Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Biometals ; 33(6): 415-433, 2020 12.
Article in English | MEDLINE | ID: mdl-33026607

ABSTRACT

Bacteria often release diverse iron-chelating compounds called siderophores to scavenge iron from the environment for many essential biological processes. In peatlands, where the biogeochemical cycle of iron and dissolved organic matter (DOM) are coupled, bacterial iron acquisition can be challenging even at high total iron concentrations. We found that the bacterium Pseudomonas sp. FEN, isolated from an Fe-rich peatland in the Northern Bavarian Fichtelgebirge (Germany), released an unprecedented siderophore for its genus. High-resolution mass spectrometry (HR-MS) using metal isotope-coded profiling (MICP), MS/MS experiments, and nuclear magnetic resonance spectroscopy (NMR) identified the amino polycarboxylic acid rhizobactin and a novel derivative at even higher amounts, which was named rhizobactin B. Interestingly, pyoverdine-like siderophores, typical for this genus, were not detected. With peat water extract (PWE), studies revealed that rhizobactin B could acquire Fe complexed by DOM, potentially through a TonB-dependent transporter, implying a higher Fe binding constant of rhizobactin B than DOM. The further uptake of Fe-rhizobactin B by Pseudomonas sp. FEN suggested its role as a siderophore. Rhizobactin B can complex several other metals, including Al, Cu, Mo, and Zn. The study demonstrates that the utilization of rhizobactin B can increase the Fe availability for Pseudomonas sp. FEN through ligand exchange with Fe-DOM, which has implications for the biogeochemical cycling of Fe in this peatland.


Subject(s)
Iron/isolation & purification , Pseudomonas/chemistry , Siderophores/isolation & purification , Iron/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Siderophores/chemistry , Tandem Mass Spectrometry
2.
Waste Manag ; 116: 31-39, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32784119

ABSTRACT

This paper presents an inventory of sewage sludge ashes (SSA) generated in the mono-incineration plants for municipal sewage sludge in Poland. This research focused on the detailed study of mass flows, chemical composition, and phosphorus recovery potential. There are currently 11 sludge mono-incineration plants operated with a total capacity of 160,300 Mg dry weight (d.w.) of sludge annually. Recently, a significant increase in the amount of SSA generated in these plants has been observed, reaching 26,756 Mg in 2018. Chemical composition of SSA showed significant amounts of the main nutrients: calcium (~14%), phosphorus (~13%), magnesium (~3%), and potassium (~1%). Additional main elements were iron (~14.5%), silicon (~13%), and aluminium (~6%). The main trace elements in the SSA were zinc (~3750 mg/kg) and copper (~899 mg/kg). Pollutants, according to fertilizer regulations of different countries, present in Polish SSA were chromium (~703 mg/kg), nickel (~260 mg/kg), lead (~94 mg/kg), and cadmium (~9 mg/kg). The radionuclides, uranium, and thorium often present in higher amounts in commercial phosphate rock-based fertilizers, were only detected in SSA at low levels of 4-9 mg/kg and 2-3 mg/kg, respectively. Theoretical phosphorus recovery potential from the SSA (from plants in Cracow, Lodz, Gdansk, Gdynia, Szczecin, and Kielce) was estimated at 1613.8 Mg, of which 33.9% is bioavailable. Currently, in Poland, the recommended approach is the production of fertilizers as a result of the extraction of phosphorus from the SSA with its use in the production of secondary mineral fertilizers. Further research in this area is required considering Polish conditions and legislation.


Subject(s)
Phosphorus/analysis , Sewage , Fertilizers , Incineration , Poland
3.
ISME J ; 14(11): 2675-2690, 2020 11.
Article in English | MEDLINE | ID: mdl-32690937

ABSTRACT

Coexistence of microaerophilic Fe(II)-oxidizers and anaerobic Fe(III)-reducers in environments with fluctuating redox conditions is a prime example of mutualism, in which both partners benefit from the sustained Fe-pool. Consequently, the Fe-cycling machineries (i.e., metal-reducing or -oxidizing pathways) should be most affected during co-cultivation. However, contrasting growth requirements impeded systematic elucidation of their interactions. To disentangle underlying interaction mechanisms, we established a suboxic co-culture system of Sideroxydans sp. CL21 and Shewanella oneidensis. We showed that addition of the partner's cell-free supernatant enhanced both growth and Fe(II)-oxidizing or Fe(III)-reducing activity of each partner. Metabolites of the exometabolome of Sideroxydans sp. CL21 are generally upregulated if stimulated with the partner´s spent medium, while S. oneidensis exhibits a mixed metabolic response in accordance with a balanced response to the partner. Surprisingly, RNA-seq analysis revealed genes involved in Fe-cycling were not differentially expressed during co-cultivation. Instead, the most differentially upregulated genes included those encoding for biopolymer production, lipoprotein transport, putrescine biosynthesis, and amino acid degradation suggesting a regulated inter-species biofilm formation. Furthermore, the upregulation of hydrogenases in Sideroxydans sp. CL21 points to competition for H2 as electron donor. Our findings reveal that a complex metabolic and transcriptomic response, but not accelerated formation of Fe-end products, drive interactions of Fe-cycling microorganisms.


Subject(s)
Gallionellaceae , Shewanella , Ferrous Compounds , Iron , Oxidation-Reduction , Shewanella/genetics
4.
Sci Total Environ ; 646: 972-988, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30235650

ABSTRACT

The accessibility of iron (Fe) species for microbial processes is dependent on solubility and redox state, which are influenced by complexation with dissolved organic matter (DOM) and water-extractable organic matter (WEOM). We evaluated the complexation of these pools of organic matter to soluble Fe(II) and Fe(III) in the slightly acidic Schlöppnerbrunnen fen and subsequent effects on Fe(II) oxidation and Fe(III) reduction. We found the majority of soluble Fe(II) and Fe(III) is complexed to DOM. High-resolution mass spectrometry identified potential complexing partners in peat-derived water extracts (PWE), including compound classes known to function as ligands or electron shuttles, like tannins and sulfur-containing compounds. Furthermore, we observed clear differences in the stability of Fe(II)- and Fe(III)-DOM, with more labile complexes dominating the upper, oxic layers (0-10 cm) and more stable complexes in lower, anoxic layers (15-30 cm). Metal isotope-coded profiling identified a single potential chemical formula (C42H57O13N9Fe2) associated with a stable Fe-DOM complex. Fe(III) reduction and Fe(II) oxidation incubations with Geobacter sulfurreducens PCA and Shewanella oneidensis MR-1 or Sideroxydans CL-21, respectively, were used to determine the influence of Fe-DOM complexes on Fe cycling rates. The addition of PWE led to a 2.3-fold increase in Fe(III) reduction rates and 0.5-fold increase in Fe(II) oxidation rates, indicating Fe-DOM complexes greatly influence microbial Fe cycling by potentially serving as electron shuttles. Molecular analyses revealed Fe(III)-reducing and Fe(II)-oxidizing bacteria co-exist across all depths, in approximately equal proportions (representing 0.1-1.0% of the total microbial community), despite observed changes in redox potential. The activity of Fe(III)-reducing bacteria might explain the presence of the detected Fe(II) stabilized via complexation with DOM even under oxic conditions in upper peat layers. Therefore, these Fe(II)-DOM complexes can be recycled by microaerophilic Fe(II)-oxidizers. Taken together, these results suggest Fe-DOM complexation in the fen accelerates microbial-mediated redox processes across the entire redox continuum.


Subject(s)
Biodegradation, Environmental , Ecological and Environmental Phenomena , Iron/chemistry , Metals , Oxidation-Reduction , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL