Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 22(46): 26910-26916, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33205792

ABSTRACT

Pyroprotein-based carbon materials produced by heat-treating silk proteins have many potential applications in electronic devices, such as electronic textiles. To further develop potential electronic devices using these pyroproteins, the charge transport mechanism has to be verified. However, the electrical characteristics of the pyroproteins have not been reported yet. In this study, the temperature-dependent charge transport behavior of pyroprotein-based electronic yarns prepared from commercial silks (e-CS yarns) is investigated with respect to various heat treatment temperatures (HTT, 800, 1000, 1200, and 1400 °C). The linear current-voltage properties are shown at a low bias of 100 nA from 9 K to 300 K. The temperature-dependent resistivity of the e-CS yarns can be clearly described by the crossover of 3-dimensional Mott variable range hopping and fluctuation-induced tunneling conduction at the crossover temperature (Tc). These Tc factors are significantly different, due to the structural modulation of the e-CS yarns depending on the HTT, and are characterized by Raman spectroscopy, X-ray diffraction, and transmission electron microscopy. This study is expected to provide a better understanding of the electrical properties of pyroproteins.


Subject(s)
Electric Conductivity , Silk/chemistry , Textiles , Electronics , Pyrolysis , Temperature
2.
Heliyon ; 10(2): e24425, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38293488

ABSTRACT

Electronic textile-based gas sensors with a high response for NO2 gas were fabricated using reduced graphene oxide (rGO)-coated commercial cotton fabric (rGOC). Graphene oxide (GO) was coated on cotton fabric by simply dipping the cotton into a GO solution. To investigate the relationship between the degree of reduction and the sensing response, the GO-coated fabrics were thermally reduced at various temperatures (190, 200, 300, and 400 °C). The change in the amount of oxygen functional groups on the rGOCs was observed by x-ray photoelectron spectroscopy, Raman spectroscopy, and x-ray diffraction patterns. The maximum sensing response of 45.90 % at 10 ppm of NO2 gas at room temperature was exhibited by the rGOC treated at 190 °C, which was the lowest heat-treatment temperature. The high response comes from the greater amount of oxygen functional groups compared to other rGOC samples, and the tubular structure of the cotton.

3.
ACS Omega ; 6(41): 27080-27088, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34693128

ABSTRACT

An electronic textile-based NO2 gas sensor was fabricated using commercial silk and graphene oxide (GO). It showed a fast response time and excellent sensing performance, which was simply accomplished by modifying the heat-treatment process. The heat treatment was conducted at 400 °C and different heating rates of 1, 3, and 5 °C/min. Compared with our previous research, the response time significantly decreased, from 32.5 to 3.26 min, and we found that the highest response was obtained with the sensor treated at a heating rate of 1 °C/min. To find the reason for this enhanced sensing performance, the morphology, structure, and chemical composition of the reduced GO (rGO) were investigated, depending on the thermal treatment process, using scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. We also measured the temperature-dependent resistance of rGO, which was well described by the fluctuation-induced tunneling (FIT) model. These results revealed that the rGO thermally treated with 1 °C/min of heating rate had the largest amount of oxygen groups. This means that the oxygen functional groups play an important role in NO2 gas-sensing performance.

4.
J Adv Res ; 24: 205-209, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32373354

ABSTRACT

In the oxidative dehydrogenation (ODH) process that converts ethylbenzene to styrene, vanadium-based catalysts, especially V2O5, are used in a CO2 atmosphere to enhance process efficiency. Here we demonstrate that the activation energy of V2O5 can be manipulated by exposure to high pressure CO2, using V2O5 nanowires (VON). The oxidation of V4+ to V5+ was observed by X-ray photoelectron spectroscopy. The ratio of V4+/V5+ which the typical comparable feature decreased 73.42%. We also found an increase in the interlayer distance in VON from 9.95 Å to 10.10 Å using X-ray diffraction patterns. We observed changes in the peaks of the stretching mode of bridging triply coordinated oxygen (V3-O), and the bending vibration of the bridging V-O-V, using Raman spectroscopy. We confirmed this propensity by measuring the CO2 pressure-dependent conductance of VON, up to 45 bar. 92.52% of decrease in the maximum conductance compared with that of the pristine VON was observed. The results of this study suggest that ODH process performance can be improved using the VON catalyst in a high pressure CO2 atmosphere.

SELECTION OF CITATIONS
SEARCH DETAIL