Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(38): e2308187120, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37695891

ABSTRACT

The human endogenous retrovirus type W (HERV-W) has been identified and repeatedly confirmed as human-specific pathogenic entity affecting many cell types in multiple sclerosis (MS). Our recent contributions revealed the encoded envelope (ENV) protein to disturb myelin repair by interfering with oligodendroglial precursor differentiation and by polarizing microglial cells toward an axon-damage phenotype. Indirect proof of ENV's antiregenerative and degenerative activities has been gathered recently in clinical trials using a neutralizing anti-ENV therapeutic antibody. Yet direct proof of its mode of action can only be presented here based on transgenic ENV expression in mice. Upon demyelination, we observed myelin repair deficits, neurotoxic microglia and astroglia, and increased axon degeneration. Experimental autoimmune encephalomyelitis activity progressed faster in mutant mice equally accompanied by activated glial cells. This study therefore provides direct evidence on HERV-W ENV's contribution to the overall negative impact of this activated viral entity in MS.


Subject(s)
Endogenous Retroviruses , Multiple Sclerosis , Humans , Animals , Mice , Endogenous Retroviruses/genetics , Neuroglia , Animals, Genetically Modified , Myelin Sheath , Multiple Sclerosis/genetics
2.
J Allergy Clin Immunol ; 153(1): 297-308.e12, 2024 01.
Article in English | MEDLINE | ID: mdl-37979702

ABSTRACT

BACKGROUND: Elevated TCRαß+CD4-CD8- double-negative T cells (DNT) and serum biomarkers help identify FAS mutant patients with autoimmune lymphoproliferative syndrome (ALPS). However, in some patients with clinical features and biomarkers consistent with ALPS, germline or somatic FAS mutations cannot be identified on standard exon sequencing (ALPS-undetermined: ALPS-U). OBJECTIVE: We sought to explore whether complex genetic alterations in the FAS gene escaping standard sequencing or mutations in other FAS pathway-related genes could explain these cases. METHODS: Genetic analysis included whole FAS gene sequencing, copy number variation analysis, and sequencing of FAS cDNA and other FAS pathway-related genes. It was guided by FAS expression analysis on CD57+DNT, which can predict somatic loss of heterozygosity (sLOH). RESULTS: Nine of 16 patients with ALPS-U lacked FAS expression on CD57+DNT predicting heterozygous "loss-of-expression" FAS mutations plus acquired somatic second hits in the FAS gene, enriched in DNT. Indeed, 7 of 9 analyzed patients carried deep intronic mutations or large deletions in the FAS gene combined with sLOH detectable in DNT; 1 patient showed a FAS exon duplication. Three patients had reduced FAS expression, and 2 of them harbored mutations in the FAS promoter, which reduced FAS expression in reporter assays. Three of the 4 ALPS-U patients with normal FAS expression carried heterozygous FADD mutations with sLOH. CONCLUSION: A combination of serum biomarkers and DNT phenotyping is an accurate means to identify patients with ALPS who are missed by routine exome sequencing.


Subject(s)
Autoimmune Lymphoproliferative Syndrome , fas Receptor , Humans , Autoimmune Lymphoproliferative Syndrome/diagnosis , Autoimmune Lymphoproliferative Syndrome/genetics , Biomarkers , DNA Copy Number Variations , Exome Sequencing , fas Receptor/genetics , Fas-Associated Death Domain Protein/genetics , Mutation
3.
Glia ; 72(9): 1693-1706, 2024 09.
Article in English | MEDLINE | ID: mdl-38852127

ABSTRACT

Astrocytes that reside in superficial (SL) and deep cortical layers have distinct molecular profiles and morphologies, which may underlie specific functions. Here, we demonstrate that the production of SL and deep layer (DL) astrocyte populations from neural progenitor cells in the mouse is temporally regulated. Lineage tracking following in utero and postnatal electroporation with PiggyBac (PB) EGFP and birth dating with EdU and FlashTag, showed that apical progenitors produce astrocytes during late embryogenesis (E16.5) that are biased to the SL, while postnatally labeled (P0) astrocytes are biased to the DL. In contrast, astrocytes born during the predominantly neurogenic window (E14.5) showed a random distribution in the SL and DL. Of interest, E13.5 astrocytes birth dated at E13.5 with EdU showed a lower layer bias, while FT labeling of apical progenitors showed no bias. Finally, examination of the morphologies of "biased" E16.5- and P0-labeled astrocytes demonstrated that E16.5-labeled astrocytes exhibit different morphologies in different layers, while P0-labeled astrocytes do not. Differences based on time of birth are also observed in the molecular profiles of E16.5 versus P0-labeled astrocytes. Altogether, these results suggest that the morphological, molecular, and positional diversity of cortical astrocytes is related to their time of birth from ventricular/subventricular zone progenitors.


Subject(s)
Astrocytes , Cerebral Cortex , Neural Stem Cells , Animals , Astrocytes/metabolism , Astrocytes/cytology , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Mice , Mice, Transgenic , Female , Animals, Newborn , Gene Expression Regulation, Developmental , Transcriptome , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Cerebral Ventricles/cytology , Mice, Inbred C57BL
4.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Article in English | MEDLINE | ID: mdl-34479997

ABSTRACT

Neuroinflammation is a pathophysiological hallmark of multiple sclerosis and has a close mechanistic link to neurodegeneration. Although this link is potentially targetable, robust translatable models to reliably quantify and track neuroinflammation in both mice and humans are lacking. The choroid plexus (ChP) plays a pivotal role in regulating the trafficking of immune cells from the brain parenchyma into the cerebrospinal fluid (CSF) and has recently attracted attention as a key structure in the initiation of inflammatory brain responses. In a translational framework, we here address the integrity and multidimensional characteristics of the ChP under inflammatory conditions and question whether ChP volumes could act as an interspecies marker of neuroinflammation that closely interrelates with functional impairment. Therefore, we explore ChP characteristics in neuroinflammation in patients with multiple sclerosis and in two experimental mouse models, cuprizone diet-related demyelination and experimental autoimmune encephalomyelitis. We demonstrate that ChP enlargement-reconstructed from MRI-is highly associated with acute disease activity, both in the studied mouse models and in humans. A close dependency of ChP integrity and molecular signatures of neuroinflammation is shown in the performed transcriptomic analyses. Moreover, pharmacological modulation of the blood-CSF barrier with natalizumab prevents an increase of the ChP volume. ChP enlargement is strongly linked to emerging functional impairment as depicted in the mouse models and in multiple sclerosis patients. Our findings identify ChP characteristics as robust and translatable hallmarks of acute and ongoing neuroinflammatory activity in mice and humans that could serve as a promising interspecies marker for translational and reverse-translational approaches.


Subject(s)
Choroid Plexus/diagnostic imaging , Multiple Sclerosis/physiopathology , Neuroinflammatory Diseases/diagnostic imaging , Adult , Animals , Blood-Brain Barrier/physiology , Brain/physiology , Choroid Plexus/immunology , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/physiopathology , Female , Humans , Magnetic Resonance Imaging/methods , Male , Mice , Mice, Inbred C57BL , Multiple Sclerosis/diagnostic imaging , Proteomics/methods
5.
J Allergy Clin Immunol ; 151(5): 1391-1401.e7, 2023 05.
Article in English | MEDLINE | ID: mdl-36621650

ABSTRACT

BACKGROUND: Fas ligand (FasL) is expressed by activated T cells and induces death in target cells upon binding to Fas. Loss-of-function FAS or FASLG mutations cause autoimmune-lymphoproliferative syndrome (ALPS) characterized by expanded double-negative T cells (DNT) and elevated serum biomarkers. While most ALPS patients carry heterozygous FAS mutations, FASLG mutations are rare and usually biallelic. Only 2 heterozygous variants were reported, associated with an atypical clinical phenotype. OBJECTIVE: We revisited the significance of heterozygous FASLG mutations as a cause of ALPS. METHODS: Clinical features and biomarkers were analyzed in 24 individuals with homozygous or heterozygous FASLG variants predicted to be deleterious. Cytotoxicity assays were performed with patient T cells and biochemical assays with recombinant FasL. RESULTS: Homozygous FASLG variants abrogated cytotoxicity and resulted in early-onset severe ALPS with elevated DNT, raised vitamin B12, and usually no soluble FasL. In contrast, heterozygous variants affected FasL function by reducing expression, impairing trimerization, or preventing Fas binding. However, they were not associated with elevated DNT and vitamin B12, and they did not affect FasL-mediated cytotoxicity. The dominant-negative effects of previously published variants could not be confirmed. Even Y166C, causing loss of Fas binding with a dominant-negative effect in biochemical assays, did not impair cellular cytotoxicity or cause vitamin B12 and DNT elevation. CONCLUSION: Heterozygous loss-of-function mutations are better tolerated for FASLG than for FAS, which may explain the low frequency of ALPS-FASLG.


Subject(s)
Autoimmune Lymphoproliferative Syndrome , Humans , Autoimmune Lymphoproliferative Syndrome/genetics , Fas Ligand Protein/genetics , Mutation , Biomarkers , Vitamins , fas Receptor/genetics , Apoptosis/genetics
6.
J Neuroinflammation ; 20(1): 7, 2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36611185

ABSTRACT

BACKGROUND: Promotion of myelin repair in the context of demyelinating diseases such as multiple sclerosis (MS) still represents a clinical unmet need, given that this disease is not only characterized by autoimmune activities but also by impaired regeneration processes. Hence, this relates to replacement of lost oligodendrocytes and myelin sheaths-the primary targets of autoimmune attacks. Endogenous remyelination is mainly mediated via activation and differentiation of resident oligodendroglial precursor cells (OPCs), whereas its efficiency remains limited and declines with disease progression and aging. Teriflunomide has been approved as a first-line treatment for relapsing remitting MS. Beyond its role in acting via inhibition of de novo pyrimidine synthesis leading to a cytostatic effect on proliferating lymphocyte subsets, this study aims to uncover its potential to foster myelin repair. METHODS: Within the cuprizone mediated de-/remyelination model teriflunomide dependent effects on oligodendroglial homeostasis and maturation, related to cellular processes important for myelin repair were analyzed in vivo. Teriflunomide administration was performed either as pulse or continuously and markers specific for oligodendroglial maturation and mitochondrial integrity were examined by means of gene expression and immunohistochemical analyses. In addition, axon myelination was determined using electron microscopy. RESULTS: Both pulse and constant teriflunomide treatment efficiently boosted myelin repair activities in this model, leading to accelerated generation of oligodendrocytes and restoration of myelin sheaths. Moreover, teriflunomide restored mitochondrial integrity within oligodendroglial cells. CONCLUSIONS: The link between de novo pyrimidine synthesis inhibition, oligodendroglial rescue, and maintenance of mitochondrial homeostasis appears as a key for successful myelin repair and hence for protection of axons from degeneration.


Subject(s)
Myelin Sheath , Oligodendroglia , Myelin Sheath/metabolism , Oligodendroglia/metabolism , Crotonates/pharmacology , Crotonates/therapeutic use , Hydroxybutyrates/metabolism , Hydroxybutyrates/pharmacology , Cell Differentiation
7.
Brain Behav Immun ; 107: 242-252, 2023 01.
Article in English | MEDLINE | ID: mdl-36270439

ABSTRACT

Human endogenous retroviruses (ERVs) are ancestorial retroviral elements that were integrated into our genome through germline infections and insertions during evolution. They have repeatedly been implicated in the aetiology and pathophysiology of numerous human disorders, particularly in those that affect the central nervous system. In addition to the known association of ERVs with multiple sclerosis and amyotrophic lateral sclerosis, a growing number of studies links the induction and expression of these retroviral elements with the onset and severity of neurodevelopmental and psychiatric disorders. Although these disorders differ in terms of overall disease pathology and causalities, a certain degree of (subclinical) chronic inflammation can be identified in all of them. Based on these commonalities, we discuss the bidirectional relationship between ERV expression and inflammation and highlight that numerous entry points to this reciprocal sequence of events exist, including initial infections with ERV-activating pathogens, exposure to non-infectious inflammatory stimuli, and conditions in which epigenetic silencing of ERV elements is disrupted.


Subject(s)
Endogenous Retroviruses , Mental Disorders , Humans , Endogenous Retroviruses/genetics , Mental Disorders/genetics
8.
Brain Behav Immun ; 107: 201-214, 2023 01.
Article in English | MEDLINE | ID: mdl-36243285

ABSTRACT

Endogenous retroviruses (ERVs) are ancestorial retroviral elements that were integrated into the mammalian genome through germline infections and insertions during evolution. While increased ERV expression has been repeatedly implicated in psychiatric and neurodevelopmental disorders, recent evidence suggests that aberrant endogenous retroviral activity may contribute to biologically defined subgroups of psychotic disorders with persisting immunological dysfunctions. Here, we explored whether ERV expression is altered in a mouse model of maternal immune activation (MIA), a transdiagnostic environmental risk factor of psychiatric and neurodevelopmental disorders. MIA was induced by maternal administration of poly(I:C) on gestation day 12 in C57BL/6N mice. Murine ERV transcripts were quantified in the placentae and fetal brains shortly after poly(I:C)-induced MIA, as well as in adult offspring that were stratified according to their behavioral profiles. We found that MIA increased and reduced levels of class II ERVs and syncytins, respectively, in placentae and fetal brain tissue. We also revealed abnormal ERV expression in MIA-exposed offspring depending on whether they displayed overt behavioral anomalies or not. Taken together, our findings provide a proof of concept that an inflammatory stimulus, even when initiated in prenatal life, has the potential of altering ERV expression across fetal to adult stages of development. Moreover, our data highlight that susceptibility and resilience to MIA are associated with differential ERV expression, suggesting that early-life exposure to inflammatory factors may play a role in determining disease susceptibility by inducing persistent alterations in the expression of endogenous retroviral elements.


Subject(s)
Family , Vitamins , Animals , Mice , Mice, Inbred C57BL , Mammals
9.
Int J Mol Sci ; 24(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37446147

ABSTRACT

Stroke is a major reason for persistent disability due to insufficient treatment strategies beyond reperfusion, leading to oligodendrocyte death and axon demyelination, persistent inflammation and astrogliosis in peri-infarct areas. After injury, oligodendroglial precursor cells (OPCs) have been shown to compensate for myelin loss and prevent axonal loss through the replacement of lost oligodendrocytes, an inefficient process leaving axons chronically demyelinated. Phenotypic screening approaches in demyelinating paradigms revealed substances that promote myelin repair. We established an ex vivo adult organotypic coronal slice culture (OCSC) system to study repair after stroke in a resource-efficient way. Post-photothrombotic OCSCs can be manipulated for 8 d by exposure to pharmacologically active substances testing remyelination activity. OCSCs were isolated from a NG2-CreERT2-td-Tomato knock-in transgenic mouse line to analyze oligodendroglial fate/differentiation and kinetics. Parbendazole boosted differentiation of NG2+ cells and stabilized oligodendroglial fate reflected by altered expression of associated markers PDGFR-α, CC1, BCAS1 and Sox10 and GFAP. In vitro scratch assay and chemical ischemia confirmed the observed effects upon parbendazole treatment. Adult OCSCs represent a fast, reproducible, and quantifiable model to study OPC differentiation competence after stroke. Pharmacological stimulation by means of parbendazole promoted OPC differentiation.


Subject(s)
Demyelinating Diseases , Stroke , Mice , Animals , Myelin Sheath/metabolism , Oligodendroglia/metabolism , Demyelinating Diseases/metabolism , Mice, Transgenic , Stroke/metabolism , Cell Differentiation , Ischemia/metabolism
10.
Curr Opin Neurol ; 35(3): 307-312, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35674073

ABSTRACT

PURPOSE OF REVIEW: The introduction some 30 years ago of ß-interferon, followed by a panel of immunomodulators and immunosuppressants has led to a remarkable improvement in the management of multiple sclerosis (MS) patients. Despite these noticeable progresses, which lower the number of relapses and thereby ameliorate patients' quality of life, preventing long-term progression of disability is still an unmet need, highlighting the necessity to develop therapeutic strategies aimed at repairing demyelinated lesions and protecting axons from degeneration. The capacity of human brain to self-regenerate demyelinated lesion has opened a field of research aimed at fostering this endogenous potential. RECENT FINDINGS: The pioneer electron microscopic evidence by Périer and Grégoire [Périer O, Grégoire A. Electron microscopic features of multiple sclerosis lesions. Brain 1965; 88:937-952] suggesting the capacity of human brain to self-regenerate demyelinated lesion has opened a field of research aimed at fostering this endogenous potential. Here we review some recently identified mechanisms involved in the remyelination process, focusing on the role of electrical activity and the involvement of innate immune cells. We then provide an update on current strategies promoting endogenous myelin repair. SUMMARY: Identification of therapeutic targets for remyelination has opened an active therapeutic field in MS. Although still in early phase trials, with heterogenous efficacy, the door for myelin regeneration in MS is now opened.


Subject(s)
Multiple Sclerosis , Remyelination , Humans , Multiple Sclerosis/drug therapy , Myelin Sheath/pathology , Oligodendroglia/pathology , Quality of Life
11.
J Neuroinflammation ; 19(1): 270, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36348455

ABSTRACT

BACKGROUND: Cladribine is a synthetic purine analogue that interferes with DNA synthesis and repair next to disrupting cellular proliferation in actively dividing lymphocytes. The compound is approved for the treatment of multiple sclerosis (MS). Cladribine can cross the blood-brain barrier, suggesting a potential effect on central nervous system (CNS) resident cells. Here, we explored compartment-specific immunosuppressive as well as potential direct neuroprotective effects of oral cladribine treatment in experimental autoimmune encephalomyelitis (EAE) mice. METHODS: In the current study, we compare immune cell frequencies and phenotypes in the periphery and CNS of EAE mice with distinct grey and white matter lesions (combined active and focal EAE) either orally treated with cladribine or vehicle, using flow cytometry. To evaluate potential direct neuroprotective effects, we assessed the integrity of the primary auditory cortex neuronal network by studying neuronal activity and spontaneous synaptic activity with electrophysiological techniques ex vivo. RESULTS: Oral cladribine treatment significantly attenuated clinical deficits in EAE mice. Ex vivo flow cytometry showed that cladribine administration led to peripheral immune cell depletion in a compartment-specific manner and reduced immune cell infiltration into the CNS. Histological evaluations revealed no significant differences for inflammatory lesion load following cladribine treatment compared to vehicle control. Single cell electrophysiology in acute brain slices was performed and showed an impact of cladribine treatment on intrinsic cellular firing patterns and spontaneous synaptic transmission in neurons of the primary auditory cortex. Here, cladribine administration in vivo partially restored cortical neuronal network function, reducing action potential firing. Both, the effect on immune cells and neuronal activity were transient. CONCLUSIONS: Our results indicate that cladribine exerts a neuroprotective effect after crossing the blood-brain barrier independently of its peripheral immunosuppressant action.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Encephalomyelitis , Neuroprotective Agents , Mice , Animals , Encephalomyelitis, Autoimmune, Experimental/pathology , Cladribine/therapeutic use , Neuroprotective Agents/pharmacology , Mice, Inbred C57BL , Disease Models, Animal , Immunosuppressive Agents/therapeutic use
12.
Mult Scler ; 28(3): 429-440, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34240656

ABSTRACT

BACKGROUND: The envelope protein of human endogenous retrovirus W (HERV-W-Env) is expressed by macrophages and microglia, mediating axonal damage in chronic active MS lesions. OBJECTIVE AND METHODS: This phase 2, double-blind, 48-week trial in relapsing-remitting MS with 48-week extension phase assessed the efficacy and safety of temelimab; a monoclonal antibody neutralizing HERV-W-Env. The primary endpoint was the reduction of cumulative gadolinium-enhancing T1-lesions in brain magnetic resonance imaging (MRI) scans at week 24. Additional endpoints included numbers of T2 and T1-hypointense lesions, magnetization transfer ratio, and brain atrophy. In total, 270 participants were randomized to receive monthly intravenous temelimab (6, 12, or 18 mg/kg) or placebo for 24 weeks; at week 24 placebo-treated participants were re-randomized to treatment groups. RESULTS: The primary endpoint was not met. At week 48, participants treated with 18 mg/kg temelimab had fewer new T1-hypointense lesions (p = 0.014) and showed consistent, however statistically non-significant, reductions in brain atrophy and magnetization transfer ratio decrease, as compared with the placebo/comparator group. These latter two trends were sustained over 96 weeks. No safety issues emerged. CONCLUSION: Temelimab failed to show an effect on features of acute inflammation but demonstrated preliminary radiological signs of possible anti-neurodegenerative effects. Current data support the development of temelimab for progressive MS. TRIAL REGISTRATION: CHANGE-MS: ClinicalTrials.gov: NCT02782858, EudraCT: 2015-004059-29; ANGEL-MS: ClinicalTrials.gov: NCT03239860, EudraCT: 2016-004935-18.


Subject(s)
Antibodies, Monoclonal, Humanized , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Double-Blind Method , Gene Products, env/therapeutic use , Humans , Magnetic Resonance Imaging , Multiple Sclerosis/drug therapy , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Multiple Sclerosis, Relapsing-Remitting/pathology , Treatment Outcome
13.
Proc Natl Acad Sci U S A ; 116(30): 15216-15225, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31213545

ABSTRACT

Axonal degeneration is central to clinical disability and disease progression in multiple sclerosis (MS). Myeloid cells such as brain-resident microglia and blood-borne monocytes are thought to be critically involved in this degenerative process. However, the exact underlying mechanisms have still not been clarified. We have previously demonstrated that human endogenous retrovirus type W (HERV-W) negatively affects oligodendroglial precursor cell (OPC) differentiation and remyelination via its envelope protein pathogenic HERV-W (pHERV-W) ENV (formerly MS-associated retrovirus [MSRV]-ENV). In this current study, we investigated whether pHERV-W ENV also plays a role in axonal injury in MS. We found that in MS lesions, pHERV-W ENV is present in myeloid cells associated with axons. Focusing on progressive disease stages, we could then demonstrate that pHERV-W ENV induces a degenerative phenotype in microglial cells, driving them toward a close spatial association with myelinated axons. Moreover, in pHERV-W ENV-stimulated myelinated cocultures, microglia were found to structurally damage myelinated axons. Taken together, our data suggest that pHERV-W ENV-mediated microglial polarization contributes to neurodegeneration in MS. Thus, this analysis provides a neurobiological rationale for a recently completed clinical study in MS patients showing that antibody-mediated neutralization of pHERV-W ENV exerts neuroprotective effects.


Subject(s)
Axons/virology , Endogenous Retroviruses/metabolism , Microglia/virology , Multiple Sclerosis/genetics , Neurons/virology , Viral Envelope Proteins/genetics , Animals , Axons/metabolism , Axons/ultrastructure , Cell Differentiation , Clinical Trials, Phase II as Topic , Coculture Techniques , Endogenous Retroviruses/genetics , Endogenous Retroviruses/pathogenicity , Female , Gene Expression , Humans , Male , Microglia/metabolism , Microglia/ultrastructure , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Multiple Sclerosis/virology , Myelin Sheath/metabolism , Myelin Sheath/ultrastructure , Myelin Sheath/virology , Neurons/metabolism , Neurons/ultrastructure , Rats , Rats, Wistar , Viral Envelope Proteins/metabolism
14.
Int J Mol Sci ; 23(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36142246

ABSTRACT

Transdifferentiation of Schwann cells is essential for functional peripheral nerve regeneration after injury. By activating a repair program, Schwann cells promote functional axonal regeneration and remyelination. However, chronic denervation, aging, metabolic diseases, or chronic inflammatory processes reduce the transdifferentiation capacity and thus diminish peripheral nerve repair. It was recently described that the sphingosine-1-phosphate receptor (S1PR) agonist Fingolimod enhances the Schwann cell repair phenotype by activation of dedifferentiation markers and concomitant release of trophic factors resulting in enhanced neurite growth. Since Fingolimod targets four out of five S1PRs (S1P1, S1P3-5) possibly leading to non-specific adverse effects, identification of the main receptor(s) responsible for the observed phenotypic changes is mandatory for future specific treatment approaches. Our experiments revealed that S1P3 dominates and that along with S1P1 acts as the responsible receptor for Schwann cell transdifferentiation as revealed by the combinatory application of specific agonists and antagonists. Targeting both receptors reduced the expression of myelin-associated genes, increased PDGF-BB representing enhanced trophic factor expression likely to result from c-Jun induction. Furthermore, we demonstrated that S1P4 and S1P5 play only a minor role in the adaptation of the repair phenotype. In conclusion, modulation of S1P1 and S1P3 could be effective to enhance the Schwann cell repair phenotype and thus stimulate proper nerve repair.


Subject(s)
Fingolimod Hydrochloride , Schwann Cells , Becaplermin/metabolism , Fingolimod Hydrochloride/metabolism , Fingolimod Hydrochloride/pharmacology , Nerve Regeneration/physiology , Phenotype , Receptors, Lysosphingolipid/genetics , Receptors, Lysosphingolipid/metabolism , Schwann Cells/metabolism , Sphingosine-1-Phosphate Receptors
15.
Int J Mol Sci ; 23(21)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36362063

ABSTRACT

Siponimod (Mayzent®), a sphingosine 1-phosphate receptor (S1PR) modulator which prevents lymphocyte egress from lymphoid tissues, is approved for the treatment of relapsing-remitting and active secondary progressive multiple sclerosis. It can cross the blood-brain barrier (BBB) and selectively binds to S1PR1 and S1PR5 expressed by several cell populations of the central nervous system (CNS) including microglia. In multiple sclerosis, microglia are a key CNS cell population moving back and forth in a continuum of beneficial and deleterious states. On the one hand, they can contribute to neurorepair by clearing myelin debris, which is a prerequisite for remyelination and neuroprotection. On the other hand, they also participate in autoimmune inflammation and axonal degeneration by producing pro-inflammatory cytokines and molecules. In this study, we demonstrate that siponimod can modulate the microglial reaction to lipopolysaccharide-induced pro-inflammatory activation.


Subject(s)
Azetidines , Multiple Sclerosis , Humans , Microglia/metabolism , Benzyl Compounds/pharmacology , Azetidines/pharmacology , Azetidines/metabolism , Multiple Sclerosis/metabolism
16.
Glia ; 69(11): 2739-2751, 2021 11.
Article in English | MEDLINE | ID: mdl-34390590

ABSTRACT

Inflammation after injury of the central nervous system (CNS) is increasingly viewed as a therapeutic target. However, comparative studies in different CNS compartments are sparse. To date only few studies based on immunohistochemical data and all referring to mechanical injury have directly compared inflammation in different CNS compartments. These studies revealed that inflammation is more pronounced in spinal cord than in brain. Therefore, it is unclear whether concepts and treatments established in the cerebral cortex can be transferred to spinal cord lesions and vice versa or whether immunological treatments must be adapted to different CNS compartments. By use of transcriptomic and flow cytometry analysis of equally sized photothrombotically induced lesions in the cerebral cortex and the spinal cord, we could document an overall comparable inflammatory reaction and repair activity in brain and spinal cord between day 1 and day 7 after ischemia. However, remyelination was increased after cerebral versus spinal cord ischemia which is in line with increased remyelination in gray matter in previous analyses and was accompanied by microglia dominated inflammation opposed to monocytes/macrophages dominated inflammation after spinal cord ischemia. Interestingly remyelination could be reduced by microglia and not hematogenous macrophage depletion. Our results show that despite different cellular composition of the postischemic infiltrate the inflammatory response in cerebral cortex and spinal cord are comparable between day 1 and day 7. A striking difference was higher remyelination capacity in the cerebral cortex, which seems to be supported by microglia dominance.


Subject(s)
Remyelination , Spinal Cord Injuries , Spinal Cord Ischemia , Humans , Macrophages/pathology , Microglia/pathology , Spinal Cord/pathology , Spinal Cord Injuries/pathology , Spinal Cord Ischemia/pathology
17.
Brain ; 143(4): 1127-1142, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32293668

ABSTRACT

Chronic disability in multiple sclerosis is linked to neuroaxonal degeneration. 4-aminopyridine (4-AP) is used and licensed as a symptomatic treatment to ameliorate ambulatory disability in multiple sclerosis. The presumed mode of action is via blockade of axonal voltage gated potassium channels, thereby enhancing conduction in demyelinated axons. In this study, we provide evidence that in addition to those symptomatic effects, 4-AP can prevent neuroaxonal loss in the CNS. Using in vivo optical coherence tomography imaging, visual function testing and histologic assessment, we observed a reduction in retinal neurodegeneration with 4-AP in models of experimental optic neuritis and optic nerve crush. These effects were not related to an anti-inflammatory mode of action or a direct impact on retinal ganglion cells. Rather, histology and in vitro experiments indicated 4-AP stabilization of myelin and oligodendrocyte precursor cells associated with increased nuclear translocation of the nuclear factor of activated T cells. In experimental optic neuritis, 4-AP potentiated the effects of immunomodulatory treatment with fingolimod. As extended release 4-AP is already licensed for symptomatic multiple sclerosis treatment, we performed a retrospective, multicentre optical coherence tomography study to longitudinally compare retinal neurodegeneration between 52 patients on continuous 4-AP therapy and 51 matched controls. In line with the experimental data, during concurrent 4-AP therapy, degeneration of the macular retinal nerve fibre layer was reduced over 2 years. These results indicate disease-modifying effects of 4-AP beyond symptomatic therapy and provide support for the design of a prospective clinical study using visual function and retinal structure as outcome parameters.


Subject(s)
4-Aminopyridine/pharmacology , Multiple Sclerosis/pathology , Neuroprotective Agents/pharmacology , Optic Neuritis/pathology , Retinal Degeneration/pathology , Adult , Aged , Animals , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Neural Stem Cells/drug effects , Potassium Channel Blockers/pharmacology , Rats , Rats, Wistar
18.
Glia ; 68(2): 393-406, 2020 02.
Article in English | MEDLINE | ID: mdl-31633850

ABSTRACT

Apart from dedicated oligodendroglial progenitor cells, adult neural stem cells (aNSCs) can also give rise to new oligodendrocytes in the adult central nervous system (CNS). This process mainly confers myelinating glial cell replacement in pathological situations and can hence contribute to glial heterogeneity. Our previous studies demonstrated that the p57kip2 gene encodes an intrinsic regulator of glial fate acquisition and we here investigated to what degree its modulation can affect stem cell-dependent oligodendrogenesis in different CNS environments. We therefore transplanted p57kip2 knockdown aNSCs into white and gray matter (WM and GM) regions of the mouse brain, into uninjured spinal cords as well as in the vicinity of spinal cord injuries and evaluated integration and differentiation in vivo. Our experiments revealed that under healthy conditions intrinsic suppression of p57kip2 as well as WM localization promote differentiation toward myelinating oligodendrocytes at the expense of astrocyte generation. Moreover, p57kip2 knockdown conferred a strong benefit on cell survival augmenting net oligodendrocyte generation. In the vicinity of hemisectioned spinal cords, the gene knockdown led to a similar induction of oligodendroglial features; however, newly generated oligodendrocytes appeared to suffer more from the hostile environment. This study contributes to our understanding of mechanisms of adult oligodendrogenesis and glial heterogeneity and further reveals critical factors when considering aNSC mediated cell replacement in injury and disease.


Subject(s)
Gray Matter/metabolism , Neural Stem Cells/cytology , Oligodendroglia/metabolism , White Matter/metabolism , Adult Stem Cells/metabolism , Animals , Astrocytes/metabolism , Cell Differentiation/physiology , Cell Lineage/physiology , Mice, Inbred C57BL , Neuroglia/metabolism , Rats
19.
FASEB J ; 33(4): 4703-4715, 2019 04.
Article in English | MEDLINE | ID: mdl-30592632

ABSTRACT

Schwann cells promote nerve regeneration by adaptation of a regenerative phenotype referred to as repair mediating Schwann cell. Down-regulation of myelin proteins, myelin clearance, formation of Bungner's bands, and secretion of trophic factors characterize this cell type. We have previously shown that the sphingosine-1-phosphate receptor agonist Fingolimod/FTY720P promotes the generation of this particular Schwann cell phenotype by activation of dedifferentiation markers and concomitant release of trophic factors resulting in enhanced neurite growth of dorsal root ganglion neurons. Despite its biomedical relevance, a detailed characterization of the corresponding Schwann cell secretome is lacking, and the impact of FTY720P on enhancing neurite growth is not defined. Here, we applied a label-free quantitative mass spectrometry approach to characterize the secretomes derived from primary neonatal and adult rat Schwann cells in response to FTY720P. We identified a large proportion of secreted proteins with a high overlap between the neonatal and adult Schwann cells, which can be associated with biologic processes such as development, axon growth, and regeneration. Moreover, FTY720P-treated Schwann cells release proteins downstream of Smad signaling known to support neurite growth. Our results therefore uncover a network of trophic factors involved in glial-mediated repair of the peripheral nervous system.-Schira, J., Heinen, A., Poschmann, G., Ziegler, B., Hartung, H.-P., Stühler, K., Küry, P. Secretome analysis of nerve repair mediating Schwann cells reveals Smad-dependent trophism.


Subject(s)
Nerve Regeneration/physiology , Schwann Cells/metabolism , Smad Proteins/metabolism , Animals , Cells, Cultured , Chromatography, Liquid , Computational Biology , Fingolimod Hydrochloride/pharmacology , Organophosphates/pharmacology , Rats , Schwann Cells/drug effects , Signal Transduction/physiology , Smad Proteins/genetics , Sphingosine/analogs & derivatives , Sphingosine/pharmacology , Tandem Mass Spectrometry , Trichloroacetic Acid/chemistry
20.
Int J Mol Sci ; 21(12)2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32570968

ABSTRACT

Mesenchymal stem cell (MSC)-secreted factors have been shown to significantly promote oligodendrogenesis from cultured primary adult neural stem cells (aNSCs) and oligodendroglial precursor cells (OPCs). Revealing underlying mechanisms of how aNSCs can be fostered to differentiate into a specific cell lineage could provide important insights for the establishment of novel neuroregenerative treatment approaches aiming at myelin repair. However, the nature of MSC-derived differentiation and maturation factors acting on the oligodendroglial lineage has not been identified thus far. In addition to missing information on active ingredients, the degree to which MSC-dependent lineage instruction is functional in vivo also remains to be established. We here demonstrate that MSC-derived factors can indeed stimulate oligodendrogenesis and myelin sheath generation of aNSCs transplanted into different rodent central nervous system (CNS) regions, and furthermore, we provide insights into the underlying mechanism on the basis of a comparative mass spectrometry secretome analysis. We identified a number of secreted proteins known to act on oligodendroglia lineage differentiation. Among them, the tissue inhibitor of metalloproteinase type 1 (TIMP-1) was revealed to be an active component of the MSC-conditioned medium, thus validating our chosen secretome approach.


Subject(s)
Mesenchymal Stem Cells/cytology , Neural Stem Cells/cytology , Oligodendroglia/cytology , Tissue Inhibitor of Metalloproteinase-1/metabolism , Adult Stem Cells/cytology , Animals , Cell Differentiation , Cells, Cultured , Culture Media, Conditioned/chemistry , Female , Mesenchymal Stem Cells/metabolism , Primary Cell Culture , Proteomics , Rats , Stem Cell Transplantation
SELECTION OF CITATIONS
SEARCH DETAIL