Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.291
Filter
Add more filters

Uruguay Oncology Collection
Publication year range
1.
Annu Rev Immunol ; 33: 139-67, 2015.
Article in English | MEDLINE | ID: mdl-25493332

ABSTRACT

Cytokines exert a vast array of immunoregulatory actions critical to human biology and disease. However, the desired immunotherapeutic effects of native cytokines are often mitigated by toxicity or lack of efficacy, either of which results from cytokine receptor pleiotropy and/or undesired activation of off-target cells. As our understanding of the structural principles of cytokine-receptor interactions has advanced, mechanism-based manipulation of cytokine signaling through protein engineering has become an increasingly feasible and powerful approach. Modified cytokines, both agonists and antagonists, have been engineered with narrowed target cell specificities, and they have also yielded important mechanistic insights into cytokine biology and signaling. Here we review the theory and practice of cytokine engineering and rationalize the mechanisms of several engineered cytokines in the context of structure. We discuss specific examples of how structure-based cytokine engineering has opened new opportunities for cytokines as drugs, with a focus on the immunotherapeutic cytokines interferon, interleukin-2, and interleukin-4.


Subject(s)
Cytokines/genetics , Cytokines/metabolism , Genetic Engineering , Receptors, Cytokine/genetics , Receptors, Cytokine/metabolism , Animals , Cytokines/chemistry , Extracellular Space/metabolism , Humans , Intracellular Space/metabolism , Protein Binding , Protein Transport , Receptors, Cytokine/chemistry , Signal Transduction
2.
Cell ; 172(3): 549-563.e16, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29275860

ABSTRACT

The immune system can mount T cell responses against tumors; however, the antigen specificities of tumor-infiltrating lymphocytes (TILs) are not well understood. We used yeast-display libraries of peptide-human leukocyte antigen (pHLA) to screen for antigens of "orphan" T cell receptors (TCRs) expressed on TILs from human colorectal adenocarcinoma. Four TIL-derived TCRs exhibited strong selection for peptides presented in a highly diverse pHLA-A∗02:01 library. Three of the TIL TCRs were specific for non-mutated self-antigens, two of which were present in separate patient tumors, and shared specificity for a non-mutated self-antigen derived from U2AF2. These results show that the exposed recognition surface of MHC-bound peptides accessible to the TCR contains sufficient structural information to enable the reconstruction of sequences of peptide targets for pathogenic TCRs of unknown specificity. This finding underscores the surprising specificity of TCRs for their cognate antigens and enables the facile indentification of tumor antigens through unbiased screening.


Subject(s)
Adenocarcinoma/immunology , Antigens, Neoplasm/immunology , Colorectal Neoplasms/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Receptors, Antigen, T-Cell/immunology , Aged , Animals , Antigens, Neoplasm/chemistry , Cell Line, Tumor , Cells, Cultured , HEK293 Cells , HLA-A Antigens/chemistry , HLA-A Antigens/immunology , Humans , Male , Middle Aged , Peptide Library , Sf9 Cells , Spodoptera
3.
Cell ; 164(3): 349-52, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26824652

ABSTRACT

Type I interferon (IFN-I) elicits a complex cascade of events in response to microbial infection. Here, we review recent developments illuminating the large number of IFN-I species and describing their unique biologic functions.


Subject(s)
Bacterial Infections/immunology , Interferon Type I/metabolism , Virus Diseases/immunology , Animals , Bacterial Infections/microbiology , Humans , Interferon Type I/chemistry , Interferon Type I/immunology , Receptor, Interferon alpha-beta/metabolism , Virus Diseases/virology
4.
Cell ; 157(5): 1073-87, 2014 May 22.
Article in English | MEDLINE | ID: mdl-24855945

ABSTRACT

In order to survey a universe of major histocompatibility complex (MHC)-presented peptide antigens whose numbers greatly exceed the diversity of the T cell repertoire, T cell receptors (TCRs) are thought to be cross-reactive. However, the nature and extent of TCR cross-reactivity has not been conclusively measured experimentally. We developed a system to identify MHC-presented peptide ligands by combining TCR selection of highly diverse yeast-displayed peptide-MHC libraries with deep sequencing. Although we identified hundreds of peptides reactive with each of five different mouse and human TCRs, the selected peptides possessed TCR recognition motifs that bore a close resemblance to their known antigens. This structural conservation of the TCR interaction surface allowed us to exploit deep-sequencing information to computationally identify activating microbial and self-ligands for human autoimmune TCRs. The mechanistic basis of TCR cross-reactivity described here enables effective surveillance of diverse self and foreign antigens without necessitating degenerate recognition of nonhomologous peptides.


Subject(s)
Peptides/chemistry , Receptors, Antigen, T-Cell/chemistry , T-Lymphocytes/immunology , Algorithms , Amino Acid Sequence , Animals , Cross Reactions , HLA Antigens/immunology , HLA Antigens/metabolism , High-Throughput Nucleotide Sequencing , Humans , Ligands , Mice , Models, Molecular , Peptide Library , Peptides/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/chemistry
5.
Trends Biochem Sci ; 48(3): 259-273, 2023 03.
Article in English | MEDLINE | ID: mdl-36241490

ABSTRACT

As crucial mediators and regulators of our immune system, cytokines are involved in a broad range of biological processes and are implicated in various disease pathologies. The field of cytokine therapeutics has gained much momentum from the maturation of conventional protein engineering methodologies such as structure-based designs and/or directed evolution, which is further aided by the advent of in silico protein designs and characterization. Just within the past 5 years, there has been an explosion of proof-of-concept, preclinical, and clinical studies that utilize an armory of protein engineering methods to develop cytokine-based drugs. Here, we highlight the key engineering strategies undertaken by recent studies that aim to improve the pharmacodynamic and pharmacokinetic profile of interferons and other cytokines as therapeutics.


Subject(s)
Cytokines , Interferons , Interferons/therapeutic use , Immunotherapy/methods
6.
Cell ; 148(1-2): 164-74, 2012 Jan 20.
Article in English | MEDLINE | ID: mdl-22265409

ABSTRACT

Misfolding of ΔF508 cystic fibrosis (CF) transmembrane conductance regulator (CFTR) underlies pathology in most CF patients. F508 resides in the first nucleotide-binding domain (NBD1) of CFTR near a predicted interface with the fourth intracellular loop (ICL4). Efforts to identify small molecules that restore function by correcting the folding defect have revealed an apparent efficacy ceiling. To understand the mechanistic basis of this obstacle, positions statistically coupled to 508, in evolved sequences, were identified and assessed for their impact on both NBD1 and CFTR folding. The results indicate that both NBD1 folding and interaction with ICL4 are altered by the ΔF508 mutation and that correction of either individual process is only partially effective. By contrast, combination of mutations that counteract both defects restores ΔF508 maturation and function to wild-type levels. These results provide a mechanistic rationale for the limited efficacy of extant corrector compounds and suggest approaches for identifying compounds that correct both defective steps.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Suppression, Genetic , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/metabolism , Animals , Cystic Fibrosis/genetics , Cystic Fibrosis/therapy , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Humans , Mice , Models, Molecular , Protein Folding , Protein Structure, Tertiary
7.
EMBO J ; 41(9): e110466, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35307861

ABSTRACT

Pancreatic ductal adenocarcinoma (PDA) tumor cells are deprived of oxygen and nutrients and therefore must adapt their metabolism to ensure proliferation. In some physiological states, cells rely on ketone bodies to satisfy their metabolic needs, especially during nutrient stress. Here, we show that PDA cells can activate ketone body metabolism and that ß-hydroxybutyrate (ßOHB) is an alternative cell-intrinsic or systemic fuel that can promote PDA growth and progression. PDA cells activate enzymes required for ketogenesis, utilizing various nutrients as carbon sources for ketone body formation. By assessing metabolic gene expression from spontaneously arising PDA tumors in mice, we find HMG-CoA lyase (HMGCL), involved in ketogenesis, to be among the most deregulated metabolic enzymes in PDA compared to normal pancreas. In vitro depletion of HMGCL impedes migration, tumor cell invasiveness, and anchorage-independent tumor sphere compaction. Moreover, disrupting HMGCL drastically decreases PDA tumor growth in vivo, while ßOHB stimulates metastatic dissemination to the liver. These findings suggest that ßOHB increases PDA aggressiveness and identify HMGCL and ketogenesis as metabolic targets for limiting PDA progression.


Subject(s)
Ketone Bodies , Pancreatic Neoplasms , 3-Hydroxybutyric Acid/metabolism , Animals , Ketone Bodies/metabolism , Mice , Oxo-Acid-Lyases , Pancreas/metabolism
8.
Blood ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093982

ABSTRACT

B-cell acute lymphoblastic leukemia (B-ALL) is the most common pediatric cancer, with long-term overall survival rates of ~85%. However, B-ALL harboring rearrangements of the MLL gene (also known as KMT2A), referred to as MLLr B-ALL, is common in infants and is associated with poor 5-year survival (<30%), frequent relapses, and refractoriness to glucocorticoids (GCs). GCs are an essential part of the treatment backbone for B-ALL and GC resistance is a major clinical predictor of poor outcome. Elucidating the mechanisms of GC resistance in MLLr B-ALL is, therefore, critical to guide therapeutic strategies that deepen the response after induction therapy. Neuron-glial antigen-2 (NG2) expression is a hallmark of MLLr B-ALL and is minimally expressed in healthy hematopoietic cells. We recently reported that NG2 expression is associated with poor prognosis and that anti-NG2 immunotherapy strongly reduces/delays relapse in MLLr B-ALL xenograft models. Despite its contribution to MLLr B-ALL pathogenesis and its diagnostic utility, the role of NG2 in MLLr-mediated leukemogenesis/chemoresistance remains elusive. Here we show that NG2 is an epigenetically regulated direct target gene of the leukemic MLL-AF4 fusion protein. NG2 negatively regulates the expression of the GC receptor NR3C1 and confers GC resistance to MLLr B-ALL cells in vitro and in vivo. Mechanistically, NG2 interacts with FLT3 to render ligand-independent activation of FLT3 signaling (a hallmark of MLLr B-ALL) and downregulation of NR3C1 via AP-1-mediated trans-repression. Collectively, our study elucidates the role of NG2 in GC resistance in MLLr B-ALL through FLT3/AP-1-mediated downregulation of NR3C1, providing novel therapeutic avenues for MLLr B-ALL.

9.
Immunity ; 46(3): 379-392, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28329704

ABSTRACT

Type III interferons (IFN-λs) signal through a heterodimeric receptor complex composed of the IFN-λR1 subunit, specific for IFN-λs, and interleukin-10Rß (IL-10Rß), which is shared by multiple cytokines in the IL-10 superfamily. Low affinity of IL-10Rß for cytokines has impeded efforts aimed at crystallizing cytokine-receptor complexes. We used yeast surface display to engineer a higher-affinity IFN-λ variant, H11, which enabled crystallization of the ternary complex. The structure revealed that IL-10Rß uses a network of tyrosine residues as hydrophobic anchor points to engage IL-10 family cytokines that present complementary hydrophobic binding patches, explaining its role as both a cross-reactive but cytokine-specific receptor. H11 elicited increased anti-proliferative and antiviral activities in vitro and in vivo. In contrast, engineered higher-affinity type I IFNs did not increase antiviral potency over wild-type type I IFNs. Our findings provide insight into cytokine recognition by the IL-10R family and highlight the plasticity of type III interferon signaling and its therapeutic potential.


Subject(s)
Interferons/immunology , Receptors, Interferon/immunology , Receptors, Interleukin-10/immunology , Animals , Cell Line , Crystallography, X-Ray , Flow Cytometry , Humans , Mice , Polymerase Chain Reaction , Surface Plasmon Resonance
10.
Proc Natl Acad Sci U S A ; 120(8): e2202388120, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36780524

ABSTRACT

Climate change is radically altering coral reef ecosystems, mainly through increasingly frequent and severe bleaching events. Yet, some reefs have exhibited higher thermal tolerance after bleaching severely the first time. To understand changes in thermal tolerance in the eastern tropical Pacific (ETP), we compiled four decades of temperature, coral cover, coral bleaching, and mortality data, including three mass bleaching events during the 1982 to 1983, 1997 to 1998 and 2015 to 2016 El Niño heatwaves. Higher heat resistance in later bleaching events was detected in the dominant framework-building genus, Pocillopora, while other coral taxa exhibited similar susceptibility across events. Genetic analyses of Pocillopora spp. colonies and their algal symbionts (2014 to 2016) revealed that one of two Pocillopora lineages present in the region (Pocillopora "type 1") increased its association with thermotolerant algal symbionts (Durusdinium glynnii) during the 2015 to 2016 heat stress event. This lineage experienced lower bleaching and mortality compared with Pocillopora "type 3", which did not acquire D. glynnii. Under projected thermal stress, ETP reefs may be able to preserve high coral cover through the 2060s or later, mainly composed of Pocillopora colonies that associate with D. glynnii. However, although the low-diversity, high-cover reefs of the ETP could illustrate a potential functional state for some future reefs, this state may only be temporary unless global greenhouse gas emissions and resultant global warming are curtailed.


Subject(s)
Anthozoa , Coral Reefs , Animals , Ecosystem , Heat-Shock Response , Oceans and Seas
11.
Proc Natl Acad Sci U S A ; 120(10): e2214076120, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36848567

ABSTRACT

Lentinula is a broadly distributed group of fungi that contains the cultivated shiitake mushroom, L. edodes. We sequenced 24 genomes representing eight described species and several unnamed lineages of Lentinula from 15 countries on four continents. Lentinula comprises four major clades that arose in the Oligocene, three in the Americas and one in Asia-Australasia. To expand sampling of shiitake mushrooms, we assembled 60 genomes of L. edodes from China that were previously published as raw Illumina reads and added them to our dataset. Lentinula edodes sensu lato (s. lat.) contains three lineages that may warrant recognition as species, one including a single isolate from Nepal that is the sister group to the rest of L. edodes s. lat., a second with 20 cultivars and 12 wild isolates from China, Japan, Korea, and the Russian Far East, and a third with 28 wild isolates from China, Thailand, and Vietnam. Two additional lineages in China have arisen by hybridization among the second and third groups. Genes encoding cysteine sulfoxide lyase (lecsl) and γ-glutamyl transpeptidase (leggt), which are implicated in biosynthesis of the organosulfur flavor compound lenthionine, have diversified in Lentinula. Paralogs of both genes that are unique to Lentinula (lecsl 3 and leggt 5b) are coordinately up-regulated in fruiting bodies of L. edodes. The pangenome of L. edodes s. lat. contains 20,308 groups of orthologous genes, but only 6,438 orthogroups (32%) are shared among all strains, whereas 3,444 orthogroups (17%) are found only in wild populations, which should be targeted for conservation.


Subject(s)
Lentinula , Phylogeny , Asia, Eastern , Thailand
12.
Am J Pathol ; 194(8): 1424-1442, 2024 08.
Article in English | MEDLINE | ID: mdl-38704091

ABSTRACT

A number of patients with colon cancer with local or local advanced disease suffer from recurrence and there is an urgent need for better prognostic biomarkers in this setting. Here, the transcriptomic landscape of mRNAs, long noncoding RNAs, snRNAs, small nucleolar RNAs (snoRNAs), small Cajal body-specific RNAs, pseudogenes, and circular RNAs, as well as RNAs denoted as miscellaneous RNAs, was profiled by total RNA sequencing. In addition to well-known coding and noncoding RNAs, differential expression analysis also uncovered transcripts that have not been implicated previously in colon cancer, such as RNA5SP149, RNU4-2, and SNORD3A. Moreover, there was a profound global up-regulation of snRNA pseudogenes, snoRNAs, and rRNA pseudogenes in more advanced tumors. A global down-regulation of circular RNAs in tumors relative to normal tissues was observed, although only a few were expressed differentially between tumor stages. Many previously undescribed transcripts, including RNU6-620P, RNU2-20P, VTRNA1-3, and RNA5SP60, indicated strong prognostic biomarker potential in receiver operating characteristics analyses. In summary, this study unveiled numerous differentially expressed RNAs across various classes between recurrent and nonrecurrent colon cancer. Notably, there was a significant global up-regulation of snRNA pseudogenes, snoRNAs, and rRNA pseudogenes in advanced tumors. Many of these newly discovered candidates demonstrate a strong prognostic potential for stage II colon cancer.


Subject(s)
Colonic Neoplasms , Gene Expression Regulation, Neoplastic , Neoplasm Recurrence, Local , Humans , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , RNA, Untranslated/genetics , RNA, Small Nucleolar/genetics , RNA, Small Nucleolar/metabolism , Transcriptome/genetics , Male , Gene Expression Profiling/methods , Female
13.
Nature ; 567(7746): 56-60, 2019 03.
Article in English | MEDLINE | ID: mdl-30814731

ABSTRACT

The cytokine interferon-γ (IFNγ) is a central coordinator of innate and adaptive immunity, but its highly pleiotropic actions have diminished its prospects for use as an immunotherapeutic agent. Here, we took a structure-based approach to decoupling IFNγ pleiotropy. We engineered an affinity-enhanced variant of the ligand-binding chain of the IFNγ receptor IFNγR1, which enabled us to determine the crystal structure of the complete hexameric (2:2:2) IFNγ-IFNγR1-IFNγR2 signalling complex at 3.25 Å resolution. The structure reveals the mechanism underlying deficits in IFNγ responsiveness in mycobacterial disease syndrome resulting from a T168N mutation in IFNγR2, which impairs assembly of the full signalling complex. The topology of the hexameric complex offers a blueprint for engineering IFNγ variants to tune IFNγ receptor signalling output. Unexpectedly, we found that several partial IFNγ agonists exhibited biased gene-expression profiles. These biased agonists retained the ability to induce upregulation of major histocompatibility complex class I antigen expression, but exhibited impaired induction of programmed death-ligand 1 expression in a wide range of human cancer cell lines, offering a route to decoupling immunostimulatory and immunosuppressive functions of IFNγ for therapeutic applications.


Subject(s)
Drug Design , Interferon-gamma/agonists , Interferon-gamma/immunology , Receptors, Interferon/chemistry , Receptors, Interferon/metabolism , B7-H1 Antigen/biosynthesis , B7-H1 Antigen/genetics , Cell Line, Tumor , Drug Partial Agonism , Gene Expression Profiling , Gene Expression Regulation/drug effects , Histocompatibility Antigens Class I/biosynthesis , Histocompatibility Antigens Class I/genetics , Humans , Interferon-gamma/chemistry , Interferon-gamma/genetics , Ligands , Models, Molecular , Mutation , Mycobacterium Infections/genetics , Mycobacterium Infections/immunology , Protein Stability , Receptors, Interferon/genetics , Signal Transduction , Structure-Activity Relationship , Interferon gamma Receptor
14.
Mol Ther ; 32(7): 2223-2231, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38796702

ABSTRACT

Positron emission tomography (PET) reporter systems are a valuable means of estimating the level of expression of a transgene in vivo. For example, the safety and efficacy of gene therapy approaches for the treatment of neurological and neuropsychiatric disorders could be enhanced via the monitoring of exogenous gene expression levels in the brain. The present study evaluated the ability of a newly developed PET reporter system [18F]fluoroestradiol ([18F]FES) and the estrogen receptor-based PET reporter ChRERα, to monitor expression levels of a small hairpin RNA (shRNA) designed to suppress choline acetyltransferase (ChAT) expression in rhesus monkey brain. The ChRERα gene and shRNA were expressed from the same transcript via lentivirus injected into monkey striatum. In two monkeys that received injections of viral vector, [18F]FES binding increased by 70% and 86% at the target sites compared with pre-injection, demonstrating that ChRERα expression could be visualized in vivo with PET imaging. Post-mortem immunohistochemistry confirmed that ChAT expression was significantly suppressed in regions in which [18F]FES uptake was increased. The consistency between PET imaging and immunohistochemical results suggests that [18F]FES and ChRERα can serve as a PET reporter system in rhesus monkey brain for in vivo evaluation of the expression of potential therapeutic agents, such as shRNAs.


Subject(s)
Brain , Estradiol , Genes, Reporter , Macaca mulatta , Positron-Emission Tomography , Animals , Positron-Emission Tomography/methods , Estradiol/analogs & derivatives , Estradiol/pharmacology , Brain/metabolism , Brain/diagnostic imaging , Fluorine Radioisotopes , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics , Genetic Vectors/genetics , Genetic Vectors/administration & dosage , Gene Expression , RNA, Small Interfering/genetics , Lentivirus/genetics , Humans
15.
Proc Natl Acad Sci U S A ; 119(46): e2206828119, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36343238

ABSTRACT

Focused ultrasound (FUS) is a powerful tool for noninvasive modulation of deep brain activity with promising therapeutic potential for refractory epilepsy; however, tools for examining FUS effects on specific cell types within the deep brain do not yet exist. Consequently, how cell types within heterogeneous networks can be modulated and whether parameters can be identified to bias these networks in the context of complex behaviors remains unknown. To address this, we developed a fiber Photometry Coupled focused Ultrasound System (PhoCUS) for simultaneously monitoring FUS effects on neural activity of subcortical genetically targeted cell types in freely behaving animals. We identified a parameter set that selectively increases activity of parvalbumin interneurons while suppressing excitatory neurons in the hippocampus. A net inhibitory effect localized to the hippocampus was further confirmed through whole brain metabolic imaging. Finally, these inhibitory selective parameters achieved significant spike suppression in the kainate model of chronic temporal lobe epilepsy, opening the door for future noninvasive therapies.


Subject(s)
Epilepsy, Temporal Lobe , Epilepsy , Animals , Epilepsy/therapy , Brain/diagnostic imaging , Brain/physiology , Ultrasonography , Hippocampus/diagnostic imaging
16.
Proc Natl Acad Sci U S A ; 119(34): e2122667119, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35972961

ABSTRACT

Field biology is an area of research that involves working directly with living organisms in situ through a practice known as "fieldwork." Conducting fieldwork often requires complex logistical planning within multiregional or multinational teams, interacting with local communities at field sites, and collaborative research led by one or a few of the core team members. However, existing power imbalances stemming from geopolitical history, discrimination, and professional position, among other factors, perpetuate inequities when conducting these research endeavors. After reflecting on our own research programs, we propose four general principles to guide equitable, inclusive, ethical, and safe practices in field biology: be collaborative, be respectful, be legal, and be safe. Although many biologists already structure their field programs around these principles or similar values, executing equitable research practices can prove challenging and requires careful consideration, especially by those in positions with relatively greater privilege. Based on experiences and input from a diverse group of global collaborators, we provide suggestions for action-oriented approaches to make field biology more equitable, with particular attention to how those with greater privilege can contribute. While we acknowledge that not all suggestions will be applicable to every institution or program, we hope that they will generate discussions and provide a baseline for training in proactive, equitable fieldwork practices.


Subject(s)
Bioethical Issues , Biology , Biology/ethics , Humans
17.
J Neurosci ; 43(10): 1692-1713, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36717230

ABSTRACT

The brain µ-opioid receptor (MOR) is critical for the analgesic, rewarding, and addictive effects of opioid drugs. However, in rat models of opioid-related behaviors, the circuit mechanisms of MOR-expressing cells are less known because of a lack of genetic tools to selectively manipulate them. We introduce a CRISPR-based Oprm1-Cre knock-in transgenic rat that provides cell type-specific genetic access to MOR-expressing cells. After performing anatomic and behavioral validation experiments, we used the Oprm1-Cre knock-in rats to study the involvement of NAc MOR-expressing cells in heroin self-administration in male and female rats. Using RNAscope, autoradiography, and FISH chain reaction (HCR-FISH), we found no differences in Oprm1 expression in NAc, dorsal striatum, and dorsal hippocampus, or MOR receptor density (except dorsal striatum) or function between Oprm1-Cre knock-in rats and wildtype littermates. HCR-FISH assay showed that iCre is highly coexpressed with Oprm1 (95%-98%). There were no genotype differences in pain responses, morphine analgesia and tolerance, heroin self-administration, and relapse-related behaviors. We used the Cre-dependent vector AAV1-EF1a-Flex-taCasp3-TEVP to lesion NAc MOR-expressing cells. We found that the lesions decreased acquisition of heroin self-administration in male Oprm1-Cre rats and had a stronger inhibitory effect on the effort to self-administer heroin in female Oprm1-Cre rats. The validation of an Oprm1-Cre knock-in rat enables new strategies for understanding the role of MOR-expressing cells in rat models of opioid addiction, pain-related behaviors, and other opioid-mediated functions. Our initial mechanistic study indicates that lesioning NAc MOR-expressing cells had different effects on heroin self-administration in male and female rats.SIGNIFICANCE STATEMENT The brain µ-opioid receptor (MOR) is critical for the analgesic, rewarding, and addictive effects of opioid drugs. However, in rat models of opioid-related behaviors, the circuit mechanisms of MOR-expressing cells are less known because of a lack of genetic tools to selectively manipulate them. We introduce a CRISPR-based Oprm1-Cre knock-in transgenic rat that provides cell type-specific genetic access to brain MOR-expressing cells. After performing anatomical and behavioral validation experiments, we used the Oprm1-Cre knock-in rats to show that lesioning NAc MOR-expressing cells had different effects on heroin self-administration in males and females. The new Oprm1-Cre rats can be used to study the role of brain MOR-expressing cells in animal models of opioid addiction, pain-related behaviors, and other opioid-mediated functions.


Subject(s)
Heroin Dependence , Heroin , Rats , Male , Female , Animals , Heroin/pharmacology , Analgesics, Opioid/pharmacology , Nucleus Accumbens , Receptors, Opioid/metabolism , Rats, Transgenic , Receptors, Opioid, mu/genetics , Receptors, Opioid, mu/metabolism , Pain/metabolism
18.
Ecol Lett ; 27(6): e14448, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38814285

ABSTRACT

Linking the species interactions occurring at the scale of local communities to their potential impact at evolutionary timescales is challenging. Here, we used the high-resolution fossil record of mammals from the Iberian Peninsula to reconstruct a timeseries of trophic networks spanning more than 20 million years and asked whether predator-prey interactions affected regional extinction patterns. We found that, despite small changes in species richness, trophic networks showed long-term trends, gradually losing interactions and becoming sparser towards the present. This restructuring of the ecological networks was driven by the loss of medium-sized herbivores, which reduced prey availability for predators. The decrease in prey availability was associated with predator longevity, such that predators with less available prey had greater extinction risk. These results not only reveal long-term trends in network structure but suggest that prey species richness in ecological communities may shape large scale patterns of extinction and persistence among predators.


Subject(s)
Extinction, Biological , Food Chain , Fossils , Predatory Behavior , Animals , Spain , Mammals/physiology , Carnivora/physiology , Biodiversity , Biological Evolution
19.
Int J Cancer ; 154(4): 712-722, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-37984064

ABSTRACT

Probably, the most important factor for the survival of a melanoma patient is early detection and precise diagnosis. Although in most cases these tasks are readily carried out by pathologists and dermatologists, there are still difficult cases in which no consensus among experts is achieved. To deal with such cases, new methodologies are required. Following this motivation, we explore here the use of lipid imaging mass spectrometry as a complementary tool for the aid in the diagnosis. Thus, 53 samples (15 nevus, 24 primary melanomas, and 14 metastasis) were explored with the aid of a mass spectrometer, using negative polarity. The rich lipid fingerprint obtained from the samples allowed us to set up an artificial intelligence-based classification model that achieved 100% of specificity and precision both in training and validation data sets. A deeper analysis of the image data shows that the technique reports important information on the tumor microenvironment that may give invaluable insights in the prognosis of the lesion, with the correct interpretation.


Subject(s)
Melanoma , Nevus , Skin Neoplasms , Humans , Melanoma/pathology , Skin Neoplasms/pathology , Artificial Intelligence , Nevus/diagnosis , Nevus/pathology , Lipids , Tumor Microenvironment
20.
Anal Chem ; 96(23): 9629-9635, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38743697

ABSTRACT

Direct coupling of sample preparation with mass spectrometry (MS) can speed up analysis, enabling faster decision-making. In such combinations, where the analysis time is mainly defined by the extraction procedure, magnetic dispersive solid-phase extraction emerges as a relevant technique because of its rapid workflow. The dispersion and retrieval of the magnetic sorbent are typically uncoupled stages, thus reducing the potential simplicity. Stir bar sorptive dispersive microextraction (SBSDME) is a novel technique that integrates both stages into a single device. Its miniaturization (mSBSDME) makes it more portable and compatible with low-availability samples. This article reports the direct combination of mSBSDME and MS using a needle-based electrospray ionization (NESI) emitter as the interface. This combination is applied to determine tetrahydrocannabinol in saliva samples, a relevant societal problem if the global consumption rates of cannabis are considered. The coupling requires only the transference of the magnet (containing the sorbent and the isolated analyte) from the mSBSDME to the hub of a hypodermic needle, where the online elution occurs. The application of 5 kV on the needle forms an electrospray on its tip, transferring the ionized analyte to the MS inlet. The excellent performance of mSBSDME-NESI-MS/MS relies on the sensitivity (limits of detection as low as 2.25 ng mL-1), the precision (relative standard deviation lower than 15%), and the accuracy (relative recoveries ranged from 87 to 127%) obtained. According to the results, the mSBSDME-NESI-MS/MS technique promises faster and more efficient chemical analysis in MS-based applications.


Subject(s)
Dronabinol , Needles , Saliva , Spectrometry, Mass, Electrospray Ionization , Humans , Saliva/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Dronabinol/analysis , Solid Phase Microextraction/methods , Miniaturization , Limit of Detection
SELECTION OF CITATIONS
SEARCH DETAIL