Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Inorganica Chim Acta ; 389: 138-150, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-23420124

ABSTRACT

Copper-dioxygen interactions are of intrinsic importance in a wide range of biological and industrial processes. Here, we present detailed kinetic/thermodynamic studies on the O(2)-binding and arene hydroxylation reactions of a series of xylyl-bridged binuclear copper(I) complexes, where the effects of ligand electronic and structural elements on these reactions are investigated. Ligand 4-pyridyl substituents influence the reversible formation of side-on bound µ-η(2):η(2)-peroxodicopper(II) complexes, with stronger donors leading to more rapid formation and greater thermodynamic stability of product complexes [Cu(II) (2)((R)XYL)(O(2) (2-))](2+). An interaction of the latter with the xylyl π-system is indicated. Subsequent peroxo electrophilic attack on the arene leads to C-H activation and oxygenation with hydroxylated products [Cu(II) (2)((R)XYLO(2-))((-)OH)](2+) being formed. A related unsymmetrical binucleating ligand was also employed. Its corresponding O(2)-adduct [Cu(II) (2)(UN)(O(2) (2-))](2+) is more stable, but primarily because the subsequent decay by hydroxylation is in a relative sense slower. The study emphasizes how ligand electronic effects can and do influence and tune copper(I)-dioxygen complex formation and subsequent reactivity.

2.
Inorg Chem ; 38(9): 1989-1995, 1999 May 03.
Article in English | MEDLINE | ID: mdl-11670976

ABSTRACT

We provide a mechanistic study of a monooxygenase model system and detail low-temperature stopped-flow kinetics studies in acetone as solvent, employing both the use of rapid-scanning diode-array observation and variable high-pressure (20-100 MPa) techniques. The dicopper(I) complex employed is [Cu(2)(H-XYL-H)](2+) (1), with the H-XYL-H ligand wherein a m-xylyl group links two bis[2-(2-pyridyl)ethyl]amine units. This reacts with O(2) reversibly (k(1)/k(-)(1)) giving a peroxo-dicopper(II) intermediate [Cu(2)(H-XYL-H)(O(2))](2+) (2), which thereupon irreversibly (k(2)) reacts by oxygen atom insertion (i.e., hydroxylation) of the xylyl group, producing [Cu(2)(H-XYL-O(-))(OH)](2+) (3). Activation parameters are as follows: k(1), DeltaH() = 2.1 +/- 0.7 kJ/mol, DeltaS() = -174 +/- 3 J/(K mol); k(-)(1), DeltaH() = 80.3 +/- 0.8 kJ/mol, DeltaS() = 77 +/- 3 J/(K mol); k(2), DeltaH() = 58.2 +/- 0.2 kJ/mol, DeltaS() = -5.8 +/- 0.9 J/(K mol). These values are similar to values obtained in a previous study in dichloromethane. At low temperatures and higher concentrations, the situation in acetone is complicated by a pre-equilibrium of 1 to an isomer form. The present study provides the first determination of activation volumes for individual steps in copper monooxygenase reactions. The data and analysis provide that DeltaV()(k(1)) = -15 +/- 2.5 cm(3)/mol and DeltaV()(k(-)(1)) = +4.4 +/- 0.5 cm(3)/mol for formation and dissociation of 2, respectively, while DeltaV()(k(2)) = -4.1 +/- 0.7 cm(3)/mol; a volume profile for the overall reaction has been constructed. The significance of the findings in the present study is described, and the results are compared to those for other systems.

3.
Inorg Chem ; 46(10): 3889-902, 2007 May 14.
Article in English | MEDLINE | ID: mdl-17444630

ABSTRACT

In the further development and understanding of heme-copper O2-reduction chemistry inspired by the active-site chemistry in cytochrome c oxidase, we describe a dioxygen adduct, [(F8TPP)FeIII-(O22-)-CuII(TMPA)](ClO4) (3), formed by addition of O2 to a 1:1 mixture of the porphyrinate-iron(II) complex (F8TPP)FeII (1a) {F8TPP = tetrakis(2,6-difluorophenyl)porphyrinate dianion} and the copper(I) complex [(TMPA)CuI(MeCN)](ClO4) (1b) {TMPA = tris(2-pyridylmethyl)amine}. Complex 3 forms in preference to heme-only or copper-only binuclear products, is remarkably stable {t1/2 (RT; MeCN) approximately 20 min; lambda max = 412 (Soret), 558 nm; EPR silent}, and is formulated as a peroxo complex on the basis of manometry {1a/1b/O2 = 1:1:1}, MALDI-TOF mass spectrometry {16O2, m/z 1239 [(3 + MeCN)+]; 18O2, m/z 1243}, and resonance Raman spectroscopy {nu(O-O) = 808 cm-1; Delta16O2/18O2 = 46 cm-1; Delta16O2/16/18O2 = 23 cm-1}. Consistent with a mu-eta2:eta1 bridging peroxide ligand, two metal-O stretching frequencies are observed {nu(Fe-O) = 533 cm-1, nu(Fe-O-Cu) = 511 cm-1}, and supporting normal coordinate analysis is presented. 2H and 19F NMR spectroscopies reveal that 3 is high-spin {also muB = 5.1 +/- 0.2, Evans method} with downfield-shifted pyrrole and upfield-shifted TMPA resonances, similar to the pattern observed for the structurally characterized mu-oxo complex [(F8TPP)FeIII-O-CuII(TMPA)]+ (4) (known S = 2 system, antiferromagnetically coupled high-spin FeIII and CuII). Mössbauer spectroscopy exhibits a sharp quadrupole doublet (zero field; delta = 0.57 mm/s, |DeltaEQ| = 1.14 mm/s) for 3, with isomer shift and magnetic field dependence data indicative of a peroxide ligand and S = 2 formulation. Both UV-visible-monitored stopped-flow kinetics and Mössbauer spectroscopic studies reveal the formation of heme-only superoxide complex (S)(F8TPP)FeIII-(O2-) (2a) (S = solvent molecule) prior to 3. Thermal decomposition of mu-peroxo complex 3 yields mu-oxo complex 4 with concomitant release of approximately 0.5 mol O2 per mol 3. Characterization of the reaction 1a/1b + O2 --> 2 --> 3 --> 4, presented here, advances our understanding and provides new insights to heme/Cu dioxygen-binding and reduction.


Subject(s)
Copper/chemistry , Heme/chemistry , Iron Compounds/chemistry , Organometallic Compounds/chemistry , Cold Temperature , Deuterium/chemistry , Electrochemistry , Fluorine Radioisotopes/chemistry , Kinetics , Magnetic Resonance Spectroscopy , Oxygen/chemistry , Peroxides/chemistry , Solvents , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectroscopy, Mossbauer , Spectrum Analysis, Raman
4.
Inorg Chem ; 44(5): 1238-47, 2005 Mar 07.
Article in English | MEDLINE | ID: mdl-15732964

ABSTRACT

Recent spectroscopic, kinetics, and structural studies on cytochrome c oxidases (CcOs) suggest that the histidine-tyrosine cross-link at the heme a3-CuB binuclear active site plays a key role in the reductive O2-cleavage process. In this report, we describe dioxygen reactivity of copper and heme/Cu assemblies in which the imidazole-phenol moieties are employed as a part of copper ligand LN4OH (2-{4-[2-(bis-pyridin-2-ylmethyl-amino)-ethyl]-imidazol-1-yl}-4,6-di -tert-butyl-phenol). Stopped-flow kinetic studies reveal that low-temperature oxygenation of [CuI(LN4OH)]+ (1) leads to rapid formation of a copper-superoxo species [CuII(LN4OH)(O2-)]+ (1a), which further reacts with 1 to form the 2:1 Cu:O2 adduct, peroxo complex [{CuII(LN4OH)}2(O2(2-))]2+ (1b). Complex 1b is also short-lived, and a dimer Cu(II)-phenolate complex [CuII(LN4O-)]2(2+) (1c) eventually forms as a final product in the later stage of the oxygenation reaction. Dioxygen reactivities of 1 and its anisole analogue [CuI(LN4OMe)]+ (2) in the presence of a heme complex (F8)FeII (3) (F8 = tetrakis(2,6,-difluorotetraphenyl)-porphyrinate) are also described. Spectroscopic investigations including UV-vis, 1H and 2H NMR, EPR, and resonance Raman spectroscopies along with spectrophotometric titration reveal that low-temperature oxygenation of 1/3 leads to formation of a heme-peroxo-copper species [(F8)FeIII-(O2(2-))-CuII(LN4OH)]+ (4), nu(O-O) = 813 cm(-1). Complex 4 is an S = 2 spin system with strong antiferromagnetic coupling between high-spin iron(III) and copper(II) through a bridging peroxide ligand. A very similar complex [(F8)FeIII-(O2(2-))-CuII(LN4OMe)]+ (5) (nu(O-O) = 815 cm(-1)) can be generated by utilizing the anisole compound 2, which indicates that the cross-linked phenol moiety in 4 does not interact with the bridging peroxo group between heme and copper. This investigation thus reveals that a stable heme-peroxo-copper species can be generated even in the presence of an imidazole-phenol group (i.e., possible electron/proton donor source) in close proximity. Future studies are needed to probe key factors that can trigger the reductive O-O cleavage in CcO model compounds.


Subject(s)
Copper/chemistry , Heme/chemistry , Imidazoles/chemistry , Oxygen/chemistry , Phenols/chemistry , Models, Molecular , Molecular Conformation , Molecular Structure , Spectrum Analysis , Thermodynamics
5.
Inorg Chem ; 44(20): 7014-29, 2005 Oct 03.
Article in English | MEDLINE | ID: mdl-16180864

ABSTRACT

In cytochrome c oxidase synthetic modeling studies, we recently reported a new mu-eta2:eta2-peroxo binding mode in the heteronuclear heme/copper complex [(2L)Fe(III)-(O2(2-))-CuII]+ (6) which is effected by tridentate copper chelation (J. Am. Chem. Soc. 2004, 126, 12716). To establish fundamental coordination and O2-reactivity chemistry, we have studied and describe here (i) the structure and dioxygen reactivity of the copper-free compound (2L)FeII (1), (ii) detailed spectroscopic properties of 6 in comparisons with those of known mu-eta2:eta1 heme-peroxo-copper complexes, (iii) formation of 6 from the reactions of [(2L)FeIICuI]+ (3) and dioxygen by stopped-flow kinetics, and (iv) reactivities of 6 with CO and PPh3. In the absence of copper, 1 serves as a myoglobin model compound possessing a pyridine-bound five-coordinate iron(II)-porphyrinate which undergoes reversible dioxygen binding. Oxygenation of 3 below -60 degrees C generates the heme-peroxo-copper complex 6 with strong antiferromagnetic coupling between high-spin iron(III) and copper(II) to yield an S = 2 spin system. Stopped-flow kinetics in CH2Cl2/6% EtCN show that dioxygen reacts with iron(II) first to form a heme-superoxide moiety, [(EtCN)(2L)FeIII-(O2-)...CuI(EtCN)]+ (5), which further reacts with Cu(I) to generate 6. Compared to those properties of a known mu-eta2:eta1-heme-peroxo-copper complex, 6 has a significantly diminished resonance Raman nu(O-O) stretching frequency at 747 cm(-1) and distinctive visible absorptions at 485, 541, and 572 nm, all of which seem to be characteristics of a mu-eta2:eta2-heme-peroxo-copper system. Addition of CO or PPh3 to 6 yields a bis-CO adduct of 3 or a PPh(3) adduct of 5, the latter with a remaining FeIII-(O2-) moiety.


Subject(s)
Copper/chemistry , Heme/chemistry , Iron/chemistry , Peroxides/chemistry , Ligands , Magnetic Resonance Spectroscopy , Models, Molecular
6.
Inorg Chem ; 42(6): 1800-6, 2003 Mar 24.
Article in English | MEDLINE | ID: mdl-12639112

ABSTRACT

At low temperatures, the mononuclear copper(I) complex of the tetradentate tripodal aliphatic amine Me(6)tren (Me(6)tren = tris(2-dimethylaminoethyl)amine) [Cu(I)(Me(6)tren)(RCN)](+) first reversibly binds dioxygen to form a 1:1 Cu-O(2) species which further reacts reversibly with a second [Cu(I)(Me(6)tren)(RCN)](+) ion to form the dinuclear 2:1 Cu(2)O(2) adduct. The reaction can be observed using low temperature stopped-flow techniques. The copper superoxo complex as well as the peroxo complex were characterized by resonance Raman spectroscopy. The spectral characteristics and full kinetic and thermodynamic results for the reaction of [Cu(I)(Me(6)tren)(RCN)](+) with dioxygen are reported.

7.
J Biol Inorg Chem ; 8(4): 381-93, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12761659

ABSTRACT

The Cu(I)-phenolate complexes (1)LCu and (2)LCu and the Cu(I)-phenol complex [H(2)LCu(CNC(6)H(3)Me(2))]BArF(4) were prepared and structurally characterized by X-ray crystallography, where (1)L(-) and (2)L(-) are ligands comprised of a 2,4-di- tert-butylphenolate linked to 1-isopropyl-1,5-diazacyclooctane or 1,4-diisopropyl-1,4,7-triazacyclononane, respectively. The reduced galactose oxidase (GAO) structural models (1)LCu and (2)LCu were found to be highly reactive with O(2), and through combined stopped-flow kinetic and EPR, UV-vis, and resonance Raman spectroscopic studies of the oxygenation of (2)LCu at low temperature, new intermediates relevant to those postulated for the active site oxidation step of the GAO catalytic cycle were identified. The oxygenation was shown by kinetics experiments to proceed via initial binding of O(2) to yield a green, unusually thermodynamically stable 1:1 adduct, (2)LCu(O(2)). Symmetric (eta(2)) binding of a superoxo ligand was indicated by oxygen-isotope-sensitive features in resonance Raman spectra obtained in batch experiments; peaks at nu((16)O(2))=1120 cm(-1), nu((18)O(16)O)=1093 cm(-1), and nu((18)O(2))=1058 cm(-1) were assigned as O-O stretching vibrations. These data represent the first experimental evidence for such superoxide coordination in complexes of tetradentate tripodal ligands and provide new precedent for how O(2) may bind at the reduced GAO active site. The 1:1 Cu/O(2) adduct subsequently evolves into a metastable purple species that is only observable under conditions of substoichiometric O(2). The kinetics of formation of this transient species are second order overall (rate= k'(2)[(2)LCu(O(2))][(2)LCu]). It exhibits an absorption band with lambda(max)=565 nm (epsilon=17900 M(-1) cm(-1)) and multiple oxygen-isotope-sensitive nu(Cu-O) and nu(O-O) features in the respective regions 500-550 cm(-1) and 700-850 cm(-1) in Raman spectra, with excitation-wavelength-dependent intensities that correlate with the 565 nm absorption feature. On the basis of the combined data available, the presence of multiple isomeric peroxodicopper species in the transient purple solution is postulated.


Subject(s)
Copper/chemistry , Galactose Oxidase/chemical synthesis , Oxygen Consumption/physiology , Phenols/chemistry , Binding Sites/physiology , Copper/metabolism , Galactose Oxidase/metabolism , Ligands , Magnetic Resonance Spectroscopy , Models, Molecular , Organometallic Compounds/chemical synthesis , Organometallic Compounds/metabolism , Oxidation-Reduction , Phenols/metabolism
8.
J Am Chem Soc ; 126(40): 12716-7, 2004 Oct 13.
Article in English | MEDLINE | ID: mdl-15469233

ABSTRACT

A new heme-peroxo-copper complex structural type with mu-eta2:eta2 peroxo ligation has been generated utilizing a heterobinucleating ligand with bis(2-(2-pyridyl)ethyl)amine tridentate chelate for copper. Oxygenation of [(2L)FeIICuI]+ (1) at -80 degrees C in CH2Cl2/6%EtCN, 1 (lambdamax, 426, 530 nm) produces [(2L)FeIII-(O22-)-CuII)]+ (3) (lambdamax, 419, 488, 544, 575 nm). Stopped-flow kinetic/spectroscopic probing reveals that a superoxo complex, [(2L)FeIII-(O2-)...CuI(NCEt)]+ (2) (lambdamax = 544 nm), initially forms, k1 = 5.23 +/- 0.09 x 104 M-1 s-1 (-105 degrees C). Subsequent intramolecular reaction of the copper(I) ion in 2 occurs with k2 = 2.74 +/- 0.04 x 101 s-1 (-105 degrees C), producing 3. Resonance Raman spectroscopy (rR) confirms the peroxo assignment for 3; nu(O-O) = 747 cm-1 (Delta(18O2) = -40 cm-1). In an 16O-18O mixed isotope experiment a single band is observed at 730 cm-1. The low nu(O-O) value and the absence of a splitting of the 730 cm-1 band are indicative of a symmetrical binding of the peroxide group in a side-on mu-eta2:eta2 geometry. This conclusion is supported by X-ray absorption spectroscopy on 3. Copper K-edge EXAFS indicates a five-coordinate metal center: 2 N, 2.028(7) A; 2 O, 1.898(7) A; 1 N, 2.171(12) A. An outer-sphere Fe scatterer is found at 3.62(1) A. The iron center K-edge EXAFS fits to either a five- or six-coordinate metal center: 4 N(pyrrole), approximately 2.1 A; 1,2 O, approximately 1.9 A. A preedge feature (Fe(1s) --> Fe(3d) transition) at 7113.2(2) eV resembles that obtained for a eta2-peroxo ferric heme complex, being weaker and at approximately 1.5 eV lower energy than those found in five-coordinate (P)FeIII-X (in C4v symmetry) complexes. Arguments based on rR properties of relevant peroxo compounds also effectively point to the copper(II) ion in 3 as being side-on bound, leading to the very low O-O stretching frequency observed in comparison to those of heme-peroxo species or heme-peroxo-copper complexes with a tetradentate copper chelate. These investigations derive from interest in establishing relevant and/or fundamental O2 chemistry at heme-copper centers, in relation to heme-copper oxidase active-site chemistry.


Subject(s)
Chelating Agents/chemistry , Copper/chemistry , Ferric Compounds/chemistry , Heme/chemistry , Oxygen/chemistry , Spectrum Analysis, Raman
9.
Inorg Chem ; 42(6): 1807-24, 2003 Mar 24.
Article in English | MEDLINE | ID: mdl-12639113

ABSTRACT

The kinetic and thermodynamic behavior of O(2)-binding to Cu(I) complexes can provide fundamental understanding of copper(I)/dioxygen chemistry, which is of interest in chemical and biological systems. Here we report stopped-flow kinetic investigations of the oxygenation reactions of a series of tetradentate copper(I) complexes [(L(R))Cu(I)(MeCN)](+) (1(R), R=H, Me, tBu, MeO, Me(2)N) in propionitrile (EtCN), tetrahydrofuran (THF), and acetone. The syntheses of 4-pyridyl substituted tris(2-pyridylmethyl)amine ligands (L(R)) and copper(I) complexes are detailed. Variations of ligand electronic properties are manifested in the electrochemistry of 1(R) and nu(CO) of [(L(R))Cu(I)-CO](+) complexes. The kinetic studies in EtCN and THF show that the O(2)-reactions of 1(R) follow the reaction mechanism established for oxygenation of 1(H) in EtCN (J. Am. Chem. Soc. 1993, 115, 9506), involving reversible formation (k(1)/k(-1)) of [(L(R))Cu(II)(O(2-))](+) (2(R)), which further reacts (k(2)/k(-2)) with 1(R) to form the 2:1 Cu(2)O(2) complex [[(L(R))Cu(II)](2)(O(2)(2-))](2+) (3(R)). In EtCN, the rate constants for formation of 2(R) (k(1)) are not dramatically affected by the ligand electronic variations. For R = Me and tBu, the kinetic and thermodynamic parameters are very similar to those of the parent complex (1(H)); e.g., k(1) is in the range 1.2 x 10(4) to 3.1 x 10(4) M(-1) s(-1) at 183 K. With the stronger donors R = MeO and Me(2)N, more significant effects were observed, with the expected increase in thermodynamic stability of resultant 2(R) and 3(R) complexes, and decreased dissociation rates. The modest ligand electronic effects manifested in EtCN are due to the competitive binding of solvent and dioxygen to the copper centers. In THF, a weakly coordinating solvent, the formation rate for 2(H) is much faster (>/=100 times) than that in EtCN, and the thermodynamic stabilities of both the 1:1 (K(1)) and 2:1 (beta = K(1)K(2)) copper-dioxygen species are much higher than those in EtCN (e.g., for 2(H), deltaH(o) (K(1))=-41 kJ mol(-1) in THF versus -29.8 kJ mol(-1) in EtCN; for 3(H), deltaH(o) (beta)=-94 kJ mol(-1) in THF versus -77 kJ mol(-1) in EtCN). In addition, a more significant ligand electronic effect is seen for the oxygenation reactions of 1(MeO) in THF compared to that in EtCN; the thermal stability of superoxo- and peroxocopper complexes are considerably enhanced using L(MeO) compared to L(H). In acetone as solvent, a different reaction mechanism involving dimeric copper(I) species [(L(R))(2)Cu(I)(2)](2+) is proposed for the oxygenation reactions, supported by kinetic analyses, electrical conductivity measurements, and variable-temperature NMR spectroscopic studies. The present study is the first systematic study investigating both solvent medium and ligand electronic effects in reactions forming copper-dioxygen adducts.


Subject(s)
Copper/chemistry , Organometallic Compounds/chemical synthesis , Oxygen/chemistry , Pyridines/chemical synthesis , Electrochemistry , Indicators and Reagents , Kinetics , Ligands , Magnetic Resonance Spectroscopy , Molecular Structure , Nitriles/chemistry , Organometallic Compounds/chemistry , Oxidation-Reduction , Pyridines/chemistry , Temperature , Thermodynamics
10.
J Am Chem Soc ; 124(16): 4170-1, 2002 Apr 24.
Article in English | MEDLINE | ID: mdl-11960420

ABSTRACT

Copper(I)-dioxygen interactions are of great interest due to their role in biological O2-processing as well as their importance in industrial oxidation processes. We describe here the study of systems which lead to new insights concerning the factors which govern Cu(II)-mu-eta2:eta2 (side-on) peroxo versus Cu(III)-bis-mu-oxo species formation. Drastic differences in O2-reactivity of Cu(I) complexes which differ only by a single -CH3 versus -H substituent on the central amine of the tridentate ligands employed are observed. [Cu(MeAN)]B(C6F5)4 (1) (MeAN = N,N,N',N',N'-pentamethyl-dipropylenetriamine) reacts with O2 at -80 degrees C to form almost exclusively the side-on peroxo complex [{CuII(MeAN)}2(O2)]2+ (3) in CH2Cl2, tetrahydrofuran, acetone, and diethyl ether solvents, as characterized by UV-vis and resonance Raman spectroscopies. In sharp contrast, [Cu(AN)]B(C6F5)4 (2) (AN = 3, 3'-iminobis(N,N-dimethyl-propylamine) can support either Cu2O2 structures in a strongly solvent-dependent manner. Extreme behavior is observed in CH2Cl2 solvent, where 1 reacts with O2 giving 3, while 2 forms exclusively the bis-mu-oxo species [{CuIII(AN)}2(O)2]2+ (4Oxo). Stopped-flow kinetics measurements also reveal significant variations in the oxygenation reactions of 1 versus 2, including the observations that 4Oxo forms much faster than does 3; the former decomposes quickly, while the latter is quite stable at 193 K. The solvent-dependence of the bis-mu-oxo versus side-on peroxo preference observed for 2 is opposite to that reported for other known copper(I) complexes; the factors which may be responsible for the unusual behavior of 1/O2 versus 2/O2 (possibly N-H hydrogen bonding in the AN chemistry) are suggested. The factors which affect bis-mu-oxo versus side-on peroxo formation continue to be of interest.


Subject(s)
Amines/chemistry , Copper/chemistry , Organometallic Compounds/chemistry , Oxygen/chemistry , Kinetics
11.
J Am Chem Soc ; 125(3): 634-5, 2003 Jan 22.
Article in English | MEDLINE | ID: mdl-12526654

ABSTRACT

Copper(I)-dioxygen adducts are important in biological and industrial processes. For the first time we explore the relationship between ligand electronics, CuI-O2 adduct formation and exogenous substrate reactivity. The copper(I) complexes [CuI(R-MePY2)]+ (1R, where R = Cl, H, MeO, Me2N) were prepared; where R-MePY2 are 4-pyridyl substituted bis[2-(2-pyridyl)ethyl]methylamine chelates. Both the redox potential of 1R (ranging from E1/2 = -270 mV for 1Cl to -440 mV for 1MeN vs FeCp2/FeCp2+) and nuCO of the CO adducts of 1R (ranging from 2093 cm-1 for 1Cl-CO to 2075 cm-1 for 1Me2N-CO) display modest but expected systematic shifts. Dioxygen readily reacts with 1H, 1MeO, and 1Me2N, forming the side-on peroxo-CuII2 complexes [{CuII(R-MePY2)}2(O2)]2+ (2R, also containing some bis-mu-oxo-CuIII2 isomer), but there is no reaction with 1Cl. Stopped-flow studies in dichloromethane show that the formation of 2Me2N from dioxygen and 1Me2N proceeds with a k = 8.2(6) x 104 M-2 s-1 (183 K, DeltaH = -20.3(6) kJ mol-1, DeltaS = -219(3) J mol-1 K-1). Solutions of 2R readily oxidize exogenous substrates (9,10-dihydroanthracene --> anthracene, tetrahydrofuran (THF) --> 2-hydroxytetrahydrofuran (THF-OH), N,N-dimethylaniline --> N-methylaniline and formaldehyde, benzyl alcohol --> benzaldehyde, benzhydrol --> benzophenone, and methanol --> formaldehyde), forming the bis-mu-hydroxo-CuII2 complexes [{CuII(R-MePY2)(OH)}2]2+ (3R). Product yields increase as the R-group is made more electron-donating, and in some cases are quantitative with 2Me2N. Pseudo-first-order rate constants for THF and methanol oxidation reactions demonstrate a remarkable R-group dependence, again favoring the strongest ligand donor (i.e., R = Me2N). For THF oxidation to THF-OH a nearly 1500-fold increase in reaction rate is observed (kobs = 2(1) x 10-5 s-1 for 2H to 3(1) x 10-2 s-1 for 2Me2N), while methanol oxidation to formaldehyde exhibits an approximately 2000-fold increase (kobs = 5(1) x 10-5 s-1 for 2H to 1(1) x 10-1 s-1 for 2Me2N).


Subject(s)
Copper/chemistry , Organometallic Compounds/chemistry , Oxygen/chemistry , Crystallography, X-Ray , Kinetics , Molecular Structure , Oxidation-Reduction
12.
Proc Natl Acad Sci U S A ; 100(7): 3623-8, 2003 Apr 01.
Article in English | MEDLINE | ID: mdl-12655050

ABSTRACT

The O(2)-reaction chemistry of 1:1 mixtures of (F(8))Fe(II) (1; F(8) = tetrakis(2,6-diflurorophenyl)porphyrinate) and [(L(Me(2))N)Cu(I)](+) (2; L(Me(2))N = N,N-bis(2-[2-(N',N'-4-dimethylamino)pyridyl]ethyl)methylamine) is described, to model aspects of the chemistry occurring in cytochrome c oxidase. Spectroscopic investigations, along with stopped-flow kinetics, reveal that low-temperature oxygenation of 1/2 leads to rapid formation of a heme-superoxo species (F(8))Fe(III)-(O(2)(-)) (3), whether or not 2 is present. Complex 3 subsequently reacts with 2 to form [(F(8))Fe(III)-(O(2)(2-))-Cu(II)(L(Me(2))N)](+) (4), which thermally converts to [(F(8))Fe(III)-(O)-Cu(II)(L(Me(2))N)](+) (5), which has an unusually bent (Fe-O-Cu) bond moiety. Tridentate chelation, compared with tetradentate, is shown to dramatically lower the nu(O-O) values observed in 4 and give rise to the novel structural features in 5.


Subject(s)
Electron Transport Complex IV/chemistry , Electron Transport Complex IV/metabolism , Heme/metabolism , Oxygen/metabolism , Models, Molecular , Protein Binding , Protein Conformation
13.
Inorg Chem ; 43(14): 4115-7, 2004 Jul 12.
Article in English | MEDLINE | ID: mdl-15236520

ABSTRACT

A new tridentate ligand, PYAN, is employed to investigate solvent influences for dioxygen reactivity with [Cu(PYAN)(MeCN)]B(C(6)F(5))(4) (1). Stopped-flow kinetic studies confirm that the adducts [[u(II)(PYAN)]2)(O(2))][B(C(6)F(5))(4)](2) (2(Peroxo)) and [[u(III)(PYAN)]2)(O)(2)][B(C(6)F(5))(4)](2) (2(Oxo)) are in rapid equilibrium. Thermodynamic parameters for the equilibrium between 2(Peroxo) and 2(Oxo) re as follows: THF, deltaH degrees approximately -15.7 kJ/mol, deltaS degrees approximately -83 J/K.mol; acetone, deltaH degrees approximately -15.8 kJ/mol, deltaS degrees approximately -76 J/K.mol. UV-visible absorption and resonance Raman spectroscopic signatures demonstrate that the equilibrium is highly solvent dependent; the mixture is mostly 2(Peroxo) in CH(2)Cl(2), but there are significantly increasing quantities of 2(Oxo) along the series methylene chloride --> diethyl ether --> acetone --> tetrahydrofuran (THF). Copper(II)-N(eq) stretches (239, 243, 244, and 246 cm(-)(1) in CH(2)Cl(2), Et(2)O, acetone, and THF, respectively) are identified for 2(Peroxo), but they are not seen in 2(Oxo), revealing for the first time direct evidence for solvent coordination in the more open 2(Peroxo) structure.


Subject(s)
Copper/chemistry , Organometallic Compounds/chemistry , Oxygen/chemistry , Crystallography, X-Ray , Molecular Structure , Solvents , Spectrum Analysis, Raman/methods
SELECTION OF CITATIONS
SEARCH DETAIL