Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters

Publication year range
1.
Mol Cancer Ther ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38739434

ABSTRACT

Insufficient quantity of functional T cells is a likely factor limiting clinical activity of T cell bispecific antibodies, especially in solid tumor indications. We hypothesized that XmAb24306 (efbalropendekin alfa), a lymphoproliferative interleukin (IL)-15/IL-15 receptor α (IL-15Rα) Fc-fusion protein, may potentiate the activity of T cell dependent (TDB) antibodies. Activation of human peripheral T cells by cevostamab, an anti-FcRH5/CD3 TDB, or anti-HER2/CD3 TDB resulted in upregulation of IL-2/15Rß (CD122) receptor subunit in nearly all CD8+ and majority of CD4+ T cells, suggesting that TDB treatment may sensitize T cells to the IL-15. XmAb24306 enhanced T cell bispecific antibody induced CD8+ and CD4+ T cell proliferation and expansion. In vitro combination of XmAb24306 with cevostamab or anti-HER2/CD3 TDB resulted in significant enhancement of tumor cell killing, which was reversed when T cell numbers were normalized, suggesting that T cell expansion is the main mechanism for the observed benefit. Pre-treatment of immune competent mice with a mouse-reactive surrogate of XmAb24306 (mIL-15-Fc) resulted in significant increase of T cells in blood, spleen and in tumors and converted transient anti-HER2/CD3 TDB responses to complete durable responses. In summary, our results support the hypothesis where the number of tumor infiltrating T cells is rate limiting for the activity of solid tumor targeting TDBs. Upregulation of CD122 by TDB treatment and the observed synergy with XmAb24306 and T cell bispecific antibodies supports clinical evaluation of this novel immunotherapy combination.

2.
Gynecol Oncol ; 129(1): 179-87, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23313737

ABSTRACT

OBJECTIVE: ErbB4 is a member of the ErbB subfamily of receptor tyrosine kinases with a poorly understood biological role in ovarian cancer. Here, we have addressed the expression, subcellular localization, and prognostic relevance of ErbB4 and its alternatively spliced isoforms in serous ovarian adenocarcinoma. METHODS: A tissue microarray including 482 samples was analyzed by immunohistochemistry, and a series of 198 samples by isoform-specific real-time RT-PCR. The data were statistically analyzed for associations with clinicopathological markers and survival. The functional effect of expressing the relevant ErbB4 isoforms in ovarian cancer cells was addressed by measuring colony formation in soft agar. RESULTS: While ErbB4 immunoreactivity was present in 90% of the samples, total ErbB4 protein expression was not significantly associated with prognostic markers. However, real-time RT-PCR analysis of serous ovarian cancer samples indicated the presence of two alternatively spliced cytoplasmic isoforms of ERBB4, CYT-1 and CYT-2, previously demonstrated to mediate significantly different cellular activities. Expression of CYT-1, but not of CYT-2, was significantly associated with tumor grade (P=0.014) and poor overall survival (P=0.0028). CYT-1 expression was also an independent prognostic factor (P=0.021) in multivariate analysis of survival. Consistent with a biological effect specific for the one isoform, overexpression of ErbB4 CYT-1, but not of ErbB4 CYT-2, increased anchorage-independent growth of ovarian adenocarcinoma cells in vitro. CONCLUSIONS: These results suggest that expression of a specific ErbB4 isoform, CYT-1, is associated with poor survival and enhanced growth in serous ovarian cancer.


Subject(s)
Cystadenocarcinoma, Serous/enzymology , ErbB Receptors/analysis , Ovarian Neoplasms/enzymology , Adult , Aged , Cell Proliferation , Cystadenocarcinoma, Serous/mortality , Cystadenocarcinoma, Serous/pathology , ErbB Receptors/physiology , Female , Humans , Immunohistochemistry , Isoenzymes/analysis , Middle Aged , Ovarian Neoplasms/mortality , Ovarian Neoplasms/pathology , Prognosis , Receptor, ErbB-4 , Tissue Array Analysis
3.
Mol Cancer Ther ; 22(5): 659-666, 2023 05 04.
Article in English | MEDLINE | ID: mdl-36822576

ABSTRACT

Although CD3-bispecific antibodies have shown promising activity in the treatment of hematological cancers, insufficient T-cell costimulation may limit long-term responses. Immunomodulatory drugs (IMiDs), routinely used in treating multiple myeloma, possess pleiotropic antimyeloma properties and have been described to enhance T-cell responses similar to costimulatory signaling and may therefore have synergistic effects when combined with T-cell bispecifics. In this report, we demonstrate that IMiDs substantially enhance tumor cell killing induced by CD3 bispecifics and increase CD8+ T-cell proliferation and expansion. We further show that the beneficial effects of IMiDs on T-cell function and expansion are mediated by enhanced IL2 production by CD4+ T cells. Our studies provide mechanistic insight into the costimulatory properties of IMiDs and support combination treatments with T-cell agonist therapies in a broad spectrum of indications.


Subject(s)
Antibodies, Bispecific , Humans , Antibodies, Bispecific/pharmacology , Immunomodulating Agents , Interleukin-2/pharmacology , CD3 Complex , CD8-Positive T-Lymphocytes
4.
Breast Cancer Res Treat ; 128(2): 347-56, 2011 Jul.
Article in English | MEDLINE | ID: mdl-20730488

ABSTRACT

Trastuzumab (Herceptin(®)) is currently used as a treatment for patients whose breast tumors overexpress HER2/ErbB2. Trastuzumab-DM1 (T-DM1, trastuzumab emtansine) is designed to combine the clinical benefits of trastuzumab with a potent microtubule-disrupting drug, DM1 (a maytansine derivative). Currently T-DM1 is being tested in multiple clinical trials. The mechanisms of action for trastuzumab include inhibition of PI3K/AKT signaling pathway, inhibition of HER-2 shedding and Fcγ receptor mediated engagement of immune cells, which may result in antibody-dependent cellular cytotoxicity (ADCC). Here we report that T-DM1 retains the mechanisms of action of unconjugated trastuzumab and is active against lapatinib resistant cell lines and tumors.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Breast Neoplasms/drug therapy , Drug Resistance, Neoplasm/drug effects , Immunotoxins/therapeutic use , Maytansine/analogs & derivatives , Quinazolines/adverse effects , Receptor, ErbB-2/antagonists & inhibitors , Ado-Trastuzumab Emtansine , Animals , Antibodies, Monoclonal, Humanized , Antibody-Dependent Cell Cytotoxicity/drug effects , Blotting, Western , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Survival/drug effects , Female , Humans , Immunoconjugates , Lapatinib , Maytansine/therapeutic use , Mice , Mice, Nude , Mice, Transgenic , Phosphatidylinositol 3-Kinases/metabolism , Receptor, ErbB-2/immunology , Receptor, ErbB-2/metabolism , Signal Transduction/drug effects , Trastuzumab
5.
Duodecim ; 127(4): 343-9, 2011.
Article in Fi | MEDLINE | ID: mdl-21442854

ABSTRACT

First generation antibody drugs recognize the cancer cell, slow down the signaling of cell growth and activate the defense response. Second generation antibody drugs contain conjugated cytotoxic agents that are activated upon entry into the cancer cell. Trastuzumab has become established among the first generation antibody drugs utilized in breast cancer therapy, and its derivative trastuzumab-DM1 is the first antibody-drug conjugate currently in clinical trials for breast cancer. Trastuzumab acts as an antibody and transports into the cancer cell the cytotoxic agent DM1, which becomes activated there. Targeted cytotoxic drugs are under development for the treatment of many different types of cancer.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology , Immunoconjugates/pharmacology , Neoplasms/drug therapy , Antibodies, Monoclonal, Humanized , Breast Neoplasms/drug therapy , Female , Humans , Male , Trastuzumab
6.
Mol Cancer Ther ; 20(4): 716-725, 2021 04.
Article in English | MEDLINE | ID: mdl-33536191

ABSTRACT

Ovarian cancer is a diverse class of tumors with very few effective treatment options and suboptimal response rates in early clinical studies using immunotherapies. Here we describe LY6/PLAUR domain containing 1 (LYPD1) as a novel target for therapeutic antibodies for the treatment of ovarian cancer. LYPD1 is broadly expressed in both primary and metastatic ovarian cancer with ∼70% prevalence in the serous cancer subset. Bispecific antibodies targeting CD3 on T cells and a tumor antigen on cancer cells have demonstrated significant clinical activity in hematologic cancers. We have developed an anti-LYPD1/CD3 T-cell-dependent bispecific antibody (TDB) to redirect T-cell responses to LYPD1 expressing ovarian cancer. Here we characterize the nonclinical pharmacology of anti-LYPD1/CD3 TDB and show induction of a robust polyclonal T-cell activation and target dependent killing of LYPD1 expressing ovarian cancer cells resulting in efficient in vivo antitumor responses in PBMC reconstituted immune-deficient mice and human CD3 transgenic mouse models. Anti-LYPD1/CD3 TDB is generally well tolerated at high-dose levels in mice, a pharmacologically relevant species, and showed no evidence of toxicity or damage to LYPD1 expressing tissues.


Subject(s)
Antibodies, Bispecific/therapeutic use , CD3 Complex/immunology , Ovarian Neoplasms/drug therapy , Amino Acid Sequence , Animals , Antibodies, Bispecific/pharmacology , Cell Line, Tumor , Female , Humans , Mice , Mice, Transgenic , Ovarian Neoplasms/pathology
7.
JCI Insight ; 5(7)2020 04 09.
Article in English | MEDLINE | ID: mdl-32271166

ABSTRACT

Systemic cytokine release and on-target/off-tumor toxicity to normal tissues are the main adverse effects limiting the clinical utility of T cell-redirecting therapies. This study was designed to determine how binding affinity for CD3 and tumor target HER2 impact the efficacy and nonclinical safety of anti-HER2/CD3 T cell-dependent antibodies (TDBs). Affinity was found to be a major determinant for the overall tolerability. Higher affinity for CD3 associated with rapidly elevated peripheral cytokine concentrations, weight loss in mice, and poor tolerability in cynomolgus monkeys. A TDB with lower CD3 affinity was better tolerated in cynomolgus monkeys compared with a higher CD3-affinity TDB. In contrast to tolerability, T cell binding affinity had only limited impact on in vitro and in vivo antitumor activity. High affinity for HER2 was critical for the tumor-killing activity of anti-HER2/CD3 TDBs, but higher HER2 affinity also associated with a more severe toxicity profile, including cytokine release and damage to HER2-expressing tissues. The tolerability of the anti-HER2/CD3 was improved by implementing a dose-fractionation strategy. Fine-tuning the affinities for both the tumor target and CD3 is likely a valuable strategy for achieving maximal therapeutic index of CD3 bispecific antibodies.


Subject(s)
Antibodies, Bispecific/immunology , Antibody Affinity , Antineoplastic Agents, Immunological/immunology , Receptor, ErbB-2/immunology , Animals , Antibodies, Bispecific/chemistry , Antineoplastic Agents, Immunological/chemistry , CD3 Complex/chemistry , CHO Cells , Cricetulus , Drug Evaluation, Preclinical , Humans , Macaca fascicularis , Receptor, ErbB-2/chemistry
8.
Mol Biol Cell ; 17(1): 67-79, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16251361

ABSTRACT

The ErbB1 and ErbB2 receptors are oncogenes with therapeutic significance in human cancer, whereas the transforming potential of the related ErbB4 receptor has remained controversial. Here, we have addressed whether four alternatively spliced ErbB4 isoforms differ in regulating cellular responses relevant for tumor growth. We show that the two tumor necrosis factor-alpha converting enzyme (TACE)-cleavable ErbB4 isoforms (the juxtamembrane [JM]-a isoforms) were overexpressed in a subset of primary human breast cancers together with TACE. The overexpression of the JM-a cytoplasmic (CYT)-2 ErbB4 isoform promoted ErbB4 phosphorylation, survival of interleukin-3-dependent cells, and proliferation of breast cancer cells even in the absence of ligand stimulation, whereas activation of the other three ErbB4 isoforms required ligand stimulation. Ligand-independent cellular responses to ErbB4 JM-a CYT-2 overexpression were regulated by both tyrosine kinase activity and a two-step proteolytic generation of an intracellular receptor fragment involving first a TACE-like proteinase, followed by gamma-secretase activity. These data suggest a novel transforming mechanism for the ErbB4 receptor in human breast cancer that is 1) specific for a single receptor isoform and 2) depends on proteinase cleavage and kinase activity but not ligand activation of the receptor.


Subject(s)
ErbB Receptors/chemistry , ErbB Receptors/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Protein Processing, Post-Translational , ADAM Proteins/metabolism , ADAM17 Protein , Adult , Aged , Aged, 80 and over , Amyloid Precursor Protein Secretases , Aspartic Acid Endopeptidases , Cell Line, Tumor , Cell Membrane/metabolism , Cell Proliferation , Cell Survival , Dimerization , Endopeptidases/metabolism , ErbB Receptors/genetics , Gene Expression Regulation, Neoplastic , Humans , Ligands , Middle Aged , Neoplasms/genetics , Phosphorylation , Phosphotyrosine/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptor, ErbB-4 , Signal Transduction , Solubility
9.
Sci Transl Med ; 11(508)2019 09 04.
Article in English | MEDLINE | ID: mdl-31484792

ABSTRACT

T cell-retargeting therapies have transformed the therapeutic landscape of oncology. Regardless of the modality, T cell activating therapies are commonly accompanied by systemic cytokine release, which can progress to deadly cytokine release syndrome (CRS). Because of incomplete mechanistic understanding of the relationship between T cell activation and systemic cytokine release, optimal toxicity management that retains full therapeutic potential remains unclear. Here, we report the cell type-specific cellular mechanisms that link CD3 bispecific antibody-mediated killing to toxic cytokine release. The immunologic cascade is initiated by T cell triggering, whereas monocytes and macrophages are the primary source of systemic toxic cytokine release. We demonstrate that T cell-generated tumor necrosis factor-α (TNF-α) is the primary mechanism mediating monocyte activation and systemic cytokine release after CD3 bispecific treatment. Prevention of TNF-α release is sufficient to impair systemic release of monocyte cytokines without affecting antitumor efficacy. Systemic cytokine release is only observed upon initial exposure to CD3 bispecific antibody not subsequent doses, indicating a biological distinction between doses. Despite impaired cytokine release after second exposure, T cell cytotoxicity remained unaffected, demonstrating that cytolytic activity of T cells can be achieved in the absence of cytokine release. The mechanistic uncoupling of toxic cytokines and T cell cytolytic activity in the context of CD3 bispecifics provides a biological rationale to clinically explore preventative treatment approaches to mitigate toxicity.


Subject(s)
Antibodies, Bispecific/immunology , CD3 Complex/immunology , Cytokines/metabolism , Cytotoxicity, Immunologic , T-Lymphocytes, Cytotoxic/immunology , Animals , Humans , Macrophages/metabolism , Mice, Transgenic , Monocytes/metabolism , Receptor, ErbB-2/metabolism , Tumor Necrosis Factor-alpha/metabolism
10.
Cell Death Differ ; 26(11): 2416-2429, 2019 Nov.
Article in English | MEDLINE | ID: mdl-30824837

ABSTRACT

Emerging research suggests that multiple tumor compartments can influence treatment responsiveness and relapse, yet the search for therapeutic resistance mechanisms remains largely focused on acquired genomic alterations in cancer cells. Here we show how treatment-induced changes occur in multiple tumor compartments during tumor relapse and can reduce benefit of follow-on therapies. By using serial biopsies, next-generation sequencing, and single-cell transcriptomics, we tracked the evolution of multiple cellular compartments within individual lesions during first-line treatment response, relapse, and second-line therapeutic interventions in an autochthonous model of melanoma. We discovered that although treatment-relapsed tumors remained genetically stable, they converged on a shared resistance phenotype characterized by dramatic changes in tumor cell differentiation state, immune infiltration, and extracellular matrix (ECM) composition. Similar alterations in tumor cell differentiation were also observed in more than half of our treatment-relapsed patient tumors. Tumor cell-state changes were coincident with ECM remodeling and increased tumor stiffness, which alone was sufficient to alter tumor cell fate and reduce treatment responses in melanoma cell lines in vitro. Despite the absence of acquired mutations in the targeted pathway, resistant tumors showed significantly decreased responsiveness to second-line therapy intervention within the same pathway. The ability to preclinically model relapse and refractory settings-while capturing dynamics within and crosstalk between all relevant tumor compartments-provides a unique opportunity to better design and sequence appropriate clinical interventions.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/genetics , Extracellular Matrix/pathology , Melanoma/drug therapy , Melanoma/pathology , Animals , Azetidines/pharmacology , Biomarkers, Tumor/genetics , Cell Line, Tumor , DNA Copy Number Variations/genetics , Drug Resistance, Neoplasm/physiology , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Melanoma/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation/genetics , Piperidines/pharmacology , Proto-Oncogene Proteins B-raf/genetics , Vemurafenib/pharmacology , Exome Sequencing
11.
MAbs ; 11(2): 422-433, 2019.
Article in English | MEDLINE | ID: mdl-30550367

ABSTRACT

Bispecific antibody production using single host cells has been a new advancement in the antibody engineering field. We previously showed comparable in vitro biological activity and in vivo mouse pharmacokinetics (PK) for two novel single cell variants (v10 and v11) and one traditional dual cell in vitro-assembled anti-human epidermal growth factor receptor 2/CD3 T-cell dependent bispecific (TDB) antibodies. Here, we extended our previous work to assess single cell-produced bispecific variants of a novel TDB against FcRH5, a B-cell lineage marker expressed on multiple myeloma (MM) tumor cells. An in vitro-assembled anti- FcRH5/CD3 TDB antibody was previously developed as a potential treatment option for MM. Two bispecific antibody variants (designs v10 and v11) for manufacturing anti-FcRH5/CD3 TDB in single cells were compared to in vitro-assembled TDB in a dual-cell process to understand whether differences in antibody design and production led to any major differences in their in vitro biological activity, in vivo mouse PK, and PK/pharmacodynamics (PD) or immunogenicity in cynomolgus monkeys (cynos). The binding, in vitro potencies, in vitro pharmacological activities and in vivo PK in mice and cynos of these single cell TDBs were comparable to those of the in vitro-assembled TDB. In addition, the single cell and in vitro-assembled TDBs exhibited robust PD activity and comparable immunogenicity in cynos. Overall, these studies demonstrate that single cell-produced and in vitro-assembled anti-FcRH5/CD3 T-cell dependent bispecific antibodies have similar in vitro and in vivo properties, and support further development of single-cell production method for anti-FcRH5/CD3 TDBs and other single-cell bispecifics.


Subject(s)
Antibodies, Bispecific/chemistry , Antibodies, Bispecific/pharmacokinetics , Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Monoclonal, Humanized/pharmacokinetics , Receptors, Fc/chemistry , Animals , Antibodies, Bispecific/immunology , Antibodies, Monoclonal, Humanized/immunology , CD3 Complex/immunology , Drug Design , Humans , In Vitro Techniques , Macaca fascicularis , Mice , Multiple Myeloma , T-Lymphocytes/immunology
12.
Mol Cell Biol ; 25(12): 5040-51, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15923621

ABSTRACT

DNA topoisomerase I (Topo I) is a molecular target for the anticancer agent topotecan in the treatment of small cell lung cancer and ovarian carcinomas. However, the molecular mechanisms by which topotecan treatment inhibits cancer cell proliferation are unclear. We describe here the identification of Topo I as a novel endogenous interaction partner for transcription factor c-Jun. Reciprocal coimmunoprecipitation analysis showed that Topo I and c-Jun interact in transformed human cells in a manner that is dependent on JNK activity. c-Jun target gene epidermal growth factor receptor (EGFR) was identified as a novel gene whose expression was specifically inhibited by topotecan. Moreover, Topo I overexpression supported c-Jun-mediated reporter gene activation and both genetic and chemical inhibition of c-Jun converted cells resistant to topotecan-elicited EGFR downregulation. Topotecan-elicited suppression of proliferation was rescued by exogenously expressed EGFR. Furthermore, we demonstrate the cooperation of the JNK-c-Jun pathway, Topo I, and EGFR in the positive regulation of HT-1080 cell proliferation. Together, these results have identified transcriptional coactivator Topo I as a first endogenous cofactor for c-Jun in the regulation of cell proliferation. In addition, the results of the present study strongly suggest that inhibition of EGFR expression is a novel mechanism by which topotecan inhibits cell proliferation in cancer therapy.


Subject(s)
Cell Proliferation , DNA Topoisomerases, Type I/metabolism , ErbB Receptors/metabolism , Gene Expression Regulation , Neoplasms/metabolism , Proto-Oncogene Proteins c-jun/metabolism , Animals , Antineoplastic Agents/metabolism , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , DNA Topoisomerases, Type I/genetics , ErbB Receptors/genetics , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Neoplasms/drug therapy , Proto-Oncogene Proteins c-jun/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Topoisomerase I Inhibitors , Topotecan/metabolism , Topotecan/therapeutic use , Transcriptional Activation
13.
Clin Cancer Res ; 24(24): 6447-6458, 2018 12 15.
Article in English | MEDLINE | ID: mdl-29950350

ABSTRACT

PURPOSE: The response to cancer immune therapy is dependent on endogenous tumor-reactive T cells. To bypass this requirement, CD3-bispecific antibodies have been developed to induce a polyclonal T-cell response against the tumor. Anti-HER2/CD3 T-cell-dependent bispecific (TDB) antibody is highly efficacious in the treatment of HER2-overexpressing tumors in mice. Efficacy and immunologic effects of anti-HER2/CD3 TDB were investigated in mammary tumor model with very few T cells prior treatment. We further describe the mechanism for TDB-induced T-cell recruitment to tumors. EXPERIMENTAL DESIGN: The immunologic effects and the mechanism of CD3-bispecific antibody-induced T-cell recruitment into spontaneous HER2-overexpressing mammary tumors was studied using human HER2 transgenic, immunocompetent mouse models. RESULTS: Anti-HER2/CD3 TDB treatment induced an inflammatory response in tumors converting them from poorly infiltrated to an inflamed, T-cell abundant, phenotype. Multiple mechanisms accounted for the TDB-induced increase in T cells within tumors. TDB treatment induced CD8+ T-cell proliferation. T cells were also actively recruited post-TDB treatment by IFNγ-dependent T-cell chemokines mediated via CXCR3. This active T-cell recruitment by TDB-induced chemokine signaling was the dominant mechanism and necessary for the therapeutic activity of anti-HER2/CD3 TDB. CONCLUSIONS: In summary, we demonstrate that the activity of anti-HER2/CD3 TDB was not dependent on high-level baseline T-cell infiltration. Our results suggest that anti-HER2/CD3 TDB may be efficacious in patients and indications that respond poorly to checkpoint inhibitors. An active T-cell recruitment mediated by TDB-induced chemokine signaling was the major mechanism for T-cell recruitment.


Subject(s)
Antibodies, Bispecific/pharmacology , CD3 Complex/antagonists & inhibitors , Chemokines/metabolism , Interferon-gamma/metabolism , Neoplasms/metabolism , Receptor, ErbB-2/antagonists & inhibitors , Receptors, CXCR3/metabolism , T-Lymphocytes/metabolism , Adoptive Transfer , Animals , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Cytokines/metabolism , Disease Models, Animal , Female , Humans , Inflammation Mediators/metabolism , Lymphocyte Activation/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Mice , Neoplasms/drug therapy , Neoplasms/etiology , Neoplasms/pathology , Signal Transduction , T-Lymphocytes/immunology , Xenograft Model Antitumor Assays
14.
Mol Cancer Ther ; 17(4): 776-785, 2018 04.
Article in English | MEDLINE | ID: mdl-29339550

ABSTRACT

Anti-HER2/CD3, a T-cell-dependent bispecific antibody (TDB) construct, induces T-cell-mediated cell death in cancer cells expressing HER2 by cross-linking tumor HER2 with CD3 on cytotoxic T cells, thereby creating a functional cytolytic synapse. TDB design is a very challenging process that requires consideration of multiple parameters. Although therapeutic antibody design strategy is commonly driven by striving for the highest attainable antigen-binding affinity, little is known about how the affinity of each TDB arm can affect the targeting ability of the other arm and the consequent distribution and efficacy. To our knowledge, no distribution studies have been published using preclinical models wherein the T-cell-targeting arm of the TDB is actively bound to T cells. We used a combined approach involving radiochemistry, invasive biodistribution, and noninvasive single-photon emission tomographic (SPECT) imaging to measure TDB distribution and catabolism in transgenic mice with human CD3ε expression on T cells. Using CD3 affinity variants, we assessed the impact of CD3 affinity on short-term pharmacokinetics, tissue distribution, and cellular uptake. Our experimental approach determined the relative effects of (i) CD3 targeting to normal tissues, (ii) HER2 targeting to HER2-expressing tumors, and (iii) relative HER2/CD3 affinity, all as critical drivers for TDB distribution. We observed a strong correlation between CD3 affinity and distribution to T-cell-rich tissues, with higher CD3 affinity reducing systemic exposure and shifting TDB distribution away from tumor to T-cell-containing tissues. These observations have important implications for clinical translation of bispecific antibodies for cancer immunotherapy. Mol Cancer Ther; 17(4); 776-85. ©2018 AACR.


Subject(s)
Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/pharmacokinetics , CD3 Complex/immunology , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Receptor, ErbB-2/immunology , T-Lymphocytes, Cytotoxic/immunology , Animals , Antibody Affinity , Colonic Neoplasms/pathology , Disease Models, Animal , Female , Humans , Immunotherapy , Mice , Mice, Nude , Mice, Transgenic , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/pathology , Tissue Distribution , Tumor Cells, Cultured
15.
Sci Transl Med ; 10(463)2018 10 17.
Article in English | MEDLINE | ID: mdl-30333240

ABSTRACT

A primary barrier to the success of T cell-recruiting bispecific antibodies in the treatment of solid tumors is the lack of tumor-specific targets, resulting in on-target off-tumor adverse effects from T cell autoreactivity to target-expressing organs. To overcome this, we developed an anti-HER2/CD3 T cell-dependent bispecific (TDB) antibody that selectively targets HER2-overexpressing tumor cells with high potency, while sparing cells that express low amounts of HER2 found in normal human tissues. Selectivity is based on the avidity of two low-affinity anti-HER2 Fab arms to high target density on HER2-overexpressing cells. The increased selectivity to HER2-overexpressing cells is expected to mitigate the risk of adverse effects and increase the therapeutic index. Results included in this manuscript not only support the clinical development of anti-HER2/CD3 1Fab-immunoglobulin G TDB but also introduce a potentially widely applicable strategy for other T cell-directed therapies. The potential of this discovery has broad applications to further enable consideration of solid tumor targets that were previously limited by on-target, but off-tumor, autoimmunity.


Subject(s)
Antibody Affinity/immunology , CD3 Complex/immunology , Cytotoxicity, Immunologic , Receptor, ErbB-2/immunology , Antibodies, Bispecific/immunology , Cell Line, Tumor , Humans , Immunoglobulin Fab Fragments/metabolism , Immunoglobulin G/metabolism , Lymphocyte Activation/immunology , Protein Binding
16.
Clin Cancer Res ; 12(13): 4103-11, 2006 Jul 01.
Article in English | MEDLINE | ID: mdl-16818711

ABSTRACT

PURPOSE: The epidermal growth factor receptor (EGFR) inhibitor gefitinib (Iressa) has shown antitumor activity in clinical trials against cancers, such as non-small cell lung cancer and head and neck squamous cell carcinoma (HNSCC). Research on non-small cell lung cancer has elucidated factors that may predict response to gefitinib. Less is known about molecular markers that may predict response to gefitinib in HNSCC patients. EXPERIMENTAL DESIGN: We analyzed possible associations of responsiveness to gefitinib with molecular markers of the EGFR/ErbB receptor family signaling pathway using 10 established HNSCC lines in vitro. IC50 of gefitinib sensitivity was determined using clonogenic survival assays. ErbB signaling was assessed by Western and real-time reverse transcription-PCR analyses of EGFR, ErbB2, ErbB3, and ErbB4 expression levels as well as by phosphorylation analysis of pEGFR, pErbB2, pErbB3, pAkt, and pErk. EGFR sequences encoding kinase domain and EGFR gene copy numbers were determined by cDNA sequencing and real-time PCR, respectively. Finally, responsiveness to gefitinib was compared with responsiveness to the anti-EGFR antibody cetuximab (Erbitux). RESULTS: Expression levels of pErbB2 (P = 0.02) and total ErbB3 protein (P = 0.02) associated with resistance to gefitinib. Combining gefitinib with pertuzumab (Omnitarg), an antibody targeting ErbB2 heterodimerization, provided additional growth-inhibitory effect over gefitinib alone on relatively gefitinib-resistant HNSCC cell lines. The same markers did not predict resistance to cetuximab. In contrast, a similar trend suggesting association between EGFR gene copy number and drug sensitivity was observed for both gefitinib (P = 0.0498) and cetuximab (P = 0.053). No activating EGFR mutations were identified. CONCLUSIONS: EGFR amplification may predict sensitivity to gefitinib in HNSCC. However, other EGFR/ErbB receptor family members than EGFR may contribute to resistance to gefitinib. ErbB2 and ErbB3 may have potential as predictive markers and as therapeutic targets for combination therapy in treatment of HNSCC with gefitinib.


Subject(s)
Carcinoma, Squamous Cell/genetics , ErbB Receptors/antagonists & inhibitors , Gene Amplification , Head and Neck Neoplasms/genetics , Quinazolines/pharmacology , Receptor, ErbB-2/metabolism , Receptor, ErbB-3/metabolism , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal, Humanized , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinoma, Squamous Cell/drug therapy , Cell Line, Tumor , Cetuximab , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm/genetics , ErbB Receptors/genetics , Gefitinib , Gene Expression Profiling , Head and Neck Neoplasms/drug therapy , Humans , Male , Quinazolines/therapeutic use , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-3/antagonists & inhibitors , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity , Sequence Analysis, DNA , Signal Transduction , Structure-Activity Relationship , Time Factors
17.
Cancer Res ; 65(4): 1384-93, 2005 Feb 15.
Article in English | MEDLINE | ID: mdl-15735025

ABSTRACT

ErbB1 and ErbB2 receptors are well-characterized targets for anticancer drugs, but the clinical relevance of the related ErbB4 receptor is unknown. Here, we have assessed the clinical significance of the proteolytically cleavable ErbB4 isoforms in breast cancer patients and investigated their functions in vitro. The expression of transcripts encoding the cleavable ErbB4 isoforms associated with estrogen receptor-alpha (ER) expression (P < 0.001) and a high histologic grade of differentiation (P

Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , ErbB Receptors/biosynthesis , Receptors, Estrogen/physiology , Alternative Splicing , Breast Neoplasms/genetics , Cell Growth Processes/physiology , Cell Line, Tumor , Cell Nucleus/metabolism , ErbB Receptors/genetics , Estrogens/metabolism , Female , Gene Amplification , Humans , Protein Isoforms , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Receptor, ErbB-2/biosynthesis , Receptor, ErbB-2/genetics , Receptor, ErbB-4 , Reverse Transcriptase Polymerase Chain Reaction
18.
MAbs ; 9(3): 430-437, 2017 04.
Article in English | MEDLINE | ID: mdl-28125314

ABSTRACT

Bispecific antibodies are a growing class of therapeutic molecules. Many of the current bispecific formats require DNA engineering to convert the parental monoclonal antibodies into the final bispecific molecules. We describe here a method to generate bispecific molecules from hybridoma IgGs in 3-4 d using chemical conjugation of antigen-binding fragments (Fabs) (bisFabs). Proteolytic digestion conditions for each IgG isotype were analyzed to optimize the yield and quality of the final conjugates. The resulting bisFabs showed no significant amounts of homodimers or aggregates. The predictive value of murine bisFabs was tested by comparing the T-cell redirected cytotoxic activity of a panel of antibodies in either the bisFab or full-length IgG formats. A variety of antigens with different structures and expression levels was used to extend the comparison to a wide range of binding geometries and antigen densities. The activity observed for different murine bisFabs correlated with those observed for the full-length IgG format across multiple different antigen targets, supporting the use of bisFabs as a screening tool. Our method may also be used for the screening of bispecific antibodies with other mechanisms of action, allowing for a more rapid selection of lead therapeutic candidates.


Subject(s)
Antibodies, Bispecific/biosynthesis , Immunoglobulin Fab Fragments/biosynthesis , Immunoglobulin G/isolation & purification , Protein Engineering/methods , Animals , Antibodies, Bispecific/immunology , Antibodies, Bispecific/isolation & purification , Humans , Hybridomas , Immunoglobulin Fab Fragments/isolation & purification , Immunoglobulin G/immunology , Mice
19.
MAbs ; 9(2): 213-230, 2017.
Article in English | MEDLINE | ID: mdl-27929752

ABSTRACT

Bispecific IgG production in single host cells has been a much sought-after goal to support the clinical development of these complex molecules. Current routes to single cell production of bispecific IgG include engineering heavy chains for heterodimerization and redesign of Fab arms for selective pairing of cognate heavy and light chains. Here, we describe novel designs to facilitate selective Fab arm assembly in conjunction with previously described knobs-into-holes mutations for preferential heavy chain heterodimerization. The top Fab designs for selective pairing, namely variants v10 and v11, support near quantitative assembly of bispecific IgG in single cells for multiple different antibody pairs as judged by high-resolution mass spectrometry. Single-cell and in vitro-assembled bispecific IgG have comparable physical, in vitro biological and in vivo pharmacokinetics properties. Efficient single-cell production of bispecific IgG was demonstrated for human IgG1, IgG2 and IgG4 thereby allowing the heavy chain isotype to be tailored for specific therapeutic applications. Additionally, a reverse chimeric bispecific IgG2a with humanized variable domains and mouse constant domains was generated for preclinical proof-of-concept studies in mice. Efficient production of a bispecific IgG in stably transfected mammalian (CHO) cells was shown. Individual clones with stable titer and bispecific IgG composition for >120 days were readily identified. Such long-term cell line stability is needed for commercial manufacture of bispecific IgG. The single-cell bispecific IgG designs developed here may be broadly applicable to biotechnology research, including screening bispecific IgG panels, and to support clinical development.


Subject(s)
Antibodies, Bispecific/biosynthesis , Protein Engineering/methods , Animals , Humans , Immunoglobulin G
20.
Cancer Cell ; 31(3): 383-395, 2017 03 13.
Article in English | MEDLINE | ID: mdl-28262555

ABSTRACT

The anti-FcRH5/CD3 T cell-dependent bispecific antibody (TDB) targets the B cell lineage marker FcRH5 expressed in multiple myeloma (MM) tumor cells. We demonstrate that TDBs trigger T cell receptor activation by inducing target clustering and exclusion of CD45 phosphatase from the synapse. The dimensions of the target molecule play a key role in the efficiency of the synapse formation. The anti-FcRH5/CD3 TDB kills human plasma cells and patient-derived myeloma cells at picomolar concentrations and results in complete depletion of B cells and bone marrow plasma cells in cynomolgus monkeys. These data demonstrate the potential for the anti-FcRH5/CD3 TDB, alone or in combination with inhibition of PD-1/PD-L1 signaling, in the treatment of MM and other B cell malignancies.


Subject(s)
Antibodies, Bispecific/therapeutic use , CD3 Complex/immunology , Epitopes , Immunological Synapses/physiology , Multiple Myeloma/drug therapy , Receptors, Fc/immunology , T-Lymphocytes/immunology , Animals , Cytokines/metabolism , Humans , Leukocyte Common Antigens/physiology , Lymphocyte Activation , Macaca fascicularis , Mice , Multiple Myeloma/immunology , Multiple Myeloma/pathology , Programmed Cell Death 1 Receptor/physiology , Receptors, Antigen, T-Cell/physiology , Receptors, Fc/analysis
SELECTION OF CITATIONS
SEARCH DETAIL