Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Appl Lab Med ; 8(1): 53-66, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36610415

ABSTRACT

BACKGROUND: Ultra-performance liquid chromatography (UPLC)-MSE/quadrupole time-of-flight (QTOF) high-resolution mass spectrometry employs untargeted, data-independent acquisition in a dual mode that simultaneously collects precursor ions and product ions at low and ramped collision energies, respectively. However, algorithmic analysis of large-scale multivariate data of comprehensive drug screening as well as the positivity criteria of drug identification have not been systematically investigated. It is also unclear whether ion ratio (IR), the intensity ratio of a defined product ion divided by the precursor ion, is a stable parameter that can be incorporated into the MSE/QTOF data analysis algorithm. METHODS: IR of 91 drugs were experimentally determined and variation of IR was investigated across 5 concentrations measured on 3 different days. A data-driven machine learning approach was employed to develop multivariate linear regression (MLR) models incorporating mass error, retention time, number of detected fragment ions and IR, accuracy of isotope abundance, and peak response using drug-supplemented urine samples. Performance of the models was evaluated in an independent data set of unknown clinical urine samples in comparison with the results of manual analysis. RESULTS: IR of most compounds acquired by MSE/QTOF were low and concentration-dependent (i.e., IR increased at higher concentrations). We developed an MLR model with composite score outputs incorporating 7 parameters to predict positive drug identification. The model achieved a mean accuracy of 89.38% in the validation set and 87.92% agreement in the test set. CONCLUSIONS: The MLR model incorporating all contributing parameters can serve as a decision-support tool to facilitate objective drug identification using UPLC-MSE/QTOF.


Subject(s)
Drug Evaluation, Preclinical , Humans , Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods , Chromatography, Liquid/methods , Ions
2.
Nat Commun ; 13(1): 1891, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35393402

ABSTRACT

The SARS-CoV-2 3CL protease is a critical drug target for small molecule COVID-19 therapy, given its likely druggability and essentiality in the viral maturation and replication cycle. Based on the conservation of 3CL protease substrate binding pockets across coronaviruses and using screening, we identified four structurally distinct lead compounds that inhibit SARS-CoV-2 3CL protease. After evaluation of their binding specificity, cellular antiviral potency, metabolic stability, and water solubility, we prioritized the GC376 scaffold as being optimal for optimization. We identified multiple drug-like compounds with <10 nM potency for inhibiting SARS-CoV-2 3CL and the ability to block SARS-CoV-2 replication in human cells, obtained co-crystal structures of the 3CL protease in complex with these compounds, and determined that they have pan-coronavirus activity. We selected one compound, termed coronastat, as an optimized lead and characterized it in pharmacokinetic and safety studies in vivo. Coronastat represents a new candidate for a small molecule protease inhibitor for the treatment of SARS-CoV-2 infection for eliminating pandemics involving coronaviruses.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Coronavirus 3C Proteases , Protease Inhibitors , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Coronavirus 3C Proteases/antagonists & inhibitors , Humans , Molecular Docking Simulation , Pandemics , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL