ABSTRACT
The innate immune system is the primary defense against cryptococcal infection, but paradoxically it promotes infection of the central nervous system. We performed a detailed longitudinal study of neurocryptococcosis in normal, chimeric, green fluorescent protein phagocyte-positive mice and phagocyte-depleted mice and interrogated the central nervous system innate immune response to Cryptococcus neoformans H99 using confocal microscopy, histology, flow cytometry, and quantification of brain cytokine/chemokines and fungal burdens. C. neoformans was present in the perivascular space (PVS) of post-capillary venules. This was associated with a massive influx of blood-derived monocytes, neutrophils, and T lymphocytes into the PVS and a predominantly proinflammatory cytokine/chemokine response. Phagocytes containing cryptococci were present only in the lumen and corresponding PVS of post-capillary venules. Free cryptococci were observed breaching the glia limitans, the protective barrier between the PVS and the cerebral parenchyma. Parenchymal cryptococcomas were typically in direct contact with post-capillary venules and lacked surrounding immune cell infiltrates. Phagocyte depletion abrogated cryptococcoma formation and PVS infiltrates. Together, these observations suggest that cryptococcomas can originate via phagocyte-dependent transport across post-capillary venular endothelium into the PVS and thence via passage of free cryptococci into the brain. In conclusion, we demonstrate for the first time that the PVS of cortical post-capillary venules is the major site of the early innate immune response to, and phagocyte-dependent entry of, C. neoformans.
Subject(s)
Brain/immunology , Cryptococcus neoformans/immunology , Immunity, Innate/immunology , Meningitis, Cryptococcal/immunology , Phagocytes/immunology , T-Lymphocytes/immunology , Venules/immunology , Animals , Brain/microbiology , Brain/pathology , Disease Models, Animal , Female , Meningitis, Cryptococcal/microbiology , Meningitis, Cryptococcal/pathology , Mice , Mice, Inbred C57BL , Monocytes , Phagocytes/microbiology , Phagocytes/pathology , T-Lymphocytes/microbiology , T-Lymphocytes/pathology , Venules/microbiology , Venules/pathologyABSTRACT
Multiple sclerosis (MS) is an autoimmune disorder where auto-aggressive T cells target the central nervous system (CNS), causing demyelination. The trans-endothelial migration of leucocytes across the blood-brain barrier (BBB) is one of the earliest CNS events in MS pathogenesis. We examined the effect of the disease state and treatment with fingolimod on the transmigration of peripheral blood mononuclear cells (PBMCs) in an in vitro BBB model. Patients' leucocyte numbers, subsets and phenotypes were assessed by flow cytometry. As expected, fingolimod treatment induced a significant reduction in T cell and B cell numbers compared to untreated MS patients and healthy controls. Interestingly fingolimod led to a marked reduction of CD4+ and a significant increase in CD8+ cell numbers. In migrated cells, only CD3+ cell numbers were reduced in fingolimod-treated, compared to untreated patients; it had no effect on B cell or monocyte transmigration. T cells were then differentiated into naïve, effector and memory subsets based on their expression of CCR7. This showed that MS patients had increased numbers of effector memory CD4+ cells re-expressing CD45RA (TEMRA) and a decrease in central memory (CM) CD8+ cells. The former was corrected by fingolimod, while the latter was not. CM CD4+ and CD8+ cells migrated across BBB more efficiently in fingolimod-treated patients. We found that while fingolimod reduced the proportions of naïve CD19+ B cells, it significantly increased the proportions of these cells which migrated. When B cells were further stratified based on CD24, CD27 and CD38 expression, the only effect of fingolimod was an enhancement of CD24hiCD27+ B cell migration, compared to untreated MS patients. The migratory capacities of CD8hi Natural Killer (NK), CD8dim NK and NK-T cells were also reduced by fingolimod. While the disease-modifying effects of fingolimod are currently explained by its effect on reducing circulating auto-aggressive lymphocytes, our data suggests that fingolimod may also have a direct though differential effect on the trans-endothelial migration of circulating lymphocyte populations.
Subject(s)
Fingolimod Hydrochloride/therapeutic use , Immunosuppressive Agents/therapeutic use , Lymphocyte Subsets/drug effects , Multiple Sclerosis/blood , Multiple Sclerosis/drug therapy , Transendothelial and Transepithelial Migration/drug effects , Cell Movement/drug effects , Cell Movement/physiology , Cells, Cultured , Female , Fingolimod Hydrochloride/pharmacology , Humans , Immunosuppressive Agents/pharmacology , Lymphocyte Subsets/metabolism , Male , Transendothelial and Transepithelial Migration/physiology , Treatment OutcomeABSTRACT
Cryptococcus neoformans (Cn) and Cryptococcus gattii (Cg) cause neurological disease and cross the BBB as free cells or in mononuclear phagocytes via the Trojan horse mechanism, although evidence for the latter is indirect. There is emerging evidence that Cn and the North American outbreak Cg strain (R265) more commonly cause neurological and lung disease, respectively. We have employed a widely validated in vitro model of the BBB, which utilizes the hCMEC/D3 cell line derived from human brain endothelial cells (HBEC) and the human macrophage-like cell line, THP-1, to investigate whether transport of dual fluorescence-labelled Cn and Cg across the BBB occurs within macrophages. We showed that phagocytosis of Cn by non-interferon (IFN)-γ stimulated THP-1 cells was higher than that of Cg. Although Cn and Cg-loaded THP-1 bound similarly to TNF-activated HBECs under shear stress, more Cn-loaded macrophages were transported across an intact HBEC monolayer, consistent with the predilection of Cn for CNS infection. Furthermore, Cn exhibited a higher rate of expulsion from transmigrated THP-1 compared with Cg. Our results therefore provide further evidence for transmigration of both Cn and Cg via the Trojan horse mechanism and a potential explanation for the predilection of Cn to cause CNS infection.