Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 193
Filter
1.
Small ; 18(4): e2103552, 2022 01.
Article in English | MEDLINE | ID: mdl-34841670

ABSTRACT

Significant advances in physicochemical properties of polymeric micelles enable optimization of therapeutic drug efficacy, supporting nanomedicine manufacturing and clinical translation. Yet, the effect of micelle morphology on pharmacological efficacy is not adequately addressed. This work addresses this gap by assessing pharmacological efficacy of polymeric micelles with spherical and worm-like morphologies. It is observed that poly(2-oxazoline)-based polymeric micelles can be elongated over time from a spherical structure to worm-like structure, with elongation influenced by several conditions, including the amount and type of drug loaded into the micelles. The role of different morphologies on pharmacological performance of drug loaded micelles against triple-negative breast cancer and pancreatic cancer tumor models is further evaluated. Spherical micelles accumulate rapidly in the tumor tissue while retaining large amounts of drug; worm-like micelles accumulate more slowly and only upon releasing significant amounts of drug. These findings suggest that the dynamic character of the drug-micelle structure and the micelle morphology play a critical role in pharmacological performance, and that spherical micelles are better suited for systemic delivery of anticancer drugs to tumors when drugs are loosely associated with the polymeric micelles.


Subject(s)
Antineoplastic Agents , Micelles , Antineoplastic Agents/therapeutic use , Drug Carriers/chemistry , Nanomedicine , Polymers/chemistry
2.
Nanomedicine ; 39: 102459, 2022 01.
Article in English | MEDLINE | ID: mdl-34530163

ABSTRACT

Combining diagnosis and treatment approaches in one entity is the goal of theranostics for cancer therapy. Magnetic nanoparticles have been extensively used as contrast agents for nuclear magnetic resonance imaging as well as drug carriers and remote actuation agents. Poly(2-oxazoline)-based polymeric micelles, which have been shown to efficiently solubilize hydrophobic drugs and drug combinations, have high loading capacity (above 40% w/w) for paclitaxel. In this study, we report the development of novel theranostic system, NanoFerrogels, which is designed to capitalize on the magnetic nanoparticle properties as imaging agents and the poly(2-oxazoline)-based micelles as drug loading compartment. We developed six formulations with magnetic nanoparticle content of 0.3%-12% (w/w), with the z-average sizes of 85-130 nm and ξ-potential of 2.7-28.3 mV. The release profiles of paclitaxel from NanoFerrogels were notably dependent on the degree of dopamine grafting on poly(2-oxazoline)-based micelles. Paclitaxel loaded NanoFerrogels showed efficacy against three breast cancer lines which was comparable to free paclitaxel. They also showed improved tumor and lymph node accumulation and signal reduction in vivo (2.7% in tumor; 8.5% in lymph node) compared to clinically approved imaging agent ferumoxytol (FERAHEME®) 24 h after administration. NanoFerrogels responded to super-low frequency alternating current magnetic field (50 kA m-1, 50 Hz) which accelerated drug release from paclitaxel-loaded NanoFerrogels or caused death of cells loaded with NanoFerrogels. These proof-of-concept experiments demonstrate that NanoFerrogels have potential as remotely actuated theranostic platform for cancer diagnosis and treatment.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Cell Line, Tumor , Drug Carriers/chemistry , Drug Delivery Systems , Drug Liberation , Female , Ferrosoferric Oxide , Humans , Magnetic Fields , Micelles , Oxazoles , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Precision Medicine
3.
Nanomedicine ; 32: 102345, 2021 02.
Article in English | MEDLINE | ID: mdl-33259959

ABSTRACT

We report a nanoparticle formulation of the SHH-pathway inhibitor vismodegib that improves efficacy for medulloblastoma, while reducing toxicity. Limited blood-brain barrier (BBB) penetration and dose-limiting extitle/citraneural toxicities complicate systemic therapies for brain tumors. Vismodegib is FDA-approved for SHH-driven basal cell carcinoma, but implementation for medulloblastoma has been limited by inadequate efficacy and excessive bone toxicity. To address these issues through optimized drug delivery, we formulated vismodegib in polyoxazoline block copolymer micelles (POx-vismo). We then evaluated POx-vismo in transgenic mice that develop SHH-driven medulloblastomas with native vasculature and tumor microenvironment. POx-vismo improved CNS pharmacokinetics and reduced bone toxicity. Mechanistically, the nanoparticle carrier did not enter the CNS, and acted within the vascular compartment to improve drug delivery. Unlike conventional vismodegib, POx-vismo extended survival in medulloblastoma-bearing mice. Our results show the broad potential for non-targeted nanoparticle formulation to improve systemic brain tumor therapy, and specifically to improve vismodegib therapy for SHH-driven cancers.


Subject(s)
Anilides/pharmacokinetics , Anilides/therapeutic use , Central Nervous System/pathology , Cerebellar Neoplasms/drug therapy , Drug Delivery Systems , Medulloblastoma/drug therapy , Nanoparticles/chemistry , Oxazoles/chemistry , Pyridines/pharmacokinetics , Pyridines/therapeutic use , Anilides/adverse effects , Anilides/pharmacology , Animals , Biological Availability , Disease Models, Animal , Drug Carriers/chemistry , Mice , Micelles , Particle Size , Protein Binding , Pyridines/adverse effects , Pyridines/pharmacology , Serum Albumin/metabolism
4.
Am J Physiol Gastrointest Liver Physiol ; 318(3): G428-G438, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31928222

ABSTRACT

Enhanced free fatty acid (FFA) flux from adipose tissue (AT) to liver plays an important role in the development of nonalcoholic steatohepatitis (NASH) and alcohol-associated liver disease (AALD). We determined the effectiveness of nanoformulated superoxide dismutase 1 (Nano) in attenuating liver injury in a mouse model exhibiting a combination of NASH and AALD. Male C57BL6/J mice were fed a chow diet (CD) or a high-fat diet (HF) for 10 wk followed by pair feeding of the Lieber-DeCarli control (control) or ethanol (ET) diet for 4 wk. Nano was administered once every other day for the last 2 wk of ET feeding. Mice were divided into 1) CD + control diet (CD + Cont), 2) high-fat diet (HF) + control diet (HF + Cont), 3) HF + Cont + Nano, 4) HF + ET diet (HF + ET), and 5) HF + ET + Nano. The total fat mass, visceral AT mass (VAT), and VAT perilipin 1 content were significantly lower only in HF + ET-fed mice but not in HF + ET + Nano-treated mice compared with controls. The HF + ET-fed mice showed an upregulation of VAT CYP2E1 protein, and Nano abrogated this effect. We noted a significant rise in plasma FFAs, ALT, and monocyte chemoattractant protein-1 in HF + ET-fed mice, which was blunted in HF + ET + Nano-treated mice. HF + ET-induced increases in hepatic steatosis and inflammatory markers were attenuated upon Nano treatment. Nano reduced hepatic CYP2E1 and enhanced catalase levels in HF + ET-fed mice with a concomitant increase in SOD1 protein and activity in liver. Nano was effective in attenuating AT and liver injury in mice exhibiting a combination of NASH and AALD, partly via reduced CYP2E1-mediated ET metabolism in these organs.NEW & NOTEWORTHY Increased free fatty acid flux from adipose tissue (AT) to liver accompanied by oxidative stress promotes nonalcoholic steatohepatitis (NASH) and alcohol-associated liver injury (AALD). Obesity increases the severity of AALD. Using a two-hit model involving a high-fat diet and chronic ethanol feeding to mice, and treating them with nanoformulated superoxide dismutase (nanoSOD), we have shown that nanoSOD improves AT lipid storage, reduces CYP2E1 in AT and liver, and attenuates the combined NASH/AALD in mice.


Subject(s)
Cytochrome P-450 CYP2E1/metabolism , Fatty Liver, Alcoholic/prevention & control , Intra-Abdominal Fat/drug effects , Liver/drug effects , Nanoparticles , Non-alcoholic Fatty Liver Disease/prevention & control , Superoxide Dismutase-1/administration & dosage , Adiposity/drug effects , Animals , Catalase/metabolism , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Disease Models, Animal , Drug Compounding , Fatty Liver, Alcoholic/enzymology , Fatty Liver, Alcoholic/genetics , Fatty Liver, Alcoholic/pathology , Gene Expression Regulation , Intra-Abdominal Fat/enzymology , Intra-Abdominal Fat/pathology , Lipolysis/drug effects , Liver/enzymology , Liver/pathology , Male , Mice, Inbred C57BL , Nanomedicine , Non-alcoholic Fatty Liver Disease/enzymology , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Oxidative Stress/drug effects , Perilipin-1/genetics , Perilipin-1/metabolism , Signal Transduction , Superoxide Dismutase-1/chemistry
5.
Nanomedicine ; 24: 102124, 2020 02.
Article in English | MEDLINE | ID: mdl-31756533

ABSTRACT

The potency of polymeric micelle-based doxorubicin, SP1049C, against cancer stem cells (CSCs) in triple negative breast cancer (TNBC) is evaluated. CSCs with high epithelial specific antigen (ESA), high CD44 and low CD24 expression levels were derived from the TNBC cancer cells, MDA-MB-231 and MDA-MB-468. These CSCs were resistant to free doxorubicin (Dox) and displayed increased colony formation, migration, and invasion in vitro, along with higher tumorigenicity in vivo, compared to the parental and non-CSCs counterparts. SP1049C downregulated the expression and inhibited the functional activity of the breast cancer resistance protein (BCRP/ABCG2) in CSCs. The polymeric micelle drug had higher cytotoxicity and potency in reducing the colony formation of CSCs compared to the free drug. It was also more potent in inhibiting the tumor growth in the orthotopic animal tumor models derived from CSCs. These results indicate that SP1049C is active against CSCs and has potential in treating TNBC.


Subject(s)
Doxorubicin/analogs & derivatives , Drug Resistance, Neoplasm/drug effects , Micelles , Neoplastic Stem Cells , Poloxamer/analogs & derivatives , Triple Negative Breast Neoplasms , Animals , Doxorubicin/chemistry , Doxorubicin/pharmacology , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Mice, Nude , Neoplasm Proteins/biosynthesis , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Poloxamer/chemistry , Poloxamer/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays
6.
Development ; 143(21): 4038-4052, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27803059

ABSTRACT

Microcephaly and medulloblastoma may both result from mutations that compromise genomic stability. We report that ATR, which is mutated in the microcephalic disorder Seckel syndrome, sustains cerebellar growth by maintaining chromosomal integrity during postnatal neurogenesis. Atr deletion in cerebellar granule neuron progenitors (CGNPs) induced proliferation-associated DNA damage, p53 activation, apoptosis and cerebellar hypoplasia in mice. Co-deletions of either p53 or Bax and Bak prevented apoptosis in Atr-deleted CGNPs, but failed to fully rescue cerebellar growth. ATR-deficient CGNPs had impaired cell cycle checkpoint function and continued to proliferate, accumulating chromosomal abnormalities. RNA-Seq demonstrated that the transcriptional response to ATR-deficient proliferation was highly p53 dependent and markedly attenuated by p53 co-deletion. Acute ATR inhibition in vivo by nanoparticle-formulated VE-822 reproduced the developmental disruptions seen with Atr deletion. Genetic deletion of Atr blocked tumorigenesis in medulloblastoma-prone SmoM2 mice. Our data show that p53-driven apoptosis and cell cycle arrest - and, in the absence of p53, non-apoptotic cell death - redundantly limit growth in ATR-deficient progenitors. These mechanisms may be exploited for treatment of CGNP-derived medulloblastoma using ATR inhibition.


Subject(s)
Cell Transformation, Neoplastic/genetics , Cerebellar Neoplasms/genetics , Cerebellum/growth & development , Chromosomal Instability/genetics , Medulloblastoma/genetics , Neurogenesis/genetics , Animals , Animals, Newborn , Apoptosis/drug effects , Apoptosis/genetics , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/physiology , Cell Transformation, Neoplastic/drug effects , Cerebellar Neoplasms/pathology , Cerebellum/abnormalities , Cerebellum/drug effects , Cerebellum/metabolism , Cerebellum/pathology , Chromosomal Instability/drug effects , Developmental Disabilities/genetics , Developmental Disabilities/pathology , Female , Gene Deletion , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Isoxazoles/pharmacology , Male , Medulloblastoma/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Nervous System Malformations/genetics , Nervous System Malformations/pathology , Neurogenesis/drug effects , Neurons/drug effects , Neurons/physiology , Pyrazines/pharmacology
7.
Nanomedicine ; 21: 102065, 2019 10.
Article in English | MEDLINE | ID: mdl-31349089

ABSTRACT

This work presents direct evidence of disordering of liposomal membranes by magnetic nanoparticles during their exposures to non-heating alternating Extremely Low Frequency Magnetic Field (ELF MF). Changes in the lipid membrane structure were demonstrated by the Attenuated total reflection Fourier Transform Infrared and fluorescence spectroscopy. Specifically, about 50% of hydrophobic chains became highly mobile under the action of ELF MF. Magnetic field-induced increase in the membrane fluidity was accompanied by an increase in membrane permeability and release of solutes entrapped in liposomes. The effect of ELF MF on the membrane fluidity was greater in case of 70 × 12 nm magnetite nanorods adsorbed on the liposomes surface compared to liposomes with ~7 nm spherical MNPs embedded within lipid membranes. A physical model of this process explaining experimental data is suggested. The obtained results open new horizons for the development of systems for triggered drug release without dangerous heating and overheating of tissues.


Subject(s)
Magnetic Fields , Models, Chemical , Nanotubes/chemistry , Liposomes , Membrane Fluidity , Permeability
8.
Int J Mol Sci ; 20(15)2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31370144

ABSTRACT

Normally ubiquitin C-terminal hydrolase L1 (UCH-L1) is expressed in the central nervous and reproductive systems of adults, but its de novo expression has been detected in many human cancers. There is a growing body of evidence that UCH-L1 de-ubiquitinating (DUB) activity plays a major pro-metastatic role in certain carcinomas. Here we tested anti-metastatic effects of the small-molecule inhibitor of UCH-L1 DUB activity, LDN-57444, in cell lines from advanced oral squamous cell carcinoma (OSCC) as well as invasive nasopharyngeal (NP) cell lines expressing the major pro-metastatic gene product of Epstein-Barr virus (EBV) tumor virus, LMP1. To overcome the limited aqueous solubility of LDN-57444 we developed a nanoparticle formulation of LDN-57444 by incorporation of the compound in polyoxazoline micellear nanoparticles (LDN-POx). LDN-POx nanoparticles were equal in effects as the native compound in vitro. Our results demonstrate that inhibition of UCH-L1 DUB activity with LDN or LDN-POx inhibits secretion of exosomes and reduces levels of the pro-metastatic factor in exosomal fractions. Both forms of UCH-L1 DUB inhibitor suppress motility of metastatic squamous carcinoma cells as well as nasopharyngeal cells expressing EBV pro-metastatic Latent membrane protein 1 (LMP1) in physiological assays. Moreover, treatment with LDN and LDN-POx resulted in reduced levels of pro-metastatic markers, a decrease of carcinoma cell adhesion, as well as inhibition of extra-cellular vesicle (ECV)-mediated transfer of viral invasive factor LMP1. We suggest that soluble inhibitors of UCH-L1 such as LDN-POx offer potential forms of treatment for invasive carcinomas including EBV-positive malignancies.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Carriers , Epithelial Cells/drug effects , Gene Expression Regulation, Neoplastic , Indoles/pharmacology , Oximes/pharmacology , Ubiquitin Thiolesterase/genetics , Viral Matrix Proteins/genetics , Antineoplastic Agents/chemistry , Cell Adhesion/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Exosomes/drug effects , Exosomes/metabolism , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/pathogenicity , Humans , Indoles/chemistry , Micelles , Mouth/metabolism , Mouth/pathology , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Nasopharynx/metabolism , Nasopharynx/pathology , Oxazoles/chemistry , Oximes/chemistry , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/metabolism , Viral Matrix Proteins/metabolism
9.
Adv Funct Mater ; 28(6)2018 Feb 07.
Article in English | MEDLINE | ID: mdl-29785179

ABSTRACT

Brain-derived neurotrophic factor (BDNF) is identified as a potent neuroprotective and neuroregenerative agent for many neurological diseases. Regrettably, its delivery to the brain is hampered by poor serum stability and rapid brain clearance. Here, a novel nanoformulation is reported composed of a bio-compatible polymer, poly(ethylene glycol)-b-poly(L-glutamic acid) (PEG-PLE), that hosts the BDNF molecule in a nanoscale complex, termed here Nano-BDNF. Upon simple mixture, Nano-BDNF spontaneously forms uniform spherical particles with a core-shell structure. Molecular dynamics simulations suggest that binding between BDNF and PEG-PLE is mediated through electrostatic coupling as well as transient hydrogen bonding. The formation of Nano-BDNF complex stabilizes BDNF and protects it from nonspecific binding with common proteins in the body fluid, while allowing it to associate with its receptors. Following intranasal administration, the nanoformulation improves BDNF delivery throughout the brain and displays a more preferable regional distribution pattern than the native protein. Furthermore, intranasally delivered Nano-BDNF results in superior neuroprotective effects in the mouse brain with lipopolysaccharides-induced inflammation, indicating promise for further evaluation of this agent for the therapy of neurologic diseases.

10.
Nanomedicine ; 14(1): 195-204, 2018 01.
Article in English | MEDLINE | ID: mdl-28982587

ABSTRACT

Exosomes have recently emerged as a promising drug delivery system with low immunogenicity, high biocompatibility, and high efficacy of delivery. We demonstrated earlier that macrophage-derived exosomes (exo) loaded with a potent anticancer agent paclitaxel (PTX) represent a novel nanoformulation (exoPTX) that shows high anticancer efficacy in a mouse model of pulmonary metastases. We now report the manufacture of targeted exosome-based formulations with superior structure and therapeutic indices for systemic administration. Herein, we developed and optimized a formulation of PTX-loaded exosomes with incorporated aminoethylanisamide-polyethylene glycol (AA-PEG) vector moiety to target the sigma receptor, which is overexpressed by lung cancer cells. The AA-PEG-vectorized exosomes loaded with PTX (AA-PEG-exoPTX) possessed a high loading capacity, profound ability to accumulate in cancer cells upon systemic administration, and improved therapeutic outcomes. The combination of targeting ability with the biocompatibility of exosome-based drug formulations offers a powerful and novel delivery platform for anticancer therapy.


Subject(s)
Drug Delivery Systems , Exosomes/chemistry , Lung Neoplasms/drug therapy , Lung Neoplasms/secondary , Macrophages/chemistry , Paclitaxel/administration & dosage , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/chemistry , Cells, Cultured , Drug Carriers/chemistry , Mice , Mice, Inbred C57BL , Paclitaxel/chemistry , Polyethylene Glycols/chemistry
12.
Biochem Biophys Res Commun ; 469(3): 495-500, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26692492

ABSTRACT

OBJECTIVE: Endothelial cell (EC) oxidative stress can lead to vascular dysfunction which is an underlying event in the development of cardiovascular disease (CVD). The lack of a potent and bioavailable anti-oxidant enzyme is a major challenge in studies on antioxidant therapy. The objective of this study is to determine whether copper/zinc superoxide dismutase (CuZnSOD or SOD1) after nanoformulation (nanoSOD) can effectively reduce EC oxidative stress and/or vascular inflammation in obesity. METHODS: Human aortic endothelial cells (HAECs) were treated with native- or nanoSOD for 6 h followed by treatment with linoleic acid (LA), a free fatty acid, for 6-24 h. To determine the in vivo relevance, the effectiveness of nanoSOD in reducing vascular cell activation was studied in a mouse model of diet-induced obesity. RESULTS: We noted that nanoSOD was more effectively taken up by ECs than native SOD. Western blot analysis further confirmed that the intracellular accumulation of SOD1 protein was greatly increased upon nanoSOD treatment. Importantly, nanoSOD pretreatment led to a significant decrease in LA-induced oxidative stress in ECs which was associated with a marked increase in SOD enzyme activity in ECs. In vivo studies showed a significant decrease in markers of EC/vascular cell activation and/or inflammation in visceral adipose tissue (VAT), thoracic aorta, and heart collected from nanoSOD-treated mice compared to obese control mice. Interestingly, the expression of metallothionein 2, an antioxidant gene was significantly increased in nanoSOD-treated mice. CONCLUSION: Our data show that nanoSOD is very effective in delivering active SOD to ECs and in reducing EC oxidative stress. Our data also demonstrate that nanoSOD will be a useful tool to reduce vascular cell activation in VAT and aorta in obesity which, in turn, can protect against obesity-associated CVD, in particular, hypertension.


Subject(s)
Aortitis/drug therapy , Aortitis/immunology , Endothelial Cells/immunology , Obesity/drug therapy , Obesity/immunology , Superoxide Dismutase/administration & dosage , Animals , Cells, Cultured , Drug Compounding , Endothelial Cells/drug effects , Free Radical Scavengers/administration & dosage , Humans , Mice , Mice, Inbred C57BL , Nanocapsules/administration & dosage , Nanocapsules/chemistry , Treatment Outcome
13.
Mol Pharm ; 13(11): 3712-3723, 2016 11 07.
Article in English | MEDLINE | ID: mdl-27654150

ABSTRACT

Targeted delivery of anticancer drugs to brain tumors, especially glioblastoma multiforme, which is the most frequent and aggressive type, is one of the important objectives in nanomedicine. Vascular endothelial growth factor (VEGF) and its receptor type II (VEGFR2) are promising targets because they are overexpressed by not only core tumor cells but also by migrated glioma cells, which are responsible for resistance and rapid progression of brain tumors. The purpose of the present study was to develop the liposomal drug delivery system combining enhanced loading capacity of cisplatin and high binding affinity to glioma cells. This was achieved by using of highly soluble cisplatin analogue, cis-diamminedinitratoplatinum(II), and antibodies against the native form of VEGF or VEGFR2 conjugated to liposome surface. The developed drug delivery system revealed sustained drug release profile, high affinity to antigens, and increased uptake by glioma C6 and U-87 MG cells. Pharmacokinetic study on glioma C6-bearing rats revealed prolonged blood circulation time of the liposomal formulation. The above features enabled the present drug delivery system to overcome both poor pharmacokinetics typical for platinum formulations and low loading capacity typical for conventional liposomal cisplatin formulations.


Subject(s)
Cisplatin/metabolism , Glioma/metabolism , Liposomes/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Cell Line, Tumor , Cisplatin/chemistry , Flow Cytometry , HEK293 Cells , Humans , Liposomes/chemistry , Microscopy, Confocal , Rats , Vascular Endothelial Growth Factor A/immunology , Vascular Endothelial Growth Factor Receptor-2/immunology
14.
Nanomedicine ; 12(3): 655-664, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26586551

ABSTRACT

Exosomes have recently come into focus as "natural nanoparticles" for use as drug delivery vehicles. Our objective was to assess the feasibility of an exosome-based drug delivery platform for a potent chemotherapeutic agent, paclitaxel (PTX), to treat MDR cancer. Herein, we developed different methods of loading exosomes released by macrophages with PTX (exoPTX), and characterized their size, stability, drug release, and in vitro antitumor efficacy. Reformation of the exosomal membrane upon sonication resulted in high loading efficiency and sustained drug release. Importantly, incorporation of PTX into exosomes increased cytotoxicity more than 50 times in drug resistant MDCKMDR1 (Pgp+) cells. Next, our studies demonstrated a nearly complete co-localization of airway-delivered exosomes with cancer cells in a model of murine Lewis lung carcinoma pulmonary metastases, and a potent anticancer effect in this mouse model. We conclude that exoPTX holds significant potential for the delivery of various chemotherapeutics to treat drug resistant cancers. FROM THE CLINICAL EDITOR: Exosomes are membrane-derived natural vesicles of ~40 - 200 nm size. They have been under extensive research as novel drug delivery vehicles. In this article, the authors developed exosome-based system to carry formulation of PTX and showed efficacy in the treatment of multi-drug resistant cancer cells. This novel system may be further developed to carry other chemotherapeutic agents in the future.


Subject(s)
Antineoplastic Agents, Phytogenic/administration & dosage , Drug Carriers/chemistry , Exosomes/chemistry , Lung Neoplasms/drug therapy , Lung Neoplasms/secondary , Lung/drug effects , Paclitaxel/administration & dosage , Animals , Antineoplastic Agents, Phytogenic/pharmacokinetics , Antineoplastic Agents, Phytogenic/therapeutic use , Cell Line , Cell Line, Tumor , Dogs , Drug Delivery Systems , Drug Resistance, Neoplasm , Female , Lung/pathology , Lung Neoplasms/pathology , Macrophages/chemistry , Mice , Mice, Inbred C57BL , Paclitaxel/pharmacokinetics , Paclitaxel/therapeutic use , Sonication
15.
Nanomedicine ; 11(4): 825-33, 2015 May.
Article in English | MEDLINE | ID: mdl-25652902

ABSTRACT

This work is focused on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (МRI) agents for in vivo visualization of gliomas. Ferric oxide (Fe3O4) cores were synthesized by thermal decomposition and coated with bovine serum albumin (BSA) to form nanoparticles with Deff of 53±9nm. The BSA was further cross-linked to improve colloidal stability. Monoclonal antibodies against vascular endothelial growth factor (mAbVEGF) were covalently conjugated to BSA through a polyethyleneglycol linker. Here we demonstrate that 1) BSA coated nanoparticles are stable and non-toxic to different cells at concentration up to 2.5mg/mL; 2) conjugation of monoclonal antibodies to nanoparticles promotes their binding to VEGF-positive glioma С6 cells in vitro; 3) targeted nanoparticles are effective in MRI visualization of the intracranial glioma. Thus, mAbVEGF-targeted BSA-coated magnetic nanoparticles are promising MRI contrast agents for glioma visualization. FROM THE CLINICAL EDITOR: This work focuses on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (МRI) agents for in vivo visualization of gliomas. The authors utilize the fact that high-grade gliomas have extensive areas of necrosis and hypoxia, which results in increased secretion of angiogenesis vascular endothelial growth factor (VEGF). Monoclonal antibodies against vascular endothelial growth factor (mAbVEGF) were covalently conjugated to crosslinked BSA coated ferric oxide (Fe3O4) nanoparticles. The results show that these targeted nanoparticles are effective in MRI visualization of the intracranial glioma and may provide a new and promising contrast agent.


Subject(s)
Antibodies, Monoclonal, Murine-Derived , Brain Neoplasms/diagnostic imaging , Contrast Media , Glioma/diagnostic imaging , Magnetic Resonance Imaging , Magnetite Nanoparticles/chemistry , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Animals , Antibodies, Monoclonal, Murine-Derived/chemistry , Antibodies, Monoclonal, Murine-Derived/pharmacology , Brain Neoplasms/metabolism , Cattle , Contrast Media/chemistry , Contrast Media/pharmacology , Glioma/metabolism , Radiography , Rats , Rats, Wistar
16.
J Pharmacol Exp Ther ; 351(1): 54-60, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25027317

ABSTRACT

A variety of compounds will distribute into the brain when placed at the cribriform plate by intranasal (i.n.) administration. In this study, we investigated the ability of albumin, a protein that can act as a drug carrier but is excluded from brain by the blood-brain barrier, to distribute into the brain after i.n. administration. We labeled bovine serum albumin with [(125)I] ([(125)I]Alb) and studied its uptake into 11 brain regions and its entry into the blood from 5 minutes to 6 hours after i.n. administration. [(125)I]Alb was present throughout the brain at 5 minutes. Several regions showed distinct peaks in uptake that ranged from 5 minutes (parietal cortex) to 60 minutes (midbrain). About 2-4% of the i.n. [(125)I]Alb entered the bloodstream. The highest levels occurred in the olfactory bulb and striatum. Distribution was dose-dependent, with less taken up by whole brain, cortex, and blood at the higher dose of albumin. Uptake was selectively increased into the olfactory bulb and cortex by the fluid-phase stimulator PMA (phorbol 12-myristate 13-acetate), but inhibitors to receptor-mediated transcytosis, caveolae, and phosphoinositide 3-kinase were without effect. Albumin altered the distribution of radioactive leptin given by i.n. administration, decreasing uptake into the blood and by the cerebellum and increasing uptake by the hypothalamus. We conclude that [(125)I]Alb administered i.n. reaches all parts of the brain through a dose-dependent mechanism that may involve fluid-phase transcytosis and, as illustrated by leptin, can affect the delivery of other substances to the brain after their i.n. administration.


Subject(s)
Brain/drug effects , Pharmaceutical Vehicles/pharmacokinetics , Serum Albumin, Bovine/pharmacokinetics , Administration, Intranasal , Animals , Leptin/administration & dosage , Leptin/pharmacokinetics , Male , Mice , Pharmaceutical Vehicles/administration & dosage , Serum Albumin, Bovine/administration & dosage , Tetradecanoylphorbol Acetate/pharmacology , Tissue Distribution
17.
Mol Pharm ; 11(8): 2566-78, 2014 Aug 04.
Article in English | MEDLINE | ID: mdl-24950236

ABSTRACT

Multidrug resistance (MDR) remains one of the biggest obstacles for effective cancer therapy. Currently there are only few methods that are available clinically that are used to bypass MDR with very limited success. In this review we describe how MDR can be overcome by a simple yet effective approach of using amphiphilic block copolymers. Triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), arranged in a triblock structure PEO-PPO-PEO, Pluronics or "poloxamers", raised a considerable interest in the drug delivery field. Previous studies demonstrated that Pluronics sensitize MDR cancer cells resulting in increased cytotoxic activity of Dox, paclitaxel, and other drugs by 2-3 orders of magnitude. Pluronics can also prevent the development of MDR in vitro and in vivo. Additionally, promising results of clinical studies of Dox/Pluronic formulation reinforced the need to ascertain a thorough understanding of Pluronic effects in tumors. These effects are extremely comprehensive and appear on the level of plasma membranes, mitochondria, and regulation of gene expression selectively in MDR cancer cells. Moreover, it has been demonstrated recently that Pluronics can effectively deplete tumorigenic intrinsically drug-resistant cancer stem cells (CSC). Interestingly, sensitization of MDR and inhibition of drug efflux transporters is not specific or selective to Pluronics. Other amphiphilic polymers have shown similar activities in various experimental models. This review summarizes recent advances of understanding the Pluronic effects in sensitization and prevention of MDR.


Subject(s)
Drug Resistance, Multiple , Drug Resistance, Neoplasm , Neoplasms/drug therapy , Poloxamer/chemistry , ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry , Animals , Apoptosis , Biological Transport , Cell Line, Tumor , Cell Membrane/metabolism , Drug Delivery Systems , Humans , Lipids/chemistry , Membrane Microdomains/metabolism , Mitochondria/metabolism , Neoplastic Stem Cells/cytology , Polyethylene Glycols/chemistry , Propylene Glycols/chemistry
18.
bioRxiv ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38559220

ABSTRACT

Infiltration of immunosuppressive cells into the breast tumor microenvironment (TME) is associated with suppressed effector T cell (Teff) responses, accelerated tumor growth, and poor clinical outcomes. Previous studies from our group and others identified infiltration of immunosuppressive myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) as critical contributors to immune dysfunction in the orthotopic triple-negative breast cancer (TNBC) tumor model limiting the efficacy of adoptive cellular therapy. However, approaches to target these cells specifically in the TME are currently lacking. To overcome this barrier, polymeric micelles nanoparticles (PMNPs) were used for co-delivery of small molecule drugs activating Toll-like receptors 7 and 8 (TLR7/8) and inhibiting PI3K delta. The immunomodulation of the TME by TLR7/8 agonist and PI3K inhibitor altered macrophage polarization, reduced MDSC accumulation and selectively decreased tissue-resident Tregs in the TME, while enhancing the T and B cell adaptive immune response. PMNPs significantly enhanced the anti-tumor activity of local radiation therapy (RT) in mice bearing orthotopic TNBC tumors compared to RT alone. Taken together, these data demonstrate that RT combined with a nanoformulated immunostimulant restructured the TME and has promising potential for future translation combined with RT for patients with TNBC.

20.
Mol Pharm ; 10(1): 360-77, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-23163230

ABSTRACT

Superoxide dismutase 1 (SOD1) efficiently catalyzes dismutation of superoxide, but its poor delivery to the target sites in the body, such as brain, hinders its use as a therapeutic agent for superoxide-associated disorders. Here to enhance the delivery of SOD1 across the blood-brain barrier (BBB) and in neurons the enzyme was conjugated with poly(2-oxazoline) (POx) block copolymers, P(MeOx-b-BuOx) or P(EtOx-b-BuOx), composed of (1) hydrophilic 2-methyl-2-oxazoline (MeOx) or 2-ethyl-2-oxazoline (EtOx) and (2) hydrophobic 2-butyl-2-oxazoline (BuOx) repeating units. The conjugates contained from 2 to 3 POx chains joining the protein amino groups via cleavable -(ss)- or noncleavable -(cc)- linkers at the BuOx block terminus. They retained 30% to 50% of initial SOD1 activity, were conformationally and thermally stable, and assembled in 8 or 20 nm aggregates in aqueous solution. They had little if any toxicity to CATH.a neurons and displayed enhanced uptake in these neurons as compared to native or PEGylated SOD1. Of the two conjugates, SOD1-(cc)-P(MeOx-b-BuOx) and SOD1-(cc)-P(EtOx-b-BuOx), compared, the latter was entering cells 4 to 7 times faster and at 6 h colocalized predominantly with endoplasmic reticulum (41 ± 3%) and mitochondria (21 ± 2%). Colocalization with endocytosis markers and pathway inhibition assays suggested that it was internalized through lipid raft/caveolae, also employed by the P(EtOx-b-BuOx) copolymer. The SOD activity in cell lysates and ability to attenuate angiotensin II (Ang II)-induced superoxide in live cells were increased for this conjugate compared to SOD1 and PEG-SOD1. Studies in mice showed that SOD1-POx had ca. 1.75 times longer half-life in blood than native SOD1 (28.4 vs 15.9 min) and after iv administration penetrated the BBB significantly faster than albumin to accumulate in brain parenchyma. The conjugate maintained high stability both in serum and in brain (77% vs 84% at 1 h postinjection). Its amount taken up by the brain reached a maximum value of 0.08% ID/g (percent of the injected dose taken up per gram of brain) 4 h postinjection. The entry of SOD1-(cc)-P(EtOx-b-BuOx) to the brain was mediated by a nonsaturable mechanism. Altogether, SOD1-POx conjugates are promising candidates as macromolecular antioxidant therapies for superoxide-associated diseases such as Ang II-induced neurocardiovascular diseases.


Subject(s)
Blood-Brain Barrier/metabolism , Brain/metabolism , Oxazoles/chemistry , Oxazoles/pharmacokinetics , Polymers/chemistry , Superoxide Dismutase/chemistry , Superoxide Dismutase/pharmacokinetics , Angiotensin II/metabolism , Animals , Cell Line, Tumor , Drug Delivery Systems/methods , Endocytosis , Endoplasmic Reticulum/metabolism , Half-Life , Male , Mice , Mitochondria/metabolism , Neurons/metabolism , Oxazoles/administration & dosage , Polyethylene Glycols/chemistry , Superoxide Dismutase/administration & dosage , Superoxide Dismutase-1 , Superoxides/metabolism , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL