Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
Add more filters

Publication year range
1.
Blood ; 141(23): 2878-2890, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37018657

ABSTRACT

Iron is an essential cellular metal that is important for many physiological functions including erythropoiesis and host defense. It is absorbed from the diet in the duodenum and loaded onto transferrin (Tf), the main iron transport protein. Inefficient dietary iron uptake promotes many diseases, but mechanisms regulating iron absorption remain poorly understood. By assessing mice that harbor a macrophage-specific deletion of the tuberous sclerosis complex 2 (Tsc2), a negative regulator of mechanistic target of rapamycin complex 1 (mTORC1), we found that these mice possessed various defects in iron metabolism, including defective steady-state erythropoiesis and a reduced saturation of Tf with iron. This iron deficiency phenotype was associated with an iron import block from the duodenal epithelial cells into the circulation. Activation of mTORC1 in villous duodenal CD68+ macrophages induced serine protease expression and promoted local degradation of Tf, whereas the depletion of macrophages in mice increased Tf levels. Inhibition of mTORC1 with everolimus or serine protease activity with nafamostat restored Tf levels and Tf saturation in the Tsc2-deficient mice. Physiologically, Tf levels were regulated in the duodenum during the prandial process and Citrobacter rodentium infection. These data suggest that duodenal macrophages determine iron transfer to the circulation by controlling Tf availability in the lamina propria villi.


Subject(s)
Iron, Dietary , Transferrin , Mice , Animals , Transferrin/metabolism , Iron, Dietary/metabolism , Iron/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Diet , Duodenum/metabolism , Receptors, Transferrin/metabolism
2.
Ann Rheum Dis ; 82(2): 292-300, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36109141

ABSTRACT

OBJECTIVES: A third COVID-19 vaccination is recommended for immunosuppressed patients. However, data on immunogenicity and safety of a third COVID-19 vaccination in patients with immune-mediated inflammatory diseases (IMIDs) are sparse and therefore addressed within this clinical trial. METHODS: 60 immunosuppressed patients and 48 healthy controls (HCs) received a third vaccination with an mRNA vaccine. The primary endpoint was defined as the presence of antibody levels against the receptor-binding domain (RBD)>1500 BAU/mL in patients with IMIDs versus HCs. Further endpoints included differences in neutralising antibodies and cellular immune responses after the third vaccination. Reactogenicity was recorded for 7 days, and safety was evaluated until week 4. RESULTS: Rate of individuals with anti-RBD antibodies>1500 BAU/mL was not significantly different after the third vaccination between patients with IMIDs and HCs (91% vs 100% p=0.101). Anti-RBD and neutralising antibody levels were significantly lower in patients with IMIDs after the third vaccination than in HCs (p=0.002 and p=0.016, respectively). In contrast, fold increase in antibody levels between week 0 and 4 was higher in patients with IMIDs. Treatment with biological (b) disease-modifying anti-rheumatic drugs (DMARD) or combination of bDMARDs and conventional synthetic DMARDs was associated with reduced antibody levels. Enhanced cellular immune response to wild type and Omicron peptide stimulation was observed after the third vaccination. No serious adverse event was attributed to the third vaccination. CONCLUSION: Our clinical trial data support the immunogenicity and safety of a third COVID-19 vaccination in patients with IMIDs. However, effects of DMARD therapy on immunogenicity should be considered. TRIAL REGISTRATION NUMBER: EudraCT No: 2021-002693-10.


Subject(s)
COVID-19 Vaccines , Humans , Antibodies, Viral , Antirheumatic Agents , COVID-19 , COVID-19 Vaccines/adverse effects , Immunogenicity, Vaccine , Immunomodulating Agents , Vaccination
3.
J Autoimmun ; 135: 102981, 2023 02.
Article in English | MEDLINE | ID: mdl-36706534

ABSTRACT

BACKGROUND: A 3rd COVID-19 vaccination is currently recommended for patients under immunosuppression. However, a fast decline of antibodies against the SARS-CoV-2 receptor-binding domain (RBD) of the spike protein has been observed. Currently it remains unclear whether immunosuppressive therapy affects kinetics of humoral and cellular immune responses. METHODS: 50 patients under immunosuppression and 42 healthy controls (HCs) received a 3rd dose of an mRNA-based vaccine and were monitored over a 12-weeks period. Humoral immune response was assessed 4 and 12 weeks after 3rd dose. Antibodies were quantified using the Elecsys Anti-SARS-CoV-2 Spike immunoassay against the receptor-binding domain (RBD) of the spike protein. SARS-CoV-2-specific T cell responses were quantified by IFN-γ ELISpot assays. Adverse events, including SARS-CoV-2 infections, were monitored over a 12-week period. RESULTS: At week 12, reduced anti-RBD antibody levels were observed in IMID patients as compared to HCs (median antibody level 5345 BAU/ml [1781-10,208] versus 9650 BAU/ml [6633-16,050], p < 0.001). Reduction in relative antibody levels was significantly higher in IMID patients as compared to HCs at week 12 (p < 0.001). Lowest anti-RBD antibody levels were detected in IMID patients who received biological disease-modifying anti-rheumatic drugs (DMARDs) or a combination therapy with conventional synthetic and biological DMARDs. Number of SARS-CoV-2-specific T cells against wildtype and Omicron variants remained stable over 12 weeks in IMID patients. No serious adverse events were reported. CONCLUSION: Due to a fast decline in anti-RBD antibodies in IMID patients an early 4th vaccination should be considered in this vulnerable group of patients.


Subject(s)
Antirheumatic Agents , COVID-19 , Humans , COVID-19 Vaccines , Spike Glycoprotein, Coronavirus , SARS-CoV-2 , Antibodies , Immunity, Humoral , Antibodies, Viral , Vaccination
4.
Transpl Int ; 36: 11783, 2023.
Article in English | MEDLINE | ID: mdl-37908675

ABSTRACT

The Banff Digital Pathology Working Group (DPWG) was established with the goal to establish a digital pathology repository; develop, validate, and share models for image analysis; and foster collaborations using regular videoconferencing. During the calls, a variety of artificial intelligence (AI)-based support systems for transplantation pathology were presented. Potential collaborations in a competition/trial on AI applied to kidney transplant specimens, including the DIAGGRAFT challenge (staining of biopsies at multiple institutions, pathologists' visual assessment, and development and validation of new and pre-existing Banff scoring algorithms), were also discussed. To determine the next steps, a survey was conducted, primarily focusing on the feasibility of establishing a digital pathology repository and identifying potential hosts. Sixteen of the 35 respondents (46%) had access to a server hosting a digital pathology repository, with 2 respondents that could serve as a potential host at no cost to the DPWG. The 16 digital pathology repositories collected specimens from various organs, with the largest constituent being kidney (n = 12,870 specimens). A DPWG pilot digital pathology repository was established, and there are plans for a competition/trial with the DIAGGRAFT project. Utilizing existing resources and previously established models, the Banff DPWG is establishing new resources for the Banff community.


Subject(s)
Artificial Intelligence , Kidney Transplantation , Humans , Algorithms , Kidney/pathology
5.
Int J Mol Sci ; 24(20)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37895021

ABSTRACT

ANCA-associated vasculitides (AAV) are rare autoimmune diseases causing inflammation and damage to small blood vessels. New autoantibody biomarkers are needed to improve the diagnosis and treatment of AAV patients. In this study, we aimed to profile the autoantibody repertoire of AAV patients using in-house developed antigen arrays to identify previously unreported antibodies linked to the disease per se, clinical subgroups, or clinical activity. A total of 1743 protein fragments representing 1561 unique proteins were screened in 229 serum samples collected from 137 AAV patients at presentation, remission, and relapse. Additionally, serum samples from healthy individuals and patients with other type of vasculitis and autoimmune-inflammatory conditions were included to evaluate the specificity of the autoantibodies identified in AAV. Autoreactivity against members of the kinesin protein family were identified in AAV patients, healthy volunteers, and disease controls. Anti-KIF4A antibodies were significantly more prevalent in AAV. We also observed possible associations between anti-kinesin antibodies and clinically relevant features within AAV patients. Further verification studies will be needed to confirm these findings.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis , Autoantibodies , Humans , Kinesins , Biomarkers , Proteins/therapeutic use , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/diagnosis
6.
Am J Respir Cell Mol Biol ; 66(1): 64-75, 2022 01.
Article in English | MEDLINE | ID: mdl-34586974

ABSTRACT

Tissue-resident macrophages are of vital importance as they preserve tissue homeostasis in all mammalian organs. Nevertheless, appropriate cell culture models are still limited. Here, we propose a novel culture model to study and expand murine primary alveolar macrophages (AMs), the tissue-resident macrophages of the lung, in vitro over several months. By providing a combination of granulocyte-macrophage colony-stimulating factor, TGFß, and the PPARγ activator rosiglitazone, we maintain and expand mouse ex vivo cultured AMs (mexAMs) over several months. MexAMs maintain typical morphologic features and stably express primary AM surface markers throughout in vitro culture. They respond to microbial ligands and exhibit an AM-like transcriptional profile, including the expression of AM-specific transcription factors. Furthermore, when transferred into AM-deficient mice, mexAMs efficiently engraft in the lung and fulfill key macrophage functions, leading to a significantly reduced surfactant load in those mice. Altogether, mexAMs provide a novel, simple, and versatile tool to study AM behavior in homeostasis and disease settings.


Subject(s)
Macrophages, Alveolar/metabolism , Animals , Animals, Newborn , Cells, Cultured , Disease Models, Animal , Liver/metabolism , Lung/pathology , Lung/physiopathology , Macrophages, Alveolar/pathology , Mice, Inbred C57BL , Phenotype , Pulmonary Alveolar Proteinosis/metabolism , Pulmonary Alveolar Proteinosis/pathology , Pulmonary Alveolar Proteinosis/physiopathology , Transcription, Genetic
7.
J Hepatol ; 77(6): 1619-1630, 2022 12.
Article in English | MEDLINE | ID: mdl-35985549

ABSTRACT

BACKGROUND & AIMS: Surgical resection of the cancerous tissue represents one of the few curative treatment options for neoplastic liver disease. Such partial hepatectomy (PHx) induces hepatocyte hyperplasia, which restores liver function. PHx is associated with bacterial translocation, leading to an immediate immune response involving neutrophils and macrophages, which are indispensable for the priming phase of liver regeneration. Additionally, PHx induces longer-lasting intrahepatic apoptosis. Herein, we investigated the effect of apoptotic extracellular vesicles (aEVs) on neutrophil function and their role in this later phase of liver regeneration. METHODS: A total of 124 patients undergoing PHx were included in this study. Blood levels of the apoptosis marker caspase-cleaved cytokeratin-18 (M30) and circulating aEVs were analyzed preoperatively and on the first and fifth postoperative days. Additionally, the in vitro effects of aEVs on the secretome, phenotype and functions of neutrophils were investigated. RESULTS: Circulating aEVs increased at the first postoperative day and were associated with higher concentrations of M30, which was only observed in patients with complete liver recovery. Efferocytosis of aEVs by neutrophils induced an activated phenotype (CD11bhighCD16highCD66bhighCD62Llow); however, classical inflammatory responses such as NETosis, respiratory burst, degranulation, or secretion of pro-inflammatory cytokines were not observed. Instead, efferocytosing neutrophils released various growth factors including fibroblast growth factor-2 and hepatocyte growth factor (HGF). Accordingly, we observed an increase of HGF-positive neutrophils after PHx and a correlation of plasma HGF with M30 levels. CONCLUSIONS: These data suggest that the clearance of PHx-induced aEVs leads to a population of non-inflammatory but regenerative neutrophils, which may support human liver regeneration. LAY SUMMARY: In this study, we show that the surgical removal of a diseased part of the liver triggers a specific type of programmed cell death in the residual liver tissue. This results in the release of vesicles from dying cells into the blood, where they are cleared by circulating immune cells. These respond by secreting hepatocyte growth factors that could potentially support the regeneration of the liver remnant.


Subject(s)
Extracellular Vesicles , Focal Nodular Hyperplasia , Humans , Hepatectomy , Neutrophils , Biological Transport , Liver Regeneration
8.
Circ Res ; 127(5): 593-606, 2020 08 14.
Article in English | MEDLINE | ID: mdl-32418507

ABSTRACT

RATIONALE: Kidney homeostasis is critically determined by the coordinated activity of the renin-angiotensin system (RAS), including the balanced synthesis of its main effector peptides Ang (angiotensin) II and Ang (1-7). The condition of enzymatic overproduction of Ang II relative to Ang (1-7) is termed RAS dysregulation and leads to cellular signals, which promote hypertension and organ damage, and ultimately progressive kidney failure. ACE2 (angiotensin-converting enzyme 2) and NEP (neprilysin) induce the alternative, and potentially reno-protective axis by enhancing Ang (1-7) production. However, their individual contribution to baseline RAS balance and whether their activities change in chronic kidney disease (CKD) has not yet been elucidated. OBJECTIVE: To examine whether NEP-mediated Ang (1-7) generation exceeds Ang II formation in the healthy kidney compared with diseased kidney. METHODS AND RESULTS: In this exploratory study, we used liquid chromatography-tandem mass spectrometry to measure Ang II and Ang (1-7) synthesis rates of ACE, chymase and NEP, ACE2, PEP (prolyl-endopeptidase), PCP (prolyl-carboxypeptidase) in kidney biopsy homogenates in 11 healthy living kidney donors, and 12 patients with CKD. The spatial expression of RAS enzymes was determined by immunohistochemistry. Healthy kidneys showed higher NEP-mediated Ang (1-7) synthesis than Ang II formation, thus displaying a strong preference towards the reno-protective alternative RAS axis. In contrast, in CKD kidneys higher levels of Ang II were recorded, which originated from mast cell chymase activity. CONCLUSIONS: Ang (1-7) is the dominant RAS peptide in healthy human kidneys with NEP rather than ACE2 being essential for its generation. Severe RAS dysregulation is present in CKD dictated by high chymase-mediated Ang II formation. Kidney RAS enzyme analysis might lead to novel therapeutic approaches for CKD.


Subject(s)
Angiotensin II/metabolism , Angiotensin I/metabolism , Kidney/enzymology , Neprilysin/metabolism , Peptide Fragments/metabolism , Renal Insufficiency, Chronic/enzymology , Renin-Angiotensin System , Aged , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Animals , Case-Control Studies , Chymases/metabolism , Enzyme Inhibitors/pharmacology , Female , Humans , Kidney/drug effects , Male , Mice, Inbred C57BL , Middle Aged , Neprilysin/antagonists & inhibitors
9.
Transpl Int ; 35: 10057, 2022.
Article in English | MEDLINE | ID: mdl-35497886

ABSTRACT

Objectives: Cold ischemia and subsequent reperfusion injury are non-immunologic cornerstones in the development of graft injury after heart transplantation. The nitric oxide donor S-nitroso-human-serum-albumin (S-NO-HSA) is known to attenuate myocardial ischemia-reperfusion (I/R)-injury. We assessed whether donor preservation with S-NO-HSA affects isograft injury and myocardial expression of GATA2 as well as miR-126-3p, which are considered protective against vascular and endothelial injury. Methods: Donor C57BL/6 mice received intravenous (0.1 µmol/kg/h) S-NO-HSA (n = 12), or 0.9% saline (control, n = 11) for 20 min. Donor hearts were stored in cold histidine-tryptophan-α-ketoglutarate-N solution for 12 h and underwent heterotopic, isogenic transplantation, except 5 hearts of each group, which were analysed immediately after preservation. Fibrosis was quantified and expression of GATA2 and miR-126-3p assessed by RT-qPCR after 60 days or immediately after preservation. Results: Fibrosis was significantly reduced in the S-NO-HSA group (6.47% ± 1.76 vs. 11.52% ± 2.16; p = 0.0023; 12 h-S-NO-HSA-hHTX vs. 12 h-control-hHTX). Expression of miR-126-3p was downregulated in all hearts after ischemia compared to native myocardium, but the effect was significantly attenuated when donors received S-NO-HSA (1 ± 0.27 vs. 0.33 ± 0.31; p = 0.0187; 12 h-S-NO-HSA-hHTX vs. 12 h-control-hHTX; normalized expression to U6 snRNA). Conclusion: Donor pre-treatment with S-NO-HSA lead to reduced fibrosis and preservation of myocardial miR-126-3p and GATA2 levels in murine cardiac isografts 60 days after transplantation.


Subject(s)
Heart Transplantation , MicroRNAs , Animals , Fibrosis , Humans , Isografts , Mice , Mice, Inbred C57BL , Myocardium , Serum Albumin, Human , Tissue Donors
10.
Clin Infect Dis ; 73(7): e1719-e1726, 2021 10 05.
Article in English | MEDLINE | ID: mdl-32569354

ABSTRACT

BACKGROUND: Helicobacter pylori is primarily an extracellularly living bacterium. However, seemingly intracellular occurrence can often be detected by immunohistochemical stains. Considering antimicrobial resistance, we investigated the impact of the apparent intracellular H. pylori (aiHp) on treatment failure of first-line triple therapies. METHODS: Gastric biopsies of 814 patients infected with H. pylori naive to treatment were analyzed before and after eradication therapy by immunohistochemistry. Of these, 373 received treatment consisting of amoxicillin, clarithromycin, and proton pump inhibitor (AC/PPI). Availability of polymerase chain reaction-based clarithromycin susceptibility test results from pretreatment gastric biopsies was a precondition for matching 52 aiHp to 52 non-aiHp cases within the AC/PPI group. RESULTS: AiHp were detected mostly in low counts predominantly in corpus biopsies, rarely in antrum biopsies (95.2% vs 24.6%); they were found in 497 (61%) of all patients and in 192 of 373 patients (51.5%) in the AC/PPI group. The eradication rate in aiHp versus non-aiHp cases was 44.4% versus 72.9% in the entire sample and 45.3% versus 66.8% in the AC/PPI group. Among the 104 paired patients, respective values were 46.2% versus 78.8%; in clarithromycin-susceptible cases, 60.6% versus 91.9%. Both aiHp and resistance to clarithromycin proved to be highly significant (P ≤ .001) and independent predictors of eradication failure. Twelve of 13 aiHp cases with a clarithromycin-sensitive strain who failed eradication developed resistance to the antibiotic. CONCLUSIONS: AiHp found by immunohistochemical staining especially in corpus biopsies proved to be a risk factor for failure of first-line triple therapies; occurrence of aiHp should be considered with regard to therapy options.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Amoxicillin/therapeutic use , Anti-Bacterial Agents/therapeutic use , Clarithromycin/therapeutic use , Drug Therapy, Combination , Helicobacter Infections/drug therapy , Humans , Immunohistochemistry , Metronidazole/therapeutic use , Proton Pump Inhibitors/therapeutic use
11.
Int J Mol Sci ; 22(9)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33925027

ABSTRACT

Robust, well-characterized methods for purifying small extracellular vesicles (sEV) from blood are needed before their potential as disease biomarkers can be realized. Here, we compared isolation of sEV from serum by differential ultracentrifugation (DUC) and by exclusion chromatography using commercially available Exo-spin™ columns. We show that sEV can be purified by both methods but Exo-spin™ columns contain copious additional particles recorded by nanoparticle tracking analysis, invalidating its use for quantifying yields. DUC samples contained higher concentrations of exosome specific proteins CD9, CD63 and CD81 and electron microscopy confirmed that most particles in DUC preparations were sEV, whereas Exo-spin™ samples also contained copious co-purified plasma lipids. MACSPlex bead analysis identified multiple exosome surface proteins, with stronger signals in DUC samples, enabling detection of 21 of 37, compared to only 10 in Exo-spin™ samples. Nevertheless, the pattern of expression was consistent in both preparations, indicating that lipids do not interfere with bead-based technologies. Thus, both DUC and Exo-spin™ can be used to isolate sEV from human serum and what is most appropriate depends on the subsequent use of sEV. In summary, Exo-spin™ enables isolation of sEV from blood with vesicle populations similar to the ones recovered by DUC, but with lower concentrations.


Subject(s)
Chromatography, Gel/methods , Extracellular Vesicles/ultrastructure , Ultracentrifugation/methods , Biomarkers/blood , Blotting, Western , Cell-Derived Microparticles/chemistry , Cell-Derived Microparticles/ultrastructure , Enzyme-Linked Immunosorbent Assay , Exosomes/chemistry , Exosomes/ultrastructure , Extracellular Vesicles/chemistry , Flow Cytometry , Humans , Lipoproteins/blood , Lipoproteins/isolation & purification , Microscopy, Electron, Transmission , Nanoparticles/ultrastructure , Serum/chemistry
12.
Kidney Int ; 97(1): 89-94, 2020 01.
Article in English | MEDLINE | ID: mdl-31718844

ABSTRACT

Renal allograft rejection can be prevented by immunological tolerance, which may be associated with de novo formed lymphatic vessels in the donor kidney after transplantation in man. A suitable mouse model of renal allograft rejection in which lymphangiogenesis can be deliberately induced in the graft is critical for elucidating the mechanisms responsible for the association between attenuated transplant rejection and abundance of lymphatic vessels. Here we describe the development of a novel mouse model of rapid renal transplant rejection in which transgenic induction of lymphangiogenesis in the immune-incompatible graft greatly extends its survival time. Thus, our novel approach may facilitate exploitation of lymphangiogenesis in the grafted organ.


Subject(s)
Graft Rejection/prevention & control , Graft Survival/immunology , Kidney Diseases/surgery , Kidney Transplantation/adverse effects , Lymphangiogenesis/immunology , Allografts/immunology , Allografts/pathology , Animals , Disease Models, Animal , Female , Gene Knock-In Techniques , Graft Rejection/immunology , Graft Rejection/pathology , Humans , Kidney/immunology , Kidney/pathology , Longevity/immunology , Lymphatic Vessels/immunology , Lymphatic Vessels/pathology , Male , Mice , Mice, Transgenic , Vascular Endothelial Growth Factor C/genetics , Vascular Endothelial Growth Factor C/metabolism
13.
N Engl J Med ; 377(1): 52-61, 2017 07 06.
Article in English | MEDLINE | ID: mdl-28657829

ABSTRACT

BACKGROUND: Studies of monogenic gastrointestinal diseases have revealed molecular pathways critical to gut homeostasis and enabled the development of targeted therapies. METHODS: We studied 11 patients with abdominal pain and diarrhea caused by early-onset protein-losing enteropathy with primary intestinal lymphangiectasia, edema due to hypoproteinemia, malabsorption, and less frequently, bowel inflammation, recurrent infections, and angiopathic thromboembolic disease; the disorder followed an autosomal recessive pattern of inheritance. Whole-exome sequencing was performed to identify gene variants. We evaluated the function of CD55 in patients' cells, which we confirmed by means of exogenous induction of expression of CD55. RESULTS: We identified homozygous loss-of-function mutations in the gene encoding CD55 (decay-accelerating factor), which lead to loss of protein expression. Patients' T lymphocytes showed increased complement activation causing surface deposition of complement and the generation of soluble C5a. Costimulatory function and cytokine modulation by CD55 were defective. Genetic reconstitution of CD55 or treatment with a complement-inhibitory therapeutic antibody reversed abnormal complement activation. CONCLUSIONS: CD55 deficiency with hyperactivation of complement, angiopathic thrombosis, and protein-losing enteropathy (the CHAPLE syndrome) is caused by abnormal complement activation due to biallelic loss-of-function mutations in CD55. (Funded by the National Institute of Allergy and Infectious Diseases and others.).


Subject(s)
CD55 Antigens/genetics , Complement Activation/genetics , Complement System Proteins/metabolism , Mutation , Protein-Losing Enteropathies/genetics , Thrombosis/genetics , CD55 Antigens/blood , Child , Child, Preschool , Complement Activation/drug effects , Complement Inactivating Agents/pharmacology , Female , Homozygote , Humans , Immunoglobulin A/blood , Infant , Intestine, Small/pathology , Male , Pedigree , Protein-Losing Enteropathies/complications , Statistics, Nonparametric , Syndrome , T-Lymphocytes/metabolism
14.
Curr Opin Nephrol Hypertens ; 29(3): 302-309, 2020 05.
Article in English | MEDLINE | ID: mdl-32132388

ABSTRACT

PURPOSE OF REVIEW: Crescents are classical histopathological lesions found in severe forms of rapidly progressive glomerulonephritis, also referred to as crescentic glomerulonephritis (CGN). Crescent formation is a consequence of diverse upstream pathomechanisms and unraveling these mechanisms is of great interest for improving the management of patients affected by CGN. Thus, in this review, we provide an update on the latest insight into the understanding on how crescents develop and how they resolve. RECENT FINDINGS: Cellular crescents develop from activated parietal epithelial cells (PECs) residing along Bowman's capsule and their formation has as a consequence the decline in glomerular filtration rate (GFR). Cellular crescents can be reversible, but when multilevel growth of PECs associate with an epithelial--mesenchymal transition-like change in cell phenotype, fibrous crescents form, and crescents become irreversible also in terms of GFR recovery. Different molecular pathways trigger the activation of PECs and are a prime therapeutics target in CGN. First, crescent formation requires also vascular injury causing ruptures in the glomerular basement membrane that trigger plasmatic coagulation within Bowman's space. This vascular necrosis can be triggered by different upstream mechanisms, such as small vessel vasculitides, immune complex glomerulonephritis, anti-GBM disease, and C3 glomerulonephritis, that all share complement activation but involve diverse upstream immune mechanisms outside the kidney accessible for therapeutic intervention. SUMMARY: Knowing the upstream mechanisms that triggered crescent formation provides a tool for the development of therapeutic interventions for CGN.


Subject(s)
Glomerulonephritis/etiology , Kidney Glomerulus/pathology , Epithelial Cells/physiology , Glomerular Filtration Rate , Glomerulonephritis/pathology , Glomerulonephritis/physiopathology , Humans , Necrosis
15.
J Am Soc Nephrol ; 30(9): 1641-1658, 2019 09.
Article in English | MEDLINE | ID: mdl-31405951

ABSTRACT

BACKGROUND: GATA3 is a dual-zinc finger transcription factor that regulates gene expression in many developing tissues. In the kidney, GATA3 is essential for ureteric bud branching, and mice without it fail to develop kidneys. In humans, autosomal dominant GATA3 mutations can cause renal aplasia as part of the hypoparathyroidism, renal dysplasia, deafness (HDR) syndrome that includes mesangioproliferative GN. This suggests that GATA3 may have a previously unrecognized role in glomerular development or injury. METHODS: To determine GATA3's role in glomerular development or injury, we assessed GATA3 expression in developing and mature kidneys from Gata3 heterozygous (+/-) knockout mice, as well as injured human and rodent kidneys. RESULTS: We show that GATA3 is expressed by FOXD1 lineage stromal progenitor cells, and a subset of these cells mature into mesangial cells (MCs) that continue to express GATA3 in adult kidneys. In mice, we uncover that GATA3 is essential for normal glomerular development, and mice with haploinsufficiency of Gata3 have too few MC precursors and glomerular abnormalities. Expression of GATA3 is maintained in MCs of adult kidneys and is markedly increased in rodent models of mesangioproliferative GN and in IgA nephropathy, suggesting that GATA3 plays a critical role in the maintenance of glomerular homeostasis. CONCLUSIONS: These results provide new insights on the role GATA3 plays in MC development and response to injury. It also shows that GATA3 may be a novel and robust nuclear marker for identifying MCs in tissue sections.


Subject(s)
GATA3 Transcription Factor/metabolism , Glomerulonephritis/metabolism , Kidney Glomerulus/metabolism , Animals , Cell Movement , Cell Proliferation , Disease Models, Animal , Female , Forkhead Transcription Factors/metabolism , GATA3 Transcription Factor/genetics , Haploinsufficiency , Humans , Kidney Glomerulus/abnormalities , Kidney Glomerulus/embryology , Kidney Glomerulus/pathology , Male , Mesangial Cells/metabolism , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Primary Cell Culture , Rats , Rats, Wistar
16.
Gastroenterology ; 155(1): 130-143.e15, 2018 07.
Article in English | MEDLINE | ID: mdl-29604290

ABSTRACT

BACKGROUND & AIMS: Congenital diarrheal disorders are rare inherited intestinal disorders characterized by intractable, sometimes life-threatening, diarrhea and nutrient malabsorption; some have been associated with mutations in diacylglycerol-acyltransferase 1 (DGAT1), which catalyzes formation of triacylglycerol from diacylglycerol and acyl-CoA. We investigated the mechanisms by which DGAT1 deficiency contributes to intestinal failure using patient-derived organoids. METHODS: We collected blood samples from 10 patients, from 6 unrelated pedigrees, who presented with early-onset severe diarrhea and/or vomiting, hypoalbuminemia, and/or (fatal) protein-losing enteropathy with intestinal failure; we performed next-generation sequencing analysis of DNA from 8 patients. Organoids were generated from duodenal biopsies from 3 patients and 3 healthy individuals (controls). Caco-2 cells and patient-derived dermal fibroblasts were transfected or transduced with vectors that express full-length or mutant forms of DGAT1 or full-length DGAT2. We performed CRISPR/Cas9-guided disruption of DGAT1 in control intestinal organoids. Cells and organoids were analyzed by immunoblot, immunofluorescence, flow cytometry, chromatography, quantitative real-time polymerase chain reaction, and for the activity of caspases 3 and 7. RESULTS: In the 10 patients, we identified 5 bi-allelic loss-of-function mutations in DGAT1. In patient-derived fibroblasts and organoids, the mutations reduced expression of DGAT1 protein and altered triacylglycerol metabolism, resulting in decreased lipid droplet formation after oleic acid addition. Expression of full-length DGAT2 in patient-derived fibroblasts restored formation of lipid droplets. Organoids derived from patients with DGAT1 mutations were more susceptible to lipid-induced cell death than control organoids. CONCLUSIONS: We identified a large cohort of patients with congenital diarrheal disorders with mutations in DGAT1 that reduced expression of its product; dermal fibroblasts and intestinal organoids derived from these patients had altered lipid metabolism and were susceptible to lipid-induced cell death. Expression of full-length wildtype DGAT1 or DGAT2 restored normal lipid metabolism in these cells. These findings indicate the importance of DGAT1 in fat metabolism and lipotoxicity in the intestinal epithelium. A fat-free diet might serve as the first line of therapy for patients with reduced DGAT1 expression. It is important to identify genetic variants associated with congenital diarrheal disorders for proper diagnosis and selection of treatment strategies.


Subject(s)
Diacylglycerol O-Acyltransferase/genetics , Duodenum/metabolism , Fibroblasts/metabolism , Hypoalbuminemia/genetics , Lipid Metabolism Disorders/genetics , Organoids/metabolism , Protein-Losing Enteropathies/genetics , Caco-2 Cells , Case-Control Studies , Caspase 3/metabolism , Caspase 7/metabolism , Child , Child, Preschool , Consanguinity , Dermis/cytology , Diacylglycerol O-Acyltransferase/deficiency , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Netherlands , Phorbols , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA , Turkey
17.
J Immunol ; 199(2): 531-546, 2017 07 15.
Article in English | MEDLINE | ID: mdl-28607115

ABSTRACT

The lysosome-associated membrane protein (LAMP) family includes the dendritic cell endocytic receptors DC-LAMP and CD68, as well as LAMP-1 and LAMP-2. In this study we identify LAMP-1 (CD107a) and LAMP-2 (CD107b) on the surface of human monocyte-derived dendritic cells (MoDC) and show only LAMP-2 is internalized after ligation by specific Abs, including H4B4, and traffics rapidly but transiently to the MHC class II loading compartment, as does Ag conjugated to H4B4. However, pulsing MoDC with conjugates of primary (keyhole limpet hemocyanin; KLH) and recall (Bet v 1) Ags (H4B4*KLH and H4B4*Bet v 1) induced significantly less CD4 cell proliferation than pulsing with native Ag or Ag conjugated to control mAb (ISO*KLH and ISO*Bet v 1). In H4B4*KLH-pulsed MoDC, the duration of KLH residence in MHC class II loading compartments was significantly reduced, as were surface HLA-DR and DR-bound KLH-derived peptides. Paradoxically, MoDC pulsed with H4B4*KLH, but not the other KLH preparations, induced robust proliferation of CD4 cells separated from them by a transwell membrane, indicating factors in the supernatant were responsible. Furthermore, extracellular vesicles from supernatants of H4B4*KLH-pulsed MoDC contained significantly more HLA-DR and KLH than those purified from control MoDC, and KLH was concentrated specifically in exosomes that were a uniquely effective source of Ag in standard T cell proliferation assays. In summary, we identify LAMP-2 as an endocytic receptor on human MoDC that routes cargo into unusual Ag processing pathways, which reduces surface expression of Ag-derived peptides while selectively enriching Ag within immunogenic exosomes. This novel pathway has implications for the initiation of immune responses both locally and at distant sites.


Subject(s)
Antigen Presentation , Dendritic Cells/immunology , Exosomes/immunology , Lysosomal-Associated Membrane Protein 2/metabolism , Animals , Antibody Formation , CD4-Positive T-Lymphocytes/immunology , HLA Antigens/immunology , Hemocyanins/immunology , Humans , Lymphocyte Activation , Lysosomal-Associated Membrane Protein 1/genetics , Lysosomal-Associated Membrane Protein 1/immunology , Lysosomal-Associated Membrane Protein 2/genetics , Lysosomal-Associated Membrane Protein 2/immunology , Mice , Monocytes/immunology , Peptides/immunology , Receptors, Cell Surface/immunology , Receptors, Cell Surface/metabolism
18.
J Am Soc Nephrol ; 29(3): 1020-1029, 2018 03.
Article in English | MEDLINE | ID: mdl-29282226

ABSTRACT

Atypical HUS (aHUS) is a disorder most commonly caused by inherited defects of the alternative pathway of complement, or the proteins that regulate this pathway, and life-threatening episodes of aHUS can be provoked by pregnancy. We retrospectively and prospectively investigated 27 maternal and fetal pregnancy outcomes in 14 women with aHUS from the Vienna Thrombotic Microangiopathy Cohort. Seven pregnancies (26%) were complicated by pregnancy-associated aHUS (p-aHUS), of which three appeared to be provoked by infection, bleeding, and curettage, and three individuals were considered to have preeclampsia/HELLP syndrome before the definitive diagnosis of p-aHUS was made. Mutations in genes that encode the complement alternative pathway proteins or the molecules that regulate this pathway were detected in 71% of the women, with no relationship to pregnancy outcome. Twenty-one pregnancies (78%) resulted in a live birth, two preterm infants were stillborn, and four pregnancies resulted in early spontaneous abortions. Although short-term renal outcome was good in most women, long-term renal outcome was poor; among the 14 women, four had CKD stage 1-4, five had received a renal allograft, and three were dialysis-dependent at study end. We prospectively followed nine pregnancies of four women and treated six of these pregnancies with prophylactic plasma infusions (one pregnancy resulted in p-aHUS, one intrauterine fetal death occurred, and seven pregancies were uneventful). Our study emphasizes the frequency of successful pregnancies in women with aHUS. Close monitoring of such pregnancies for episodes of thrombotic microangiopathy is essential but, the best strategy to prevent these episodes remains unclear.


Subject(s)
Atypical Hemolytic Uremic Syndrome/complications , Atypical Hemolytic Uremic Syndrome/physiopathology , Kidney Failure, Chronic/physiopathology , Pregnancy Complications/etiology , Thrombotic Microangiopathies/etiology , Abortion, Spontaneous/etiology , Adult , Atypical Hemolytic Uremic Syndrome/genetics , Atypical Hemolytic Uremic Syndrome/therapy , Complement Pathway, Alternative/genetics , Disease Progression , Female , Fetal Death/etiology , Humans , Infant, Newborn , Kidney Failure, Chronic/etiology , Kidney Failure, Chronic/therapy , Live Birth , Male , Middle Aged , Mutation , Plasma , Pregnancy , Pregnancy Complications/genetics , Pregnancy Complications/therapy , Prospective Studies , Retrospective Studies , Stillbirth , Young Adult
19.
Int J Mol Sci ; 20(3)2019 Jan 26.
Article in English | MEDLINE | ID: mdl-30691124

ABSTRACT

Kidney injury due to focal segmental glomerulosclerosis (FSGS) is the most common primary glomerular disorder causing end-stage renal disease. Homozygous mutations in either glomerular basement membrane or slit diaphragm genes cause early renal failure. Heterozygous carriers develop renal symptoms late, if at all. In contrast to mutations in slit diaphragm genes, hetero- or hemizygous mutations in the X-chromosomal COL4A5 Alport gene have not yet been recognized as a major cause of kidney injury by FSGS. We identified cases of FSGS that were unexpectedly diagnosed: In addition to mutations in the X-chromosomal COL4A5 type IV collagen gene, nephrin and podocin polymorphisms aggravated kidney damage, leading to FSGS with ruptures of the basement membrane in a toddler and early renal failure in heterozygous girls. The results of our case series study suggest a synergistic role for genes encoding basement membrane and slit diaphragm proteins as a cause of kidney injury due to FSGS. Our results demonstrate that the molecular genetics of different players in the glomerular filtration barrier can be used to evaluate causes of kidney injury. Given the high frequency of X-chromosomal carriers of Alport genes, the analysis of genes involved in the organization of podocyte architecture, the glomerular basement membrane, and the slit diaphragm will further improve our understanding of the pathogenesis of FSGS and guide prognosis of and therapy for hereditary glomerular kidney diseases.


Subject(s)
Acute Kidney Injury/etiology , Collagen Type IV/genetics , Glomerulosclerosis, Focal Segmental/genetics , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Nephritis, Hereditary/genetics , Polymorphism, Single Nucleotide , Acute Kidney Injury/genetics , Adult , Child , Child, Preschool , Female , Genetic Predisposition to Disease , Glomerulosclerosis, Focal Segmental/complications , Hemizygote , Heterozygote , Humans , Infant , Male , Mutation , Pedigree
20.
Immunol Cell Biol ; 2018 May 24.
Article in English | MEDLINE | ID: mdl-29797348

ABSTRACT

Extracellular vesicles, released from cells, are important for intercellular communication. They are heterogeneous but fall into two broad categories based on origin and function: microvesicles formed by outward budding from the plasma membrane; and exosomes that originate as intraluminal vesicles in multivesicular endosomes that fuse with the plasma membrane to release them. Extracellular vesicles generally and exosomes in particular have powerful effects on specific immune responses, and recent advances highlight their potential therapeutic uses. Dendritic cells (DC) that have internalized antigen release exosomes that express MHC class II molecules loaded with antigenic peptides, co-stimulatory molecules and intact antigen. Depending on the setting, these stimulate CD4 T-cell proliferation either directly or only in the context of accessory antigen naïve DC. Here, we discuss the reasons for this; and review current knowledge about the loading of antigen, class II and other cargo into exosomes released by DC and other professional antigen-presenting cells in the context of advances in exosome biology more generally.

SELECTION OF CITATIONS
SEARCH DETAIL