Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Immunol Res ; 72(3): 450-459, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38233689

ABSTRACT

The objective of this epigenetic study was to investigate the cellular proportions based on DNA methylation signatures and pathways of differentially methylated genes in labial salivary gland (LSG) tissues of individuals with Sjögren's syndrome (SS). Two methylation array datasets from the Gene Expression Omnibus repository (GSE166373 and GSE110007) were utilized, consisting of 159 LSG tissues from 77 SS cases and 82 non-SS controls. The raw data underwent analysis using the Chip Analysis Methylation Pipeline (ChAMP) in R statistical tool, which identified differential methylation probes and regions. The EpiDISH and minfi packages in R were employed to identify proportions of epithelial cells, fibroblasts, and immune cells, as well as immune cell subsets. The results showed that proportions of immune cells were increased, while proportions of epithelial cells and fibroblasts were significantly decreased in the LSG of individuals with SS compared to non-SS controls. Specifically, proportions of B-cells and CD8 T-cells were increased, while CD4 T-cells, Treg, monocytes, and neutrophils were decreased in the LSG of individuals with SS. Pathway analysis indicated that genes involved in immune responses to Epstein-Barr virus infection were significantly hypomethylated in SS, and gene set enrichment analysis highlighted the hypomethylation of genes involved in the somatic recombination of immune receptors in SS. Additionally, Disease Ontology analysis showed enriched pathways related to multiple myeloma, arthritis, and the human immunodeficiency virus. The study also revealed significant hypomethylation of the WAS gene on chromosome X in LSG tissues of individuals with SS. Overall, the findings suggest an increased proportion of B-cells and genes related to B-cell function, as well as hypomethylation of genes involved in immune responses and immune receptor recombination, in LSG tissues of individuals with SS compared to non-SS controls.


Subject(s)
B-Lymphocytes , DNA Methylation , Sjogren's Syndrome , Humans , Sjogren's Syndrome/genetics , Sjogren's Syndrome/immunology , B-Lymphocytes/immunology , Female , Epigenesis, Genetic , Gene Expression Profiling , Middle Aged , Male , Salivary Glands, Minor/immunology , Salivary Glands/immunology , Salivary Glands/metabolism , Salivary Glands/pathology , Adult
2.
Front Microbiol ; 15: 1329926, 2024.
Article in English | MEDLINE | ID: mdl-38389529

ABSTRACT

Introduction: Disruptions of the gut microbiota of preterm infants admitted to the neonatal intensive care unit (NICU) during the first 2 weeks of life are of critical importance. These infants are prone to various complications, including necrotizing enterocolitis (NEC) and sepsis. Studying the gut microbiota will improve outcomes in preterm infants. In the present study, we examined the gut microbiota of preterm infants admitted to the NICU in the first month of life. Methods: Neonates admitted to the NICU were recruited, and stool samples were collected weekly from the seventh day of the infant's life until the 30th day of life. DNA was extracted using a DNeasy Powersoil DNA isolation kit. 16S rRNA gene sequencing targeting the V3-V4 region was performed using the MiSeq platform. Sequenced reads were processed on DADA2 pipeline to obtain an amplicon sequence variant (ASV) table. All bioinformatic and statistical analyses were performed using different packages in the R statistical framework. Results: Fourteen preterm infants were recruited, and 48 samples were collected. Alpha diversity metrics, observed ASV count, and Shannon index were found to have no differences in any clinical variables. Permutational multivariate analysis of variance (PERMANOVA) showed discrimination of neonates by gestational age and administration of probiotics. Differential abundance analysis showed a decreased abundance of Bifidobacterium Breve in extremely preterm infants (gestational age <28 weeks) compared to moderate preterm infants (gestational age 29-32 weeks). Supplementation with probiotics decreased Acinetobacter and increased Bifidobacterium in the gut of preterm neonates regardless of gestational age. Conclusion: Gestational age and probiotic supplementation alter the gut microbiota of preterm infants admitted to the NICU.

3.
Clin Rheumatol ; 43(8): 2607-2613, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38869681

ABSTRACT

Takayasu arteritis (TA) is a chronic granulomatous inflammatory disease affecting the aorta and its branches. Paediatric TA (pTA) may present from 6 months after birth till the adolescent age group. Genetics and pathogenesis of pTA are not fully understood. Earlier studies reported monogenic mutation in NOD2, XIAP, and STAT1 genes in patients with pTA. TA, a relatively rare disease, is more common in geographical pockets, including India. We hypothesized that South Asian patients with pTA, namely, those of Indian subcontinent origin, may have clinically relevant and unique pathogenic variants involving one or more genes, especially those linked to genetically driven vasculitic illnesses, including autoinflammatory pathologies. Children with pTA fulfilling EULAR/PRINTO/PReS classification criteria and presenting with clinical symptoms to the Paediatric Rheumatology clinic of Christian Medical College, Vellore, were included. Blood samples were collected after getting informed consent from parents or guardians and assent forms from children. DNA was extracted from whole blood using the Qiagen DNA extraction kit. Initially, the common variant in Indian population, namely, ADA2 c.139G > A; p.Gly47Arg, was screened, followed by whole exome sequencing. Fourteen children were recruited for the study. Median age of patients was 11 years (4 months-14 years) with a male-to-female ratio of 4:10. Distribution of angiographic subsets by Numano's classification of included children were as follows: type 5 (n = 7), type 4 (n = 5), and type 3 (n = 2). We identified novel variants in ten different genes. This include variants in genes of classical complement pathway, namely, C2, C3, C6, C7, and C9, and other genes, namely, CYBA, SH3BP2, GUCY2C, CTC1, COL5A1, and NLPR3. Two of 14 patients have heterozygous pathogenic variants; this implies that combination of heterozygous variants in C3 and COL5A1 might lead to disease development, suggesting digenic inheritance. One patient has a homozygous variant in CYBA. None of the patients were identified to have ADA2 variants. Whole exome sequencing reveals combination of rare variants in genes C3, COL5A1, and CYBA associated with disease development in children with Takayasu Arteritis. Key Points • We identified novel variants in genes of classical complement pathway, namely, C2, C3, C6, C7, and C9, and other genes, namely, CYBA, SH3BP2, GUCY2C, CTC1, COL5A1, and NLPR3. • Two of 14 patients have heterozygous pathogenic variants in C3 and COL5A1; this may have implications in disease development, suggesting digenic inheritance. • One patient has homozygous variant in CYBA. • None of the patients were identified to have ADA2 variants.


Subject(s)
Exome Sequencing , Takayasu Arteritis , Humans , Female , Takayasu Arteritis/genetics , Male , Child , Pilot Projects , Adolescent , Child, Preschool , India , Mutation , Adenosine Deaminase/genetics , Complement System Proteins/genetics , Genetic Predisposition to Disease , Intercellular Signaling Peptides and Proteins
4.
Immunol Res ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38326692

ABSTRACT

The relapses and refractory disease are a challenge in the management of patients with Takayasu arteritis (TAK). We quantified pathogenic CD4 + memory T helper cells bearing surface markers CD161 and/or p-glycoprotein (MDR1) in patients with TAK. Peripheral blood mononuclear cells of 21 patients with TAK and 16 age-matched controls were stained with anti-CD3, anti-CD4, anti-CD45RA, anti-CD161 and anti-p-glycoprotein antibodies and subjected to flow cytometry by FACS ARIAIII. Eighteen patients underwent follow-up immunophenotyping. Intracellular staining for interleukin-17 and interferon-γ was performed for 18 patients and 11 controls. Surgical arterial biopsies of 6 TAK and 5 non-inflammatory controls were subjected to immunohistochemistry with anti-CD161 and anti-p-glycoprotein. At baseline the frequency of MDR1 + CD4 + and CD161 + MDR1 + CD4 + memory T cells was higher in TAK than controls (p = 0.002 and 0.01, respectively). After stimulation, the frequency of IFN-y + CD161 + cells was higher in TAK than controls (p = 0.028). Modal fluorescence intensity of CD161 + MDR1 + CD45RA - CD4 + cells was higher in active as compared with stable disease (p = 0.041). At 6 months, MDR1 + and CD161 + MDR1 + memory CD4 + T cells decreased significantly only in patients who had complete/partial response to treatment (p = 0.047 and 0.02, respectively). To conclude, MDR1 + and MDR1 + CD161 + CD4 + memory T-helper cells are increased in patients with TAK. These cells decreased only in patients with response to treatment during subsequent follow-up.

SELECTION OF CITATIONS
SEARCH DETAIL