Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters

Publication year range
1.
PLoS Comput Biol ; 19(2): e1010289, 2023 02.
Article in English | MEDLINE | ID: mdl-36791144

ABSTRACT

Accurate treatment adjustment to physical activity (PA) remains a challenging problem in type 1 diabetes (T1D) management. Exercise-driven effects on glucose metabolism depend strongly on duration and intensity of the activity, and are highly variable between patients. In-silico evaluation can support the development of improved treatment strategies, and can facilitate personalized treatment optimization. This requires models of the glucose-insulin system that capture relevant exercise-related processes. We developed a model of glucose-insulin regulation that describes changes in glucose metabolism for aerobic moderate- to high-intensity PA of short and prolonged duration. In particular, we incorporated the insulin-independent increase in glucose uptake and production, including glycogen depletion, and the prolonged rise in insulin sensitivity. The model further includes meal absorption and insulin kinetics, allowing simulation of everyday scenarios. The model accurately predicts glucose dynamics for varying PA scenarios in a range of independent validation data sets, and full-day simulations with PA of different timing, duration and intensity agree with clinical observations. We personalized the model on data from a multi-day free-living study of children with T1D by adjusting a small number of model parameters to each child. To assess the use of the personalized models for individual treatment evaluation, we compared subject-specific treatment options for PA management in replay simulations of the recorded data with altered meal, insulin and PA inputs.


Subject(s)
Diabetes Mellitus, Type 1 , Humans , Child , Adult , Blood Glucose/metabolism , Precision Medicine , Exercise/physiology , Glucose , Insulin , Hypoglycemic Agents/therapeutic use
2.
BMC Bioinformatics ; 24(Suppl 1): 460, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38062373

ABSTRACT

BACKGROUND: Synthetic biologists use and combine diverse biological parts to build systems such as genetic circuits that perform desirable functions in, for example, biomedical or industrial applications. Computer-aided design methods have been developed to help choose appropriate network structures and biological parts for a given design objective. However, they almost always model the behavior of the network in an average cell, despite pervasive cell-to-cell variability. RESULTS: Here, we present a computational framework and an efficient algorithm to guide the design of synthetic biological circuits while accounting for cell-to-cell variability explicitly. Our design method integrates a Non-linear Mixed-Effects (NLME) framework into a Markov Chain Monte-Carlo (MCMC) algorithm for design based on ordinary differential equation (ODE) models. The analysis of a recently developed transcriptional controller demonstrates first insights into design guidelines when trying to achieve reliable performance under cell-to-cell variability. CONCLUSION: We anticipate that our method not only facilitates the rational design of synthetic networks under cell-to-cell variability, but also enables novel applications by supporting design objectives that specify the desired behavior of cell populations.


Subject(s)
Gene Regulatory Networks , Genes, Synthetic , Algorithms , Markov Chains , Computer-Aided Design , Synthetic Biology/methods
3.
J Infect Dis ; 225(8): 1482-1493, 2022 04 19.
Article in English | MEDLINE | ID: mdl-34415049

ABSTRACT

BACKGROUND: Influenza vaccination efficacy is reduced after hematopoietic stem cell transplantation (HSCT) and patient factors determining vaccination outcomes are still poorly understood. METHODS: We investigated the antibody response to seasonal influenza vaccination in 135 HSCT patients and 69 healthy volunteers (HVs) in a prospective observational multicenter cohort study. We identified patient factors associated with hemagglutination inhibition titers against A/California/2009/H1N1, A/Texas/2012/H3N2, and B/Massachusetts/2012 by multivariable regression on the observed titer levels and on seroconversion/seroprotection categories for comparison. RESULTS: Both regression approaches yielded consistent results but regression on titers estimated associations with higher precision. HSCT patients required 2 vaccine doses to achieve average responses comparable to a single dose in HVs. Prevaccination titers were positively associated with time after transplantation, confirming that HSCT patients can elicit potent antibody responses. However, an unrelated donor, absolute lymphocyte counts below the normal range, and treatment with calcineurin inhibitors lowered the odds of responding. CONCLUSIONS: HSCT patients show a highly heterogeneous vaccine response but, overall, patients benefited from the booster shot and can acquire seroprotective antibodies over the years after transplantation. Several common patient factors lower the odds of responding, urging identification of additional preventive strategies in the poorly responding groups. CLINICAL TRIALS REGISTRATION: NCT03467074.


Subject(s)
Hematopoietic Stem Cell Transplantation , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Antibodies, Viral , Antibody Formation , Cohort Studies , Humans , Influenza A Virus, H3N2 Subtype , Influenza Vaccines/adverse effects , Influenza, Human/prevention & control , Seasons , Vaccination
4.
Bioinformatics ; 37(18): 2938-2945, 2021 09 29.
Article in English | MEDLINE | ID: mdl-33755125

ABSTRACT

MOTIVATION: Random sampling of metabolic fluxes can provide a comprehensive description of the capabilities of a metabolic network. However, current sampling approaches do not model thermodynamics explicitly, leading to inaccurate predictions of an organism's potential or actual metabolic operations. RESULTS: We present a probabilistic framework combining thermodynamic quantities with steady-state flux constraints to analyze the properties of a metabolic network. It includes methods for probabilistic metabolic optimization and for joint sampling of thermodynamic and flux spaces. Applied to a model of Escherichia coli, we use the methods to reveal known and novel mechanisms of substrate channeling, and to accurately predict reaction directions and metabolite concentrations. Interestingly, predicted flux distributions are multimodal, leading to discrete hypotheses on E.coli's metabolic capabilities. AVAILABILITY AND IMPLEMENTATION: Python and MATLAB packages available at https://gitlab.com/csb.ethz/pta. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Metabolic Networks and Pathways , Models, Biological , Thermodynamics , Escherichia coli/metabolism
5.
Blood ; 133(8): 816-819, 2019 02 21.
Article in English | MEDLINE | ID: mdl-30301719

ABSTRACT

The molecular mechanisms governing the transition from hematopoietic stem cells (HSCs) to lineage-committed progenitors remain poorly understood. Transcription factors (TFs) are powerful cell intrinsic regulators of differentiation and lineage commitment, while cytokine signaling has been shown to instruct the fate of progenitor cells. However, the direct regulation of differentiation-inducing hematopoietic TFs by cell extrinsic signals remains surprisingly difficult to establish. PU.1 is a master regulator of hematopoiesis and promotes myeloid differentiation. Here we report that tumor necrosis factor (TNF) can directly and rapidly upregulate PU.1 protein in HSCs in vitro and in vivo. We demonstrate that in vivo, niche-derived TNF is the principal PU.1 inducing signal in HSCs and is both sufficient and required to relay signals from inflammatory challenges to HSCs.


Subject(s)
Cell Differentiation , Hematopoietic Stem Cells/metabolism , Myelopoiesis , Proto-Oncogene Proteins/metabolism , Signal Transduction , Trans-Activators/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Hematopoietic Stem Cells/pathology , Inflammation/metabolism , Inflammation/pathology , Mice , Stem Cell Niche
6.
Yeast ; 37(5-6): 336-347, 2020 05.
Article in English | MEDLINE | ID: mdl-32065695

ABSTRACT

Saccharomyces cerevisiae cells grown in a small volume of chemically defined media neither reach the desired cell density nor grow at a fast enough rate to scale down the volume and increase the sample number of classical biochemical assays, as the detection limit of the readout often requires a high number of cells as an input. To ameliorate this problem, we developed and optimised a new high cell density (HCD) medium for S. cerevisiae. Starting from a widely used synthetic medium composition, we systematically varied the concentrations of all components without the addition of other compounds. We used response surface methodology to develop and optimise the five components of the medium: glucose, yeast nitrogen base, amino acids, monosodium glutamate, and inositol. We monitored growth, cell number, and cell size to ensure that the optimisation was towards a greater density of cells rather than just towards an increase in biomass (i.e., larger cells). Cells grown in the final medium, HCD, exhibit growth more similar to the complex medium yeast extract peptone dextrose (YPD) than to the synthetic defined (SD) medium. Whereas the final cell density of HCD prior to the diauxic shift is increased compared with YPD and SD about threefold and tenfold, respectively. We found normal cell-cycle behaviour throughout the growth phases by monitoring DNA content and protein expression using fluorescent reporters. We also ensured that HCD media could be used with a variety of strains and that they allow selection for all common yeast auxotrophic markers.


Subject(s)
Culture Media/chemistry , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/genetics , Amino Acids/metabolism , Amylases/metabolism , Biomass , Cell Cycle , Cell Size , Fungal Proteins
7.
Mol Genet Genomics ; 289(5): 727-34, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24728588

ABSTRACT

Systems biology aims at creating mathematical models, i.e., computational reconstructions of biological systems and processes that will result in a new level of understanding-the elucidation of the basic and presumably conserved "design" and "engineering" principles of biomolecular systems. Thus, systems biology will move biology from a phenomenological to a predictive science. Mathematical modeling of biological networks and processes has already greatly improved our understanding of many cellular processes. However, given the massive amount of qualitative and quantitative data currently produced and number of burning questions in health care and biotechnology needed to be solved is still in its early phases. The field requires novel approaches for abstraction, for modeling bioprocesses that follow different biochemical and biophysical rules, and for combining different modules into larger models that still allow realistic simulation with the computational power available today. We have identified and discussed currently most prominent problems in systems biology: (1) how to bridge different scales of modeling abstraction, (2) how to bridge the gap between topological and mechanistic modeling, and (3) how to bridge the wet and dry laboratory gap. The future success of systems biology largely depends on bridging the recognized gaps.


Subject(s)
Biomedical Research/standards , Systems Biology , Humans , Models, Biological , Reference Standards
8.
Adv Healthc Mater ; 12(6): e2202506, 2023 01.
Article in English | MEDLINE | ID: mdl-36651229

ABSTRACT

Despite increasing survival rates of pediatric leukemia patients over the past decades, the outcome of some leukemia subtypes has remained dismal. Drug sensitivity and resistance testing on patient-derived leukemia samples provide important information to tailor treatments for high-risk patients. However, currently used well-based drug screening platforms have limitations in predicting the effects of prodrugs, a class of therapeutics that require metabolic activation to become effective. To address this issue, a microphysiological drug-testing platform is developed that enables co-culturing of patient-derived leukemia cells, human bone marrow mesenchymal stromal cells, and human liver microtissues within the same microfluidic platform. This platform also enables to control the physical interaction between the diverse cell types. Herein, it is made possible to recapitulate hepatic prodrug activation of ifosfamide in their platform, which is very difficult in traditional well-based assays. By testing the susceptibility of primary patient-derived leukemia samples to the prodrug ifosfamide, sample-specific sensitivities to ifosfamide in primary leukemia samples are identified. The microfluidic platform is found to enable the recapitulation of physiologically relevant conditions and the testing of prodrugs including short-lived and unstable metabolites. The platform holds great potential for clinical translation and precision chemotherapy selection.


Subject(s)
Leukemia , Prodrugs , Humans , Child , Prodrugs/pharmacology , Prodrugs/therapeutic use , Prodrugs/metabolism , Ifosfamide/pharmacology , Ifosfamide/therapeutic use , Ifosfamide/metabolism , Leukemia/metabolism , Coculture Techniques , Liver/metabolism
9.
Adv Exp Med Biol ; 736: 3-17, 2012.
Article in English | MEDLINE | ID: mdl-22161320

ABSTRACT

The analysis of complex biological networks has traditionally relied on decomposition into smaller, semi-autonomous units such as individual signaling pathways. With the increased scope of systems biology (models), rational approaches to modularization have become an important topic. With increasing acceptance of de facto modularity in biology, widely different definitions of what constitutes a module have sparked controversies. Here, we therefore review prominent classes of modular approaches based on formal network representations. Despite some promising research directions, several important theoretical challenges remain open on the way to formal, function-centered modular decompositions for dynamic biological networks.


Subject(s)
Metabolic Networks and Pathways/physiology , Models, Biological , Signal Transduction/physiology , Systems Biology/methods , Algorithms , Animals , Gene Regulatory Networks , Humans , Metabolic Networks and Pathways/genetics , Protein Binding , Proteins/genetics , Proteins/metabolism , Signal Transduction/genetics
10.
Front Endocrinol (Lausanne) ; 12: 723812, 2021.
Article in English | MEDLINE | ID: mdl-34489869

ABSTRACT

Regular exercise is beneficial and recommended for people with type 1 diabetes, but increased glucose demand and changes in insulin sensitivity require treatment adjustments to prevent exercise-induced hypoglycemia. Several different adjustment strategies based on insulin bolus reductions and additional carbohydrate intake have been proposed, but large inter- and intraindividual variability and studies using different exercise duration, intensity, and timing impede a direct comparison of their effects. In this study, we use a mathematical model of the glucoregulatory system and implement published guidelines and strategies in-silico to provide a direct comparison on a single 'typical' person on a standard day with three meals. We augment this day by a broad range of exercise scenarios combining different intensity and duration of the exercise session, and different timing with respect to adjacent meals. We compare the resulting blood glucose trajectories and use summary measures to evaluate the time-in-range and risk scores for hypo- and hyperglycemic events for each simulation scenario, and to determine factors that impede prevention of hypoglycemia events. Our simulations suggest that the considered strategies and guidelines successfully minimize the risk for acute hypoglycemia. At the same time, all adjustments substantially increase the risk of late-onset hypoglycemia compared to no adjustment in many cases. We also find that timing between exercise and meals and additional carbohydrate intake during exercise can lead to non-intuitive behavior due to superposition of meal- and exercise-related glucose dynamics. Increased insulin sensitivity appears as a major driver of non-acute hypoglycemic events. Overall, our results indicate that further treatment adjustment might be required both immediately following exercise and up to several hours later, but that the intricate interplay between different dynamics makes it difficult to provide generic recommendations. However, our simulation scenarios extend substantially beyond the original scope of each model component and proper model validation is warranted before applying our in-silico results in a clinical setting.


Subject(s)
Computer Simulation , Diabetes Mellitus, Type 1/drug therapy , Drug Dosage Calculations , Exercise/physiology , Insulin/administration & dosage , Blood Glucose/drug effects , Blood Glucose/metabolism , Diabetes Mellitus, Type 1/blood , Dietary Carbohydrates/administration & dosage , Guideline Adherence , Humans , Hypoglycemia/blood , Hypoglycemia/chemically induced , Hypoglycemia/prevention & control , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/adverse effects , Insulin/adverse effects , Insulin Resistance , Meals , Models, Theoretical , Precision Medicine/methods
11.
Cell Syst ; 8(1): 15-26.e11, 2019 01 23.
Article in English | MEDLINE | ID: mdl-30638813

ABSTRACT

Single-cell time-lapse data provide the means for disentangling sources of cell-to-cell and intra-cellular variability, a key step for understanding heterogeneity in cell populations. However, single-cell analysis with dynamic models is a challenging open problem: current inference methods address only single-gene expression or neglect parameter correlations. We report on a simple, flexible, and scalable method for estimating cell-specific and population-average parameters of non-linear mixed-effects models of cellular networks, demonstrating its accuracy with a published model and dataset. We also propose sensitivity analysis for identifying which biological sub-processes quantitatively and dynamically contribute to cell-to-cell variability. Our application to endocytosis in yeast demonstrates that dynamic models of realistic size can be developed for the analysis of single-cell data and that shifting the focus from single reactions or parameters to nuanced and time-dependent contributions of sub-processes helps biological interpretation. Generality and simplicity of the approach will facilitate customized extensions for analyzing single-cell dynamics.


Subject(s)
Single-Cell Analysis/methods , Systems Biology/methods , Humans
12.
Proteomics ; 8(4): 650-72, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18297649

ABSTRACT

LC-MS-based approaches have gained considerable interest for the analysis of complex peptide or protein mixtures, due to their potential for full automation and high sampling rates. Advances in resolution and accuracy of modern mass spectrometers allow new analytical LC-MS-based applications, such as biomarker discovery and cross-sample protein identification. Many of these applications compare multiple LC-MS experiments, each of which can be represented as a 2-D image. In this article, we survey current approaches to LC-MS image alignment. LC-MS image alignment corrects for experimental variations in the chromatography and represents a computational key technology for the comparison of LC-MS experiments. It is a required processing step for its two major applications: biomarker discovery and protein identification. Along with descriptions of the computational analysis approaches, we discuss their relative merits and potential pitfalls.


Subject(s)
Biomarkers/analysis , Chromatography, High Pressure Liquid , Mass Spectrometry , Proteins/analysis , Proteomics/methods , Algorithms , Computational Biology/methods , Electronic Data Processing , Peptide Library , Proteins/isolation & purification , Reproducibility of Results , Validation Studies as Topic
13.
ACS Synth Biol ; 7(3): 922-932, 2018 03 16.
Article in English | MEDLINE | ID: mdl-29486123

ABSTRACT

Robotic automation in synthetic biology is especially relevant for liquid handling to facilitate complex experiments. However, research tasks that are not highly standardized are still rarely automated in practice. Two main reasons for this are the substantial investments required to translate molecular biological protocols into robot programs, and the fact that the resulting programs are often too specific to be easily reused and shared. Recent developments of standardized protocols and dedicated programming languages for liquid-handling operations addressed some aspects of ease-of-use and portability of protocols. However, either they focus on simplicity, at the expense of enabling complex protocols, or they entail detailed programming, with corresponding skills and efforts required from the users. To reconcile these trade-offs, we developed Roboliq, a software system that uses artificial intelligence (AI) methods to integrate (i) generic formal, yet intuitive, protocol descriptions, (ii) complete, but usually hidden, programming capabilities, and (iii) user-system interactions to automatically generate executable, optimized robot programs. Roboliq also enables high-level specifications of complex tasks with conditional execution. To demonstrate the system's benefits for experiments that are difficult to perform manually because of their complexity, duration, or time-critical nature, we present three proof-of-principle applications for the reproducible, quantitative characterization of GFP variants.


Subject(s)
Robotics/methods , Automation , Green Fluorescent Proteins/metabolism , Hydrogen-Ion Concentration , Mutant Proteins/chemistry , Osmolar Concentration , Protein Folding
14.
Microsyst Nanoeng ; 4: 8, 2018.
Article in English | MEDLINE | ID: mdl-31057898

ABSTRACT

Growth rate is a widely studied parameter for various cell-based biological studies. Growth rates of cell populations can be monitored in chemostats and micro-chemostats, where nutrients are continuously replenished. Here, we present an integrated microfluidic platform that enables long-term culturing of non-adherent cells as well as parallel and mutually independent continuous monitoring of (i) growth rates of cells by means of impedance measurements and of (ii) specific other cellular events by means of high-resolution optical or fluorescence microscopy. Yeast colonies were grown in a monolayer under culturing pads, which enabled high-resolution microscopy, as all cells were in the same focal plane. Upon cell growth and division, cells leaving the culturing area passed over a pair of electrodes and were counted through impedance measurements. The impedance data could then be used to directly determine the growth rates of the cells in the culturing area. The integration of multiple culturing chambers with sensing electrodes enabled multiplexed long-term monitoring of growth rates of different yeast strains in parallel. As a demonstration, we modulated the growth rates of engineered yeast strains using calcium. The results indicated that impedance measurements provide a label-free readout method to continuously monitor the changes in the growth rates of the cells without compromising high-resolution optical imaging of single cells.

15.
BMC Bioinformatics ; 8: 102, 2007 Mar 26.
Article in English | MEDLINE | ID: mdl-17386090

ABSTRACT

BACKGROUND: Mass spectrometry based peptide mass fingerprints (PMFs) offer a fast, efficient, and robust method for protein identification. A protein is digested (usually by trypsin) and its mass spectrum is compared to simulated spectra for protein sequences in a database. However, existing tools for analyzing PMFs often suffer from missing or heuristic analysis of the significance of search results and insufficient handling of missing and additional peaks. RESULTS: We present an unified framework for analyzing Peptide Mass Fingerprints that offers a number of advantages over existing methods: First, comparison of mass spectra is based on a scoring function that can be custom-designed for certain applications and explicitly takes missing and additional peaks into account. The method is able to simulate almost every additive scoring scheme. Second, we present an efficient deterministic method for assessing the significance of a protein hit, independent of the underlying scoring function and sequence database. We prove the applicability of our approach using biological mass spectrometry data and compare our results to the standard software Mascot. CONCLUSION: The proposed framework for analyzing Peptide Mass Fingerprints shows performance comparable to Mascot on small peak lists. Introducing more noise peaks, we are able to keep identification rates at a similar level by using the flexibility introduced by scoring schemes.


Subject(s)
Databases, Protein , Peptide Mapping/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/isolation & purification , Mass Spectrometry/methods , Peptides/analysis , Peptides/genetics
16.
Biosensors (Basel) ; 5(1): 27-36, 2015 Jan 19.
Article in English | MEDLINE | ID: mdl-25607476

ABSTRACT

We used the interaction between human serum albumin (HSA) and a high-affinity antibody to evaluate binding affinity measurements by the bench-top liSPR system (capitalis technology GmbH). HSA was immobilized directly onto a carboxylated sensor layer, and the mechanism of interaction between the antibody and HSA was investigated. The bivalence and heterogeneity of the antibody caused a complex binding mechanism. Three different interaction models (1:1 binding, heterogeneous analyte, bivalent analyte) were compared, and the bivalent analyte model best fit the curves obtained from the assay. This model describes the interaction of a bivalent analyte with one or two ligands (A + L ↔ LA + L ↔ LLA). The apparent binding affinity for this model measured 37 pM for the first reaction step, and 20 pM for the second step.

17.
Nat Commun ; 5: 3006, 2014.
Article in English | MEDLINE | ID: mdl-24398547

ABSTRACT

Identifying suitable patterns in complex biological interaction networks helps understanding network functions and allows for predictions at the pattern level: by recognizing a known pattern, one can assign its previously established function. However, current approaches fail for previously unseen patterns, when patterns overlap and when they are embedded into a new network context. Here we show how to conceptually extend pattern-based approaches. We define metabolite patterns in metabolic networks that formalize co-occurrences of metabolites. Our probabilistic framework decodes the implicit information in the networks' metabolite patterns to predict metabolic functions. We demonstrate the predictive power by identifying 'indicator patterns', for instance, for enzyme classification, by predicting directions of novel reactions and of known reactions in new network contexts, and by ranking candidate network extensions for gap filling. Beyond their use in improving genome annotations and metabolic network models, we expect that the concepts transfer to other network types.


Subject(s)
Genome , Metabolic Networks and Pathways , Models, Biological , Probability
18.
Article in English | MEDLINE | ID: mdl-22868683

ABSTRACT

We present a comprehensive review on probabilistic arithmetic automata (PAAs), a general model to describe chains of operations whose operands depend on chance, along with two algorithms to numerically compute the distribution of the results of such probabilistic calculations. PAAs provide a unifying framework to approach many problems arising in computational biology and elsewhere. We present five different applications, namely 1) pattern matching statistics on random texts, including the computation of the distribution of occurrence counts, waiting times, and clump sizes under hidden Markov background models; 2) exact analysis of window-based pattern matching algorithms; 3) sensitivity of filtration seeds used to detect candidate sequence alignments; 4) length and mass statistics of peptide fragments resulting from enzymatic cleavage reactions; and 5) read length statistics of 454 and IonTorrent sequencing reads. The diversity of these applications indicates the flexibility and unifying character of the presented framework. While the construction of a PAA depends on the particular application, we single out a frequently applicable construction method: We introduce deterministic arithmetic automata (DAAs) to model deterministic calculations on sequences, and demonstrate how to construct a PAA from a given DAA and a finite-memory random text model. This procedure is used for all five discussed applications and greatly simplifies the construction of PAAs. Implementations are available as part of the MoSDi package. Its application programming interface facilitates the rapid development of new applications based on the PAA framework.


Subject(s)
Computational Biology/methods , Models, Statistical , Pattern Recognition, Automated/methods , Algorithms , Markov Chains , Models, Biological , Peptide Mapping , Sensitivity and Specificity , Sequence Analysis, DNA
19.
FEBS Lett ; 583(24): 3923-30, 2009 Dec 17.
Article in English | MEDLINE | ID: mdl-19879267

ABSTRACT

Besides the often-quoted complexity of cellular networks, the prevalence of uncertainties about components, interactions, and their quantitative features provides a largely underestimated hallmark of current systems biology. This uncertainty impedes the development of mechanistic mathematical models to achieve a true systems-level understanding. However, there is increasing evidence that theoretical approaches from diverse scientific domains can extract relevant biological knowledge efficiently, even from poorly characterized biological systems. As a common denominator, the methods focus on structural, rather than more detailed, kinetic network properties. A deeper understanding, better scaling, and the ability to combine the approaches pose formidable challenges for future theory developments.


Subject(s)
Metabolic Networks and Pathways , Models, Chemical , Systems Biology , Systems Analysis
SELECTION OF CITATIONS
SEARCH DETAIL