Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Hepatology ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38456794

ABSTRACT

BACKGROUND AND AIMS: In obesity, depletion of KCs expressing CRIg (complement receptor of the Ig superfamily) leads to microbial DNA accumulation, which subsequently triggers tissue inflammation and insulin resistance. However, the mechanism underlying obesity-mediated changes in KC complement immune functions is largely unknown. APPROACH AND RESULTS: Using KC-specific deactivated Cas9 transgenic mice treated with guide RNA, we assessed the effects of restoring CRIg or the serine/arginine-rich splicing factor 3 (SRSF3) abundance on KC functions and metabolic phenotypes in obese mice. The impacts of weight loss on KC responses were evaluated in a diet switch mouse model. The role of SRSF3 in regulating KC functions was also evaluated using KC-specific SRSF3 knockout mice. Here, we report that overexpression of CRIg in KCs of obese mice protects against bacterial DNA accumulation in metabolic tissues. Mechanistically, SRSF3 regulates CRIg expression, which is essential for maintaining the CRIg+ KC population. During obesity, SRSF3 expression decreases, but it is restored with weight loss through a diet switch, normalizing CRIg+ KCs. KC SRSF3 is also repressed in obese human livers. Lack of SRSF3 in KCs in lean and obese mice decreases their CRIg+ population, impairing metabolic parameters. During the diet switch, the benefits of weight loss are compromised due to SRSF3 deficiency. Conversely, SRSF3 overexpression in obese mice preserves CRIg+ KCs and improves metabolic responses. CONCLUSIONS: Restoring SRSF3 abundance in KCs offers a strategy against obesity-associated tissue inflammation and insulin resistance by preventing bacterial DNA accumulation.

2.
Small ; 19(39): e2302597, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37246255

ABSTRACT

Ultrathin crystalline silicon is widely used as an active material for high-performance, flexible, and stretchable electronics, from simple passive and active components to complex integrated circuits, due to its excellent electrical and mechanical properties. However, in contrast to conventional silicon wafer-based devices, ultrathin crystalline silicon-based electronics require an expensive and rather complicated fabrication process. Although silicon-on-insulator (SOI) wafers are commonly used to obtain a single layer of crystalline silicon, they are costly and difficult to process. Therefore, as an alternative to SOI wafers-based thin layers, here, a simple transfer method is proposed for printing ultrathin multiple crystalline silicon sheets with thicknesses between 300 nm to 13 µm and high areal density (>90%) from a single mother wafer. Theoretically, the silicon nano/micro membrane can be generated until the mother wafer is completely consumed. In addition, the electronic applications of silicon membranes are successfully demonstrated through the fabrication of a flexible solar cell and flexible NMOS transistor arrays.

3.
Front Immunol ; 14: 1216344, 2023.
Article in English | MEDLINE | ID: mdl-37520546

ABSTRACT

Emerging evidence indicates the critical roles of microbiota in mediating host cardiac functions in ageing, however, the mechanisms underlying the communications between microbiota and cardiac cells during the ageing process have not been fully elucidated. Bacterial DNA was enriched in the cardiomyocytes of both ageing humans and mice. Antibiotic treatment remarkably reduced bacterial DNA abundance in ageing mice. Gut microbial DNA containing extracellular vesicles (mEVs) were readily leaked into the bloodstream and infiltrated into cardiomyocytes in ageing mice, causing cardiac microbial DNA enrichment. Vsig4+ macrophages efficiently block the spread of gut mEVs whereas Vsig4+ cell population was greatly decreased in ageing mice. Gut mEV treatment resulted in cardiac inflammation and a reduction in cardiac contractility in young Vsig4-/- mice. Microbial DNA depletion attenuated the pathogenic effects of gut mEVs. cGAS/STING signaling is critical for the effects of microbial DNA. Restoring Vsig4+ macrophage population in ageing WT mice reduced cardiac microbial DNA abundance and inflammation and improved heart contractility.


Subject(s)
Aging , Myocarditis , Humans , Mice , Animals , DNA, Bacterial , Macrophages , Inflammation , Myocardial Contraction
4.
Nanomaterials (Basel) ; 12(9)2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35564176

ABSTRACT

Perovskite solar cells (PSCs) have achieved significantly high power-conversion efficiency within a short time. Most of the devices, including those with the highest efficiency, are based on a n-i-p structure utilizing a (doped) spiro-OMeTAD hole transport layer (HTL), which is an expensive material. Furthermore, doping has its own challenges affecting the processing and performance of the devices. Therefore, the need for low-cost, dopant-free hole transport materials is an urgent and critical issue for the commercialization of PSCs. In this study, n-i-p structure PSCs were fabricated in an ambient environment with cuprous iodide (CuI) HTL, employing a novel transfer-printing technique, in order to avoid the harmful interaction between the perovskite surface and the solvents of CuI. Moreover, in fabricated PSCs, the SnO2 electron transport layer (ETL) has been incorporated to reduce the processing temperature, as previously reported (n-i-p) devices with CuI HTL are based on TiO2, which is a high-temperature processed ETL. PSCs fabricated at 80 °C transfer-printing temperature with 20 nm iodized copper, under 1 sun illumination showed a promising efficiency of 8.3%, (JSC and FF; 19.3 A/cm2 and 53.8%), which is comparable with undoped spiro-OMeTAD PSCs and is the highest among the ambient-environment-fabricated PSCs utilizing CuI HTL.

SELECTION OF CITATIONS
SEARCH DETAIL