supplementation on colitis severity and intestinal mucosal homoeostasis using a Citrobacter rodentium-induced colitis model. C57BL/6J mice were fed three isoenergetic diets differing in choline level: choline-deficient (CD), choline-sufficient (CS) and choline-excess (CE) for 3 weeks prior to infection with C. rodentium. The effect of dietary choline levels on the gut microbiota was also characterised in the absence of infection using 16S rRNA gene amplicon sequencing. At 7 d following infection, the levels of C. rodentium in CD mice were significantly greater than that in CS or CE groups (P < 0·05). CD mice exhibited greater damage to the surface epithelium and goblet cell loss than the CS or CE mice, which was consistent with elevated pro-inflammatory cytokine and chemokine levels in the colon. In addition, CD group exhibited decreased concentrations of PC in the colon after C. rodentium infection, although the decrease was not observed in the absence of challenge. Select genera, including Allobaculum and Turicibacter, were enriched in response to dietary choline deficiency; however, there was minimal impact on the total bacterial abundance or the overall structure of the gut microbiota. Our results suggest that insufficient dietary choline intake aggravates the severity of colitis and demonstrates an essential role of choline in maintaining intestinal homoeostasis.


Subject(s)
Choline/pharmacology , Colitis/diet therapy , Diet/adverse effects , Dietary Supplements , Gastrointestinal Microbiome/drug effects , Animals , Chemokines/metabolism , Citrobacter rodentium , Colitis/etiology , Colitis/microbiology , Colon/metabolism , Cytokines/metabolism , Disease Models, Animal , Intestinal Mucosa/microbiology , Mice , Mice, Inbred C57BL , RNA, Ribosomal, 16S/analysis , Severity of Illness Index
7.
Br J Nutr ; 125(2): 129-138, 2021 01 28.
Article in English | MEDLINE | ID: mdl-32684173

ABSTRACT

Kefir consumption has been demonstrated to improve lipid and cholesterol metabolism; however, our previous study identified that benefits vary between different commercial and traditional kefir. Here, we investigate the ability of pitched culture kefir, that is, kefir produced by a small number of specific strains, to recapitulate health benefits of a traditional kefir, in a diet-induced obesity mouse model, and examine how microbial composition of kefir impacts these benefits. Eight-week-old female C57BL/6 mice were fed a high-fat diet (40 % energy from fat) supplemented with one of five kefir varieties (traditional, pitched, pitched with no Lactobacillus, pitched with no yeast and commercial control) at 2 ml in 20 g of food for 8 weeks prior to analysis of plasma and liver lipid profiles, and liver gene expression profiles related to lipid metabolism. Both traditional and pitched kefir lowered plasma cholesterol by about 35 % (P = 0·0005) and liver TAG by about 55 % (P = 0·0001) when compared with commercial kefir despite no difference in body weight. Furthermore, pitched kefir produced without either yeast or Lactobacillus did not lower cholesterol. The traditional and pitched kefir with the full complement of microbes were able to impart corresponding decreases in the expression of the cholesterol and lipid metabolism genes encoding 3-hydroxy-3-methylglutaryl-coenzyme A reductase, PPARγ and CD36 in the liver. These results demonstrate that traditional kefir organisms can successfully be utilised in a commercial process, while highlighting the importance of microbial interactions during fermentation in the ability of fermented foods to benefit host health.


Subject(s)
Kefir/microbiology , Obesity/metabolism , Animals , Cholesterol/blood , Diet, High-Fat , Disease Models, Animal , Female , Fermented Foods/microbiology , Lactobacillus/metabolism , Lipid Metabolism/genetics , Lipids/blood , Liver/metabolism , Mice , Mice, Inbred C57BL , Obesity/etiology , Obesity/microbiology , Yeasts/metabolism
8.
J Nutr ; 148(10): 1513-1520, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30281112

ABSTRACT

Background: Phosphatidylethanolamine N-methyltransferase (PEMT) converts phosphatidylethanolamine to phosphatidylcholine. Pemt-/-/low density lipoprotein receptor (Ldlr)-/- mice have significantly reduced plasma lipids and are protected against atherosclerosis. Recent studies have shown that choline can be metabolized by the gut flora into trimethylamine-N-oxide (TMAO), which is an emerging risk factor for atherosclerosis. Objective: The objective of this study was to determine whether ectopic hepatic PEMT expression or choline supplementation would promote atherosclerosis in Pemt-/-/Ldlr-/- mice. Methods: Male 8- to 10-wk-old Pemt+/+/Ldlr-/- (SKO) and Pemt-/-/Ldlr-/- (DKO) mice were injected with an adeno-associated virus (AAV) expressing green fluorescent protein (GFP) or human PEMT and fed a Western diet (40% of calories from fat, 0.5% cholesterol) for 8 wk. In a separate experiment, 8- to 10-wk-old SKO and half of the DKO male mice were fed a Western diet with normal (3 g/kg) choline for 12 wk. The remaining DKO mice [choline-supplemented (CS) DKO] were fed a CS Western diet (10 g choline/kg). Plasma lipid concentrations, choline metabolites, and aortic atherosclerosis were measured. Results: Plasma cholesterol, plasma TMAO, and aortic atherosclerosis were reduced by 60%, 40%, and 80%, respectively, in DKO mice compared with SKO mice. AAV-PEMT administration increased plasma cholesterol and TMAO by 30% and 40%, respectively, in DKO mice compared with AAV-GFP-treated DKO mice. Furthermore, AAV-PEMT-injected DKO mice developed atherosclerotic lesions similar to SKO mice. In the second study, there was no difference in atherosclerosis or plasma cholesterol between DKO and CS-DKO mice. However, plasma TMAO concentrations were increased 2.5-fold in CS-DKO mice compared with DKO mice. Conclusions: Reintroducing hepatic PEMT reversed the atheroprotective phenotype of DKO mice. Choline supplementation did not increase atherosclerosis or plasma cholesterol in DKO mice. Our data suggest that plasma TMAO does not induce atherosclerosis when plasma cholesterol is low. Furthermore, this is the first report to our knowledge that suggests that de novo choline synthesis alters TMAO status.


Subject(s)
Atherosclerosis/metabolism , Cholesterol/blood , Choline/pharmacology , Liver/metabolism , Methylamines/blood , Phosphatidylethanolamine N-Methyltransferase/metabolism , Receptors, LDL/metabolism , Animals , Aorta , Atherosclerosis/etiology , Atherosclerosis/pathology , Atherosclerosis/prevention & control , Cholesterol, Dietary/administration & dosage , Choline/metabolism , Diet, Western , Dietary Supplements , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Phosphatidylethanolamine N-Methyltransferase/pharmacology , Phosphatidylethanolamines/metabolism
9.
Chaos ; 28(4): 043110, 2018 Apr.
Article in English | MEDLINE | ID: mdl-31906665

ABSTRACT

This paper investigates consensus dynamics in a dynamical system with additive stochastic disturbances that is characterized as network coherence by using the Laplacian spectrum. We introduce a class of weighted networks based on a complete graph and investigate the first- and second-order network coherence quantifying as the sum and square sum of reciprocals of all nonzero Laplacian eigenvalues. First, the recursive relationship of its eigenvalues at two successive generations of Laplacian matrix is deduced. Then, we compute the sum and square sum of reciprocal of all nonzero Laplacian eigenvalues. The obtained results show that the scalings of first- and second-order coherence with network size obey four and five laws, respectively, along with the range of the weight factor. Finally, it indicates that the scalings of our studied networks are smaller than other studied networks when 1d

10.
Appl Environ Microbiol ; 83(17)2017 09 01.
Article in English | MEDLINE | ID: mdl-28667114

ABSTRACT

Antibiotics are important for treating bacterial infection; however, efficacies and side effects of antibiotics vary in medicine and experimental models. A few studies have correlated microbiota composition variations with health outcomes in response to antibiotics; however, no study has demonstrated causality. We had noted variation in colonic expression of C-type lectins, regenerating islet-derived protein 3ß (Reg3ß) and Reg3γ, after metronidazole treatment in a mouse model. To investigate the effects of specific variations in the preexisting microbiome on host response to antibiotics, mice harboring a normal microbiota were allocated to 4 treatments in a 2-by-2 factorial arrangement with or without commensal Escherichia coli and with or without metronidazole in drinking water. E. coli colonized readily without causing a notable shift in the microbiota or host response. Metronidazole administration reduced microbiota biodiversity, indicated by decreased Chao1 and Shannon index values, and altered microbiota composition. However, the presence of E. coli strongly affected metronidazole-induced microbiota shifts. Remarkably, this single commensal bacterium in the context of a complex population led to variations in host responses to metronidazole treatment, including increased expression of antimicrobial peptides Reg3ß and Reg3γ and intestinal inflammation indicated by tumor necrosis factor alpha levels. Similar results were obtained from 2-week antibiotic exposure and with additional E. coli isolates. The results of this proof-of-concept study indicate that even minor variations in initial commensal microbiota can drive shifts in microbial composition and host response after antibiotic administration. As well as providing an explanation for variability in animal models using antibiotics, the findings encourage the development of personalized medication in antibiotic therapies.IMPORTANCE This work provides an understanding of variability in studies where antibiotics are used to alter the gut microbiota to generate a host response. Furthermore, although providing evidence only for the one antibiotic, the study demonstrated that initial gut microbial composition is a key factor driving host response to antibiotic administration, creating a compelling argument for considering personalized medication based on individual variations in gut microbiota.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Bacteria/drug effects , Escherichia coli/drug effects , Gastrointestinal Microbiome/drug effects , Intestines/microbiology , Metronidazole/administration & dosage , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Escherichia coli/physiology , Female , Humans , Intestines/drug effects , Mice , Mice, Inbred C57BL , Symbiosis/drug effects
11.
Asian-Australas J Anim Sci ; 30(6): 828-833, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28002933

ABSTRACT

OBJECTIVE: The study was conducted to evaluate the effects of different methionine (Met) sources on production performance, reproduction performance, egg quality and serum biochemical indices in broiler breeders. METHODS: After receiving a basal diet (containing 0.25% Met) for a 2-wk pretreatment period, a total of 360 39-wk-old Lingnan yellow broiler breeders were randomly allocated to four treatments with six replicates each (15 birds per replicate). Breeders were fed with basal diets (control) or diets supplemented with DL-methionine (DLM), DL-2-hydroxy-4-methylthio butytric calcium (MHA-Ca) and coated DL-Met (CME) respectively. RESULTS: The results showed that CME supplementation promoted laying rate and decreased feed-to-egg ratio (F/E) (p<0.05), DLM and MHA-Ca supplementation decreased F/E (p<0.05) when compared with control group. The rate of fertility, hatchability and birthrate were higher (p<0.05) in DLM, MHA-Ca, and CME groups than control group. Compared with control group, CME increased the eggshell thickness (p<0.05); MHA-Ca improved the eggshell thickness, shell ratio and eggshell strength (p<0.05). Results also showed that CME elevated the concentration of total protein in serum (p<0.05); MHA-Ca improved the concentration of calcium in serum (p<0.05). The concentration of serum uric acid in DLM, MHA-Ca, and CME groups was lower than that in control group (p<0.05). Besides, CME had higher concentrations of serum taurine, cysteine and cystanthionine (p<0.05) while MHA-Ca and DLM promoted the serum taurine concentration (p<0.05) compared with control group. CONCLUSION: Based on the results, it was concluded that Met supplementation could enhance the production and reproduction performance as well as the antioxidant status and egg quality of broiler breeders. In terms of improving the production performance, reproduction performance and antioxidant performance, CME was superior to DLM and MHA-Ca; but in regard to the enhancement of eggshell quality and serum Ca concentration, MHA-Ca was superior to DLM and CME.

12.
Food Funct ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39056151

ABSTRACT

Egg white protein ovomucin and its hydrolysates were previously reported to exhibit anti-inflammatory and anti-adhesive activities. However, their potential to regulate pathogen colonization and disease severity has not been fully characterized. To investigate the effects of ovomucin (OVM) and its hydrolysates including ovomucin-Protex 26L (OP) and -pepsin/pancreatin (OPP) on host resistance to pathogen infection, a well-documented colitis model in mice for attaching and effacing E. coli pathogens, Citrobacter rodentium, was used in the current study. C57Bl/6J female mice were fed on a basal diet supplemented with OVM or its hydrolysates for 3 weeks prior to the C. rodentium challenge, with the dietary treatments continued for seven days. Body weight was not affected throughout the experimental period. OP supplementation resulted in lower (P < 0.05) pathogen loads at 7 dpi. Attenuated colitis severity was observed in mice that received OVM and OP, as indicated by reduced colonic pathological scores and pro-inflammatory responses compared with the infected control group. In contrast, OPP consumption resulted in enhanced C. rodentium colonization and disease severity. Notably, reduced microbial diversity indices of the gut microbiota were observed in the OPP-supplemented mice compared with the OVM- and OP-supplemented groups. This study showed the potential of OVM and OP to alleviate the severity of colitis induced by infection while also suggesting the opposite outcome of OPP in mitigating enteric infection.

13.
PLoS One ; 19(5): e0301388, 2024.
Article in English | MEDLINE | ID: mdl-38722868

ABSTRACT

Salmonella is a primary cause of foodborne diseases globally. Despite food contamination and clinical infections garnering substantial attention and research, asymptomatic Salmonella carriers, potential sources of infection, have been comparatively overlooked. In this study, we conducted a comparative analysis of serotype distribution, antimicrobial resistance phenotypes, and genetic profiles of archived Salmonella strains isolated from food (26), asymptomatic carriers (41), and clinical cases (47) in Shiyan City, China. Among the 114 Salmonella strains identified, representing 31 serotypes and 34 Sequence Types (STs), the most prevalent serovars included Typhimurium, Derby, Enteritidis, Thompson, and London, with the most predominant STs being ST11, ST40, ST26, ST34, and ST155. Antimicrobial resistance testing revealed that all strains were only sensitive to meropenem, with 74.6% showing antimicrobial resistance (AMR) and 53.5% demonstrating multidrug resistance (MDR). Strains resistant to five and six classes of antibiotics were the most common. Pearson's chi-square test showed no statistically significant difference in the occurrence of AMR (p = 0.105) or MDR (p = 0.326) among Salmonella isolates from the three sources. Our findings underscore associations and diversities among Salmonella strains isolated from food, asymptomatic carriers, and clinical patients, emphasizing the need for increased vigilance towards asymptomatic Salmonella carriers by authorities.


Subject(s)
Anti-Bacterial Agents , Carrier State , Drug Resistance, Bacterial , Food Microbiology , Salmonella , Salmonella/classification , Salmonella/drug effects , Salmonella/genetics , Salmonella/isolation & purification , Carrier State/microbiology , Serogroup , Base Sequence , Humans , China , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology
14.
Mol Cell Biochem ; 382(1-2): 59-73, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23896663

ABSTRACT

S-Adenosylmethionine (SAM) plays a crucial role as a methyl donor in various biological processes and has been previously shown to be involved in adipogenesis in skeletal muscle. This study was conducted to explore the mechanism of SAM inducing adipogenesis in skeletal muscle. Adipose precursor cells, 3T3-L1, and C2C12 cells, were induced into adipogenic differentiation by addition of SAM in MDI-differentiation media (0.5 mmol/L isobutylmethylxanthine, 1 µm/L dexamethasone, and 10 µg/mL insulin) to explore the role of SAM in promoting adipogenesis. Subsequently, cells were cultured with a medium containing SAM alone at the beginning of differentiation to test the relationship between SAM-induced adipogenesis and Wnt/ß-catenin, and Hedgehog signaling pathways that control the cell commitment to adipogenic- or myogenic-differentiation. We found SAM possessed an additive effect with MDI in promoting adipogenesis of 3T3-L1 and C2C12 cells at the beginning of adipogenic differentiation. SAM could also individually induce cell adipogenesis in a dose-dependent manner. Moreover, the expression of Wnt/ß-catenin and Hedgehog signals and their targets were suppressed by SAM (P < 0.05). These results demonstrate that SAM, as an increasingly accepted nutritional supplement, can initiate adipogenesis of adipose precursor cells derived from adipose and muscle tissues, a function at least partly correlated with the suppression of Wnt/ß-catenin and Hedgehog pathways.


Subject(s)
Adipogenesis/drug effects , Hedgehog Proteins/metabolism , S-Adenosylmethionine/pharmacology , Wnt Signaling Pathway/drug effects , 3T3-L1 Cells , Animals , Cell Differentiation/drug effects , Cell Survival/drug effects , Mice
15.
J Dairy Sci ; 96(12): 7383-92, 2013.
Article in English | MEDLINE | ID: mdl-24119812

ABSTRACT

Four proteases: trypsin, protease A, pepsin, and protease M were selected to modify whey protein concentrate (WPC) at a low degree of hydrolysis (0.1, 0.2, and 0.3%) before adjusting to pH 2.0 and heating at 90°C to gain insight into the influence of proteolysis on fibril formation. The kinetics of fibril formation were performed on native and modified WPC using the fluorescent dye thioflavin T in conjunction with transmission electron microscopy and far-UV circular dichroism spectroscopy for the morphological and secondary structural analyses. The change in surface hydrophobicity and content of free sulfhydryl groups were also observed during the formation of fibrils for the native and modified WPC. The content of aggregation and thioflavin T kinetic data indicated that the ability of fibril formation was apparently different for WPC modified by the 4 proteases. Whey protein concentrate modified by trypsin aggregated more during heating and the fibril formation rate was faster than that of the native WPC. Whey protein concentrate modified by the other proteases showed slower aggregation with worse amyloid fibril morphology. Compared with the native WPC, the structure of WPC changed differently after being modified by proteases. The state of α-helix structure for modified WPC played the most important role in the formation of fibrils. Under the mild conditions used in this work, the α-helix structure of WPC modified by trypsin caused little destruction and resulted in fibrils with good morphology; the content of α-helices for WPC modified by other proteases decreased to 36.19 to 50.94%; thus, fibril formation was inhibited. In addition, it was beneficial for the modified WPC to form fibrils such that the surface hydrophobicity increased and the content of free sulfhydryl groups slightly decreased during heating.


Subject(s)
Amyloid/biosynthesis , Milk Proteins/metabolism , Peptide Hydrolases/metabolism , Benzothiazoles , Circular Dichroism , Hydrogen-Ion Concentration , Hydrolysis , Hydrophobic and Hydrophilic Interactions , Kinetics , Microscopy, Electron, Transmission , Pepsin A/metabolism , Protein Structure, Secondary , Proteolysis , Temperature , Thiazoles , Trypsin/metabolism , Whey Proteins
16.
Microorganisms ; 11(6)2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37375077

ABSTRACT

Microbial spoilage is a major cause of food waste. Microbial spoilage is dependent on the contamination of food from the raw materials or from microbial communities residing in food processing facilities, often as bacterial biofilms. However, limited research has been conducted on the persistence of non-pathogenic spoilage communities in food processing facilities, or whether the bacterial communities differ among food commodities and vary with nutrient availability. To address these gaps, this review re-analyzed data from 39 studies from various food facilities processing cheese (n = 8), fresh meat (n = 16), seafood (n = 7), fresh produce (n = 5) and ready-to-eat products (RTE; n = 3). A core surface-associated microbiome was identified across all food commodities, including Pseudomonas, Acinetobacter, Staphylococcus, Psychrobacter, Stenotrophomonas, Serratia and Microbacterium. Commodity-specific communities were additionally present in all food commodities except RTE foods. The nutrient level on food environment surfaces overall tended to impact the composition of the bacterial community, especially when comparing high-nutrient food contact surfaces to floors with an unknown nutrient level. In addition, the compositions of bacterial communities in biofilms residing in high-nutrient surfaces were significantly different from those of low-nutrient surfaces. Collectively, these findings contribute to a better understanding of the microbial ecology of food processing environments, the development of targeted antimicrobial interventions and ultimately the reduction of food waste and food insecurity and the promotion of food sustainability.

17.
Microbiol Spectr ; : e0361622, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36719194

ABSTRACT

As important commensals in the chicken intestine, Bacteroides are essential complex carbohydrate degraders, and short-chain fatty acid (SCFA) producers that are highly adapted to the distal gut. Previous studies have shown large variation in Bacteroides abundance in young chickens. However, limited information is available regarding how this variation affects the gut microbiome and host immunity. To investigate how elevated or depleted Bacteroides levels affect gut microbial functional capacity and impact host response, we sampled 7-day-old broiler chickens from 14 commercial production flocks. Week-old broiler chickens were screened and birds with low Bacteroides (LB) and high Bacteroides (HB) abundance were identified via 16S rRNA gene amplicon sequencing and quantitative PCR (qPCR) assays. Cecal microbial functionality and SCFA concentration of chickens with distinct cecal Bacteroides abundance were profiled by shotgun metagenomic sequencing and gas chromatography, respectively. The intestinal immune responses of LB and HB chickens were assessed via reverse transcription qPCR. Results showed that the gut microbiota of the LB group had increased abundance of lactic acid bacteria pyruvate fermentation pathway, whereas complex polysaccharide degradation and SCFA production pathways were enriched in the HB group (P < 0.05), which was supported by increased SCFA concentrations in the ceca of HB chickens (P < 0.05). HB chickens also showed decreased expression of interleukin-1ß and increased expression of interleukin-10 and tight-junction protein claudin-1 (P < 0.05). Overall, the results indicated that elevated Bacteroides may benefit the 7-day broiler gut and that further work should be done to confirm the causal role of Bacteroides in the observed positive outcomes. IMPORTANCE To date, limited information is available comparing distinct Bacteroides compositions in the chicken gut microbial communities, particularly in the context of microbial functional capacities and host responses. This study showed that possessing a microbiome with elevated Bacteroides in early life may confer beneficial effects to the chicken host, particularly in improving SCFA production and gut health. This study is among the first metagenomic studies focusing on the early life chicken gut microbiota structure, microbial functionality, and host immune responses. We believe that it will offer insights to future studies on broiler gut microbial population and their effects on host health.

18.
Microbiol Spectr ; : e0235223, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37754552

ABSTRACT

Intensive broiler production practices are structured to prevent the introduction and spread of pathogens; however, they can potentially minimize the exposure of broilers to beneficial commensal bacteria. In this study, we used 16S rRNA amplicon sequencing to characterize the cecal microbiota of 35-day-old broilers from 22 independent commercial farms rearing broilers under intensive (IPS) or extensive production systems (EPS). We aimed to determine which bacteria are normal inhabitants of the broiler ceca and which bacteria might be missing from broilers in IPS. In addition, we generated a collection of 410 bacterial isolates, including 87 different species, to be used as a resource to further explore the effects of selected isolates on bird physiology and to elucidate the role of individual species within the cecal microbial community. Our results indicated significant differences in the microbiota of broilers between systems: the microbiota of broilers from EPS was dominated by Bacteroidetes {55.2% ± 8.9 [mean ± standard deviation (SD)]}, whereas Firmicutes dominated the microbiota of broilers from IPS (61.7% ± 14.4, mean ± SD). Bacterial taxa found to be core in the EPS microbiota, including Olsenella, Alistipes, Bacteroides, Barnesiella, Parabacteroides, Megamonas, and Parasutterella, were shown to be infrequent or absent from the IPS microbiota, and the EPS microbiota presented higher phylogenetic diversity and greater predicted functional potential than that of broilers in IPS. The bacteria shown to be depleted in broilers from IPS should be further investigated for their effects on bird physiology and potential application as next-generation probiotics. IMPORTANCE Production practices in intensive farming systems significantly reduce the introduction and spread of pathogens; however, they may potentially minimize the exposure of animals to beneficial commensal microorganisms. In this study, we identified core bacteria from the cecal microbiota of broilers raised in extensive production systems that are missing or reduced in birds from intensive systems, including Olsenella, Alistipes, Bacteroides, Barnesiella, Parabacteroides, Megamonas, and Parasutterella. Furthermore, the cecal microbiota of broilers from extensive systems showed higher diversity and greater functional potential than that of broilers from intensive systems. In addition, a collection of bacterial isolates containing 87 different species was generated from the current study, and this important resource can be used to further explore the role of selected commensal bacteria on the microbial community and bird physiology.

19.
FEMS Microbiol Ecol ; 99(7)2023 06 16.
Article in English | MEDLINE | ID: mdl-37349964

ABSTRACT

Fecal microbiota transplantation (FMT) is an emerging technique for modulating the pig microbiota, however, donor variability is one of the major reasons for inconsistent outcomes across studies. Cultured microbial communities may address some limitations of FMT; however, no study has tested cultured microbial communities as inocula in pigs. This pilot study compared the effects of microbiota transplants derived from sow feces to cultured mixed microbial community (MMC) following weaning. Control, FMT4X, and MMC4X were applied four times, while treatment FMT1X was administered once (n = 12/group). On postnatal day 48, microbial composition was modestly altered in pigs receiving FMT in comparison with Control (Adonis, P = .003), mainly attributed to reduced inter-animal variations in pigs receiving FMT4X (Betadispersion, P = .018). Pigs receiving FMT or MMC had consistently enriched ASVs assigned to genera Dialister and Alloprevotella. Microbial transplantation increased propionate production in the cecum. MMC4X piglets showed a trend of higher acetate and isoleucine compared to Control. A consistent enrichment of metabolites from amino acid metabolism in pigs that received microbial transplantation coincided with enhanced aminoacyl-tRNA biosynthesis pathway. No differences were observed among treatment groups for body weight or cytokine/chemokine profiles. Overall, FMT and MMC exerted similar effects on gut microbiota composition and metabolite production.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Swine , Animals , Female , Fecal Microbiota Transplantation , Weaning , Pilot Projects , Feces , Metabolome
20.
Microbiome ; 11(1): 21, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36737826

ABSTRACT

BACKGROUND: Vitamin B12 supplements typically contain doses that far exceed the recommended daily amount, and high exposures are generally considered safe. Competitive and syntrophic interactions for B12 exist between microbes in the gut. Yet, to what extent excessive levels contribute to the activities of the gut microbiota remains unclear. The objective of this study was to evaluate the effect of B12 on microbial ecology using a B12 supplemented mouse model with Citrobacter rodentium, a mouse-specific pathogen. Mice were fed a standard chow diet and received either water or water supplemented with B12 (cyanocobalamin: ~120 µg/day), which equates to approximately 25 mg in humans. Infection severity was determined by body weight, pathogen load, and histopathologic scoring. Host biomarkers of inflammation were assessed in the colon before and after the pathogen challenge. RESULTS: Cyanocobalamin supplementation enhanced pathogen colonization at day 1 (P < 0.05) and day 3 (P < 0.01) postinfection. The impact of B12 on gut microbial communities, although minor, was distinct and attributed to the changes in the Lachnospiraceae populations and reduced alpha diversity. Cyanocobalamin treatment disrupted the activity of the low-abundance community members of the gut microbiota. It enhanced the amount of interleukin-12 p40 subunit protein (IL12/23p40; P < 0.001) and interleukin-17a (IL-17A; P < 0.05) in the colon of naïve mice. This immune phenotype was microbe dependent, and the response varied based on the baseline microbiota. The cecal metatranscriptome revealed that excessive cyanocobalamin decreased the expression of glucose utilizing genes by C. rodentium, a metabolic attribute previously associated with pathogen virulence. CONCLUSIONS: Oral vitamin B12 supplementation promoted C. rodentium colonization in mice by altering the activities of the Lachnospiraceae populations in the gut. A lower abundance of select Lachnospiraceae species correlated to higher p40 subunit levels, while the detection of Parasutterella exacerbated inflammatory markers in the colon of naïve mice. The B12-induced change in gut ecology enhanced the ability of C. rodentium colonization by impacting key microbe-host interactions that help with pathogen exclusion. This research provides insight into how B12 impacts the gut microbiota and highlights potential consequences of disrupting microbial B12 competition/sharing through over-supplementation. Video Abstract.


Subject(s)
Citrobacter rodentium , Vitamin B 12 , Humans , Animals , Mice , Vitamin B 12/pharmacology , Host Microbial Interactions , Colon , Dietary Supplements
SELECTION OF CITATIONS
SEARCH DETAIL