Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Nat Methods ; 18(1): 84-91, 2021 01.
Article in English | MEDLINE | ID: mdl-33398190

ABSTRACT

Numerous drugs and endogenous ligands bind to cell surface receptors leading to modulation of downstream signaling cascades and frequently to adaptation of the plasma membrane proteome. In-depth analysis of dynamic processes at the cell surface is challenging due to biochemical properties and low abundances of plasma membrane proteins. Here we introduce cell surface thermal proteome profiling for the comprehensive characterization of ligand-induced changes in protein abundances and thermal stabilities at the plasma membrane. We demonstrate drug binding to extracellular receptors and transporters, discover stimulation-dependent remodeling of T cell receptor complexes and describe a competition-based approach to measure target engagement of G-protein-coupled receptor antagonists. Remodeling of the plasma membrane proteome in response to treatment with the TGFB receptor inhibitor SB431542 leads to partial internalization of the monocarboxylate transporters MCT1/3 explaining the antimetastatic effects of the drug.


Subject(s)
Benzamides/pharmacology , Cell Membrane/metabolism , Dioxoles/pharmacology , Membrane Proteins/metabolism , Proteome/metabolism , Proteomics/methods , Receptors, Antigen, T-Cell/metabolism , Cell Membrane/drug effects , Humans , K562 Cells , Ligands , Membrane Proteins/analysis , Membrane Proteins/drug effects , Protein Binding , Proteome/analysis , Proteome/drug effects , Receptors, Transforming Growth Factor beta/antagonists & inhibitors , Temperature , U937 Cells
2.
J Immunol ; 207(2): 555-568, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34233910

ABSTRACT

As key cells of the immune system, macrophages coordinate the activation and regulation of the immune response. Macrophages present a complex phenotype that can vary from homeostatic, proinflammatory, and profibrotic to anti-inflammatory phenotypes. The factors that drive the differentiation from monocyte to macrophage largely define the resultant phenotype, as has been shown by the differences found in M-CSF- and GM-CSF-derived macrophages. We explored alternative inflammatory mediators that could be used for in vitro differentiation of human monocytes into macrophages. IFN-γ is a potent inflammatory mediator produced by lymphocytes in disease and infections. We used IFN-γ to differentiate human monocytes into macrophages and characterized the cells at a functional and proteomic level. IFN-γ alone was sufficient to generate macrophages (IFN-γ Mϕ) that were phagocytic and responsive to polarization. We demonstrate that IFN-γ Mϕ are potent activators of T lymphocytes that produce IL-17 and IFN-γ. We identified potential markers (GBP-1, IP-10, IL-12p70, and IL-23) of IFN-γ Mϕ and demonstrate that these markers are enriched in the skin of patients with inflamed psoriasis. Collectively, we show that IFN-γ can drive human monocyte to macrophage differentiation, leading to bona fide macrophages with inflammatory characteristics.


Subject(s)
Cell Differentiation/physiology , Inflammation/metabolism , Interferon-gamma/metabolism , Macrophages/metabolism , Monocytes/metabolism , Psoriasis/metabolism , Biomarkers/metabolism , Cells, Cultured , Humans , Macrophage Colony-Stimulating Factor/metabolism , Phenotype , Proteomics/methods , Skin/metabolism
3.
Mol Syst Biol ; 16(1): e9111, 2020 01.
Article in English | MEDLINE | ID: mdl-32129943

ABSTRACT

High-throughput and streamlined workflows are essential in clinical proteomics for standardized processing of samples from a variety of sources, including fresh-frozen tissue, FFPE tissue, or blood. To reach this goal, we have implemented single-pot solid-phase-enhanced sample preparation (SP3) on a liquid handling robot for automated processing (autoSP3) of tissue lysates in a 96-well format. AutoSP3 performs unbiased protein purification and digestion, and delivers peptides that can be directly analyzed by LCMS, thereby significantly reducing hands-on time, reducing variability in protein quantification, and improving longitudinal reproducibility. We demonstrate the distinguishing ability of autoSP3 to process low-input samples, reproducibly quantifying 500-1,000 proteins from 100 to 1,000 cells. Furthermore, we applied this approach to a cohort of clinical FFPE pulmonary adenocarcinoma (ADC) samples and recapitulated their separation into known histological growth patterns. Finally, we integrated autoSP3 with AFA ultrasonication for the automated end-to-end sample preparation and LCMS analysis of 96 intact tissue samples. Collectively, this constitutes a generic, scalable, and cost-effective workflow with minimal manual intervention, enabling reproducible tissue proteomics in a broad range of clinical and non-clinical applications.


Subject(s)
Adenocarcinoma/metabolism , Lung Neoplasms/metabolism , Proteins/analysis , Proteomics/instrumentation , Robotics/instrumentation , Chromatography, Liquid , HeLa Cells , Humans , Mass Spectrometry , Proteomics/methods , Reproducibility of Results , Robotics/methods , Software , Specimen Handling/methods , Workflow
4.
Mol Syst Biol ; 16(5): e9370, 2020 05.
Article in English | MEDLINE | ID: mdl-32400114

ABSTRACT

Streptavidin-mediated enrichment is a powerful strategy to identify biotinylated biomolecules and their interaction partners; however, intense streptavidin-derived peptides impede protein identification by mass spectrometry. Here, we present an approach to chemically modify streptavidin, thus rendering it resistant to proteolysis by trypsin and LysC. This modification results in over 100-fold reduction of streptavidin contamination and in better coverage of proteins interacting with various biotinylated bait molecules (DNA, protein, and lipid) in an overall simplified workflow.


Subject(s)
Mass Spectrometry/methods , Metalloendopeptidases/chemistry , Proteins/analysis , Proteomics/methods , Streptavidin/chemistry , Trypsin/chemistry , Arginine/analogs & derivatives , Arginine/chemistry , Biotinylation/methods , Chromatin Immunoprecipitation/methods , HeLa Cells , Humans , Lysine/analogs & derivatives , Lysine/chemistry , Membrane Proteins/metabolism , Neoplasm Proteins/metabolism , Polycomb Repressive Complex 2/metabolism , Proteolysis , Transcription Factors/metabolism
5.
Mol Cell Proteomics ; 16(5): 770-785, 2017 05.
Article in English | MEDLINE | ID: mdl-28336715

ABSTRACT

The plasma membrane proteome plays a crucial role in inter- and intracellular signaling, cell survival, and cell identity. As such, it is a prominent target for pharmacological intervention. The relatively low abundance of this subproteome in conjunction with challenging extractability and solubility still hampers its comprehensive analysis. Here, we combined a chemical glycoprotein-tagging strategy with mass spectrometry to enable comprehensive analysis of the cell-surface glycoproteome. To benchmark this workflow and to provide guidance for cell line selection for functional experiments, we generated an inventory of the N-linked cell-surface glycoproteomes of 15 standard laboratory human cell lines and three primary lymphocytic cell types. On average, about 900 plasma membrane and secreted proteins were identified per experiment, including more than 300 transporters and ion channels. Primary cells displayed distinct expression of surface markers and transporters underpinning the importance of carefully validating model cell lines selected for the study of cell surface-mediated processes. To monitor dynamic changes of the cell-surface proteome in a highly multiplexed experiment, we employed an isobaric mass tag-based chemical labeling strategy. This enabled the time-resolved analysis of plasma membrane protein presentation during differentiation of the monocytic suspension cell line THP-1 into macrophage-like adherent cells. Time-dependent changes observed in membrane protein presentation reflect functional remodeling during the phenotypic transition in three distinct phases: rapid surface presentation and secretion of proteins from intracellular pools concurrent with rapid internalization of no longer needed proteins and finally delayed presentation of newly synthesized macrophage markers. Perturbation of this process using marketed receptor tyrosine kinase inhibitors revealed dasatinib to severely compromise macrophage differentiation due to an off-target activity. This finding suggests that dynamic processes can be highly vulnerable to drug treatment and should be monitored more rigorously to identify adverse drug effects.


Subject(s)
Cell Differentiation , Cell Membrane/metabolism , Glycoproteins/metabolism , Macrophages/cytology , Macrophages/metabolism , Membrane Proteins/metabolism , Proteome/metabolism , Proteomics/methods , Biotinylation , Cell Line , Dasatinib/pharmacology , Humans , Monocytes/cytology , Protein Kinase Inhibitors/pharmacology , Reproducibility of Results
6.
Nat Commun ; 12(1): 4787, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34373457

ABSTRACT

Label-free proteomics by data-dependent acquisition enables the unbiased quantification of thousands of proteins, however it notoriously suffers from high rates of missing values, thus prohibiting consistent protein quantification across large sample cohorts. To solve this, we here present IceR (Ion current extraction Re-quantification), an efficient and user-friendly quantification workflow that combines high identification rates of data-dependent acquisition with low missing value rates similar to data-independent acquisition. Specifically, IceR uses ion current information for a hybrid peptide identification propagation approach with superior quantification precision, accuracy, reliability and data completeness compared to other quantitative workflows. Applied to plasma and single-cell proteomics data, IceR enhanced the number of reliably quantified proteins, improved discriminability between single-cell populations, and allowed reconstruction of a developmental trajectory. IceR will be useful to improve performance of large scale global as well as low-input proteomics applications, facilitated by its availability as an easy-to-use R-package.


Subject(s)
Mass Spectrometry/methods , Proteome , Proteomics/methods , Peptides , Tandem Mass Spectrometry , Workflow
7.
Cancers (Basel) ; 13(5)2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33806447

ABSTRACT

Intra-tumor heterogeneity of tumor-initiating cell (TIC) activity drives colorectal cancer (CRC) progression and therapy resistance. Here, we used single-cell RNA-sequencing of patient-derived CRC models to decipher distinct cell subpopulations based on their transcriptional profiles. Cell type-specific expression modules of stem-like, transit amplifying-like, and differentiated CRC cells resemble differentiation states of normal intestinal epithelial cells. Strikingly, identified subpopulations differ in proliferative activity and metabolic state. In summary, we here show at single-cell resolution that transcriptional heterogeneity identifies functional states during TIC differentiation. Furthermore, identified expression signatures are linked to patient prognosis. Targeting transcriptional states associated to cancer cell differentiation might unravel novel vulnerabilities in human CRC.

8.
Nat Biotechnol ; 38(3): 303-308, 2020 03.
Article in English | MEDLINE | ID: mdl-31959954

ABSTRACT

Monitoring drug-target interactions with methods such as the cellular thermal-shift assay (CETSA) is well established for simple cell systems but remains challenging in vivo. Here we introduce tissue thermal proteome profiling (tissue-TPP), which measures binding of small-molecule drugs to proteins in tissue samples from drug-treated animals by detecting changes in protein thermal stability using quantitative mass spectrometry. We report organ-specific, proteome-wide thermal stability maps and derive target profiles of the non-covalent histone deacetylase inhibitor panobinostat in rat liver, lung, kidney and spleen and of the B-Raf inhibitor vemurafenib in mouse testis. In addition, we devised blood-CETSA and blood-TPP and applied it to measure target and off-target engagement of panobinostat and the BET family inhibitor JQ1 directly in whole blood. Blood-TPP analysis of panobinostat confirmed its binding to known targets and also revealed thermal stabilization of the zinc-finger transcription factor ZNF512. These methods will help to elucidate the mechanisms of drug action in vivo.


Subject(s)
Blood/metabolism , Proteome/chemistry , Proteome/metabolism , Small Molecule Libraries/administration & dosage , Animals , Azepines/administration & dosage , Azepines/pharmacology , Hep G2 Cells , Humans , Kidney/chemistry , Kidney/metabolism , Liver/chemistry , Liver/metabolism , Lung/chemistry , Lung/metabolism , Male , Mass Spectrometry , Mice , Organ Specificity , Panobinostat/administration & dosage , Panobinostat/pharmacology , Protein Stability , Rats , Small Molecule Libraries/pharmacology , Spleen/chemistry , Spleen/metabolism , Testis/chemistry , Testis/metabolism , Thermodynamics , Triazoles/administration & dosage , Triazoles/pharmacology , Vemurafenib/administration & dosage , Vemurafenib/pharmacology
9.
Methods Mol Biol ; 1647: 47-59, 2017.
Article in English | MEDLINE | ID: mdl-28808994

ABSTRACT

The analysis of the cell surface accessible proteome provides invaluable information about cellular identity, cellular functions, and interactions. Cell surface labeling in combination with quantitative proteomics enables the unbiased identification and quantification of cell surface proteins. We describe a fast, efficient, and robust protocol for the enrichment of the N-linked plasma membrane glycoproteome and subsequent analysis by mass spectrometry. Precise and multiplexed quantification of relative changes of cell surface protein presentation is enabled by an isobaric labeling strategy.


Subject(s)
Cell Membrane/chemistry , Membrane Glycoproteins/analysis , Proteome/analysis , Proteomics/methods , Chromatography, Liquid , Isotope Labeling , Mass Spectrometry , Protein Interaction Mapping , Staining and Labeling
SELECTION OF CITATIONS
SEARCH DETAIL