Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Language
Publication year range
1.
Ecol Lett ; 27(6): e14463, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38924275

ABSTRACT

Understanding the interactions among anthropogenic stressors is critical for effective conservation and management of ecosystems. Freshwater scientists have invested considerable resources in conducting factorial experiments to disentangle stressor interactions by testing their individual and combined effects. However, the diversity of stressors and systems studied has hindered previous syntheses of this body of research. To overcome this challenge, we used a novel machine learning framework to identify relevant studies from over 235,000 publications. Our synthesis resulted in a new dataset of 2396 multiple-stressor experiments in freshwater systems. By summarizing the methods used in these studies, quantifying trends in the popularity of the investigated stressors, and performing co-occurrence analysis, we produce the most comprehensive overview of this diverse field of research to date. We provide both a taxonomy grouping the 909 investigated stressors into 31 classes and an open-source and interactive version of the dataset (https://jamesaorr.shinyapps.io/freshwater-multiple-stressors/). Inspired by our results, we provide a framework to help clarify whether statistical interactions detected by factorial experiments align with stressor interactions of interest, and we outline general guidelines for the design of multiple-stressor experiments relevant to any system. We conclude by highlighting the research directions required to better understand freshwater ecosystems facing multiple stressors.


Subject(s)
Ecosystem , Fresh Water , Human Activities , Stress, Physiological
2.
Glob Chang Biol ; 29(1): 21-40, 2023 01.
Article in English | MEDLINE | ID: mdl-36131639

ABSTRACT

The increasing production, use and emission of synthetic chemicals into the environment represents a major driver of global change. The large number of synthetic chemicals, limited knowledge on exposure patterns and effects in organisms and their interaction with other global change drivers hamper the prediction of effects in ecosystems. However, recent advances in biomolecular and computational methods are promising to improve our capacity for prediction. We delineate three idealised perspectives for the prediction of chemical effects: the suborganismal, organismal and ecological perspective, which are currently largely separated. Each of the outlined perspectives includes essential and complementary theories and tools for prediction but captures only part of the phenomenon of chemical effects. Links between the perspectives may foster predictive modelling of chemical effects in ecosystems and extrapolation between species. A major challenge for the linkage is the lack of data sets simultaneously covering different levels of biological organisation (here referred to as biological levels) as well as varying temporal and spatial scales. Synthesising the three perspectives, some central aspects and associated types of data seem particularly necessary to improve prediction. First, suborganism- and organism-level responses to chemicals need to be recorded and tested for relationships with chemical groups and organism traits. Second, metrics that are measurable at many biological levels, such as energy, need to be scrutinised for their potential to integrate across levels. Third, experimental data on the simultaneous response over multiple biological levels and spatiotemporal scales are required. These could be collected in nested and interconnected micro- and mesocosm experiments. Lastly, prioritisation of processes involved in the prediction framework needs to find a balance between simplification and capturing the essential complexity of a system. For example, in some cases, eco-evolutionary dynamics and interactions may need stronger consideration. Prediction needs to move from a static to a real-world eco-evolutionary view.


Subject(s)
Ecosystem
3.
Glob Chang Biol ; 27(21): 5469-5490, 2021 11.
Article in English | MEDLINE | ID: mdl-34418243

ABSTRACT

Sustainable management of freshwater and pesticide use is essential for mitigating the impacts of intensive agriculture in the context of a changing climate. To better understand how climate change will affect the vulnerability of freshwater ecosystems to chemical pollutants, more empirical evidence is needed on the combined effects of climatic and chemical stressors in environmentally realistic conditions. Our experiment provides the first empirical evaluation of stream macroinvertebrate community dynamics in response to one of the world's most widely used insecticides, imidacloprid, and increased water temperature. In a 7-week streamside experiment using 128 flow-through circular mesocosms, we investigated the effects of pulsed imidacloprid exposure (four environmentally relevant levels between 0 and 4.6 µg/L) and raised water temperature (ambient, 3°C above) on invertebrate communities representative of fast- and slow-flowing microhabitats. Invertebrate drift and insect emergence were monitored during three pesticide pulses (10 days apart), and benthic invertebrate communities were sampled after 24 days of heating and pesticide manipulations. All three manipulated factors strongly affected drift community composition. The first imidacloprid pulse and increased temperature had a greater impact on communities in fast-flowing mesocosms, which contained more pollution-sensitive EPT taxa (mayflies, stoneflies and caddisflies). Heating and imidacloprid caused increased emigration by drift, weak reductions in emergence, and negatively affected the benthic community. The combined effect of stressor manipulations and a 10-day natural heatwave drastically reduced relative abundances of EPT and insects overall and caused a shift to oligochaete-, crustacean- and gastropod-dominated communities. Contrary to our hypothesis, the very high yet realistic water temperatures reached in our experiment meant the negative effects of imidacloprid were clearest at ambient temperatures and fast flow. These findings demonstrate the potential combined impacts of imidacloprid contamination and heatwaves on freshwater invertebrate communities under future climate scenarios and highlight the need for more countries to take regulatory action to control neonicotinoid use.


Subject(s)
Ephemeroptera , Insecticides , Water Pollutants, Chemical , Animals , Ecosystem , Insecta , Insecticides/toxicity , Invertebrates , Neonicotinoids , Nitro Compounds , Rivers , Water Pollutants, Chemical/toxicity
4.
Ecol Appl ; 31(1): e02212, 2021 01.
Article in English | MEDLINE | ID: mdl-32754996

ABSTRACT

Freshwater ecosystems face many simultaneous pressures due to human activities. Consequently, there has been a rapid loss of freshwater biodiversity and an increase in biomonitoring programs. Our study assessed the potential of benthic stream bacterial communities as indicators of multiple-stressor impacts associated with urbanization and agricultural intensification. We conducted a fully crossed four-factor experiment in 64 flow-through mesocosms fed by a pristine montane stream (21 d of colonization, 21 d of manipulations) and investigated the effects of nutrient enrichment, flow-velocity reduction and added fine sediment after 2 and 3 weeks of stressor exposure. We used high-throughput sequencing and metabarcoding techniques (16S rRNA genes), as well as curated biological databases (METAGENassit, MetaCyc), to identify changes in bacterial relative abundances and predicted metabolic functional profile. Sediment addition and flow-velocity reduction were the most pervasive stressors. They both increased α-diversity and had strong taxon-specific effects on community composition and predicted functions. Sediment and flow velocity also interacted frequently, with 88% of all bacterial response variables showing two-way interactions and 33% showing three-way interactions including nutrient enrichment. Changes in relative abundances of common taxa were associated with shifts in dominant predicted functions, which can be extrapolated to underlaying stream-wide mechanisms such as carbon use and bacterial energy production pathways. Observed changes were largely stable over time and occurred after just 2 weeks of exposure, demonstrating that bacterial communities can be well-suited for early detection of multiple stressors. Overall, added sediment and reduced flow velocity impacted both bacterial community structure and predicted function more than nutrient enrichment. In future research and stream management, a holistic approach to studying multiple-stressor impacts should include multiple trophic levels with their functional responses, to enhance our mechanistic understanding of complex stressor effects and promote establishment of more efficient biomonitoring programs.


Subject(s)
Ecosystem , Rivers , Bacteria/genetics , Geologic Sediments , Humans , Nutrients , RNA, Ribosomal, 16S
5.
Sci Total Environ ; 912: 168836, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38016568

ABSTRACT

River ecosystems are heavily impacted by multiple stressors, where effects can cascade downstream of point sources. However, a spatial approach to assess the effects of multiple stressors is missing. We assessed the local and downstream effects on litter decomposition, and associated invertebrate communities of two stressors: flow reduction and artificial light at night (ALAN). We used an 18-flow-through mesocosm system consisting of two tributaries, where we applied the stressors, merging in a downstream section. We assessed the changes in decomposition rate and invertebrate community structure in leaf bags. We found no effect of ALAN or its interaction with flow reduction on the litter decomposition or the invertebrate community in the tributaries. Flow reduction alone led to a 14.8 % reduction in decomposition rate in the tributaries. We recorded no effect of flow reduction on the macroinvertebrates community composition in the litter bags. We also observed no effects of the spatial arrangement of the stressors on the litter decomposition and macroinvertebrate community structure downstream. Overall, our results suggest the impact of stressors on litter decomposition and macroinvertebrate communities remained local in our experiment. Our work thus calls for further studies to identify the mechanisms and the conditions under which spatial effects dominate over local processes.


Subject(s)
Ecosystem , Light Pollution , Animals , Invertebrates , Rivers/chemistry , Plant Leaves/chemistry
6.
Ecol Evol ; 11(1): 133-152, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33437419

ABSTRACT

Ensuring the provision of essential ecosystem services in systems affected by multiple stressors is a key challenge for theoretical and applied ecology. Trait-based approaches have increasingly been used in multiple-stressor research in freshwaters because they potentially provide a powerful method to explore the mechanisms underlying changes in populations and communities. Individual benthic macroinvertebrate traits associated with mobility, life history, morphology, and feeding habits are often used to determine how environmental drivers structure stream communities. However, to date multiple-stressor research on stream invertebrates has focused more on taxonomic than on functional metrics. We conducted a fully crossed, 4-factor experiment in 64 stream mesocosms fed by a pristine montane stream (21 days of colonization, 21 days of manipulations) and investigated the effects of nutrient enrichment, flow velocity reduction and sedimentation on invertebrate community, taxon, functional diversity and trait variables after 2 and 3 weeks of stressor exposure. 89% of the community structure metrics, 59% of the common taxa, 50% of functional diversity metrics, and 79% of functional traits responded to at least one stressor each. Deposited fine sediment and flow velocity reduction had the strongest impacts, affecting invertebrate abundances and diversity, and their effects translated into a reduction of functional redundancy. Stressor effects often varied between sampling occasions, further complicating the prediction of multiple-stressor effects on communities. Overall, our study suggests that future research combining community, trait, and functional diversity assessments can improve our understanding of multiple-stressor effects and their interactions in running waters.

7.
Sci Total Environ ; 716: 135053, 2020 May 10.
Article in English | MEDLINE | ID: mdl-31859062

ABSTRACT

Despite the progress made in environmental microbiology techniques and knowledge, the succession and functional changes of the microbial community under multiple stressors are still poorly understood. This is a substantial knowledge gap as microbial communities regulate the biogeochemistry of stream ecosystems. Our study assessed the structural and temporal changes in stream fungal and bacterial communities associated with decomposing leaf litter under a multiple-stressor scenario. We conducted a fully crossed 4-factor experiment in 64 flow-through mesocosms fed by a pristine montane stream (21 days of colonisation, 21 days of manipulations) and investigated the effects of nutrient enrichment, flow velocity reduction and sedimentation after 2 and 3 weeks of stressor exposure. We used high-throughput sequencing and metabarcoding techniques (16S and 18S rRNA genes) to identify changes in microbial community composition. Our results indicate that (1) shifts in relative abundances of the pre-existing terrestrial microbial community, rather than changes in community identity, drove the observed responses to stressors; (2) changes in relative abundances within the microbial community paralleled decomposition rate patterns with time; (3) both fungal and bacterial communities had a certain resistance to stressors, as indicated by relatively minor changes in alpha diversity or multivariate community structure; (4) overall, stressor interactions were more common than stressor main effects when affecting microbial diversity metrics or abundant individual genera; and (5) stressor effects on microbes often changed from 2 weeks to 3 weeks of stressor exposure, with several response patterns being reversed. Our study suggests that future research should focus more on understanding the temporal dynamics of fungal and bacterial communities and how they relate to ecosystem processes to advance our understanding of the mechanisms associated with multiple-stressor interactions.


Subject(s)
Microbiota , Rivers , Bacteria , Ecosystem , Fungi , Plant Leaves
SELECTION OF CITATIONS
SEARCH DETAIL