Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Cell Mol Life Sci ; 79(3): 142, 2022 Feb 20.
Article in English | MEDLINE | ID: mdl-35187617

ABSTRACT

As a result of cross-species transmission in December 2019, the coronavirus disease 2019 (COVID-19) became a serious endangerment to human health and the causal agent of a global pandemic. Although the number of infected people has decreased due to effective management, novel methods to treat critical COVID-19 patients are still urgently required. This review describes the origins, pathogenesis, and clinical features of COVID-19 and the potential uses of mesenchymal stem cells (MSCs) in therapeutic treatments for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients. MSCs have previously been shown to have positive effects in the treatment of lung diseases, such as acute lung injury, idiopathic pulmonary fibrosis, acute respiratory distress syndrome, lung cancer, asthma, and chronic obstructive pulmonary disease. MSC mechanisms of action involve differentiation potentials, immune regulation, secretion of anti-inflammatory factors, migration and homing, anti-apoptotic properties, antiviral effects, and extracellular vesicles. Currently, 74 clinical trials are investigating the use of MSCs (predominately from the umbilical cord, bone marrow, and adipose tissue) to treat COVID-19. Although most of these trials are still in their early stages, the preliminary data are promising. However, long-term safety evaluations are still lacking, and large-scale and controlled trials are required for more conclusive judgments regarding MSC-based therapies. The main challenges and prospective directions for the use of MSCs in clinical applications are discussed herein. In summary, while the clinical use of MSCs to treat COVID-19 is still in the preliminary stages of investigation, promising results indicate that they could potentially be utilized in future treatments.


Subject(s)
COVID-19/therapy , Clinical Trials as Topic/statistics & numerical data , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/cytology , SARS-CoV-2/isolation & purification , COVID-19/virology , Humans
2.
Front Oncol ; 12: 911303, 2022.
Article in English | MEDLINE | ID: mdl-35814395

ABSTRACT

Background: Limited treatment outcome data is available for advanced non-small cell lung cancer (NSCLC) patients with BRAF V600E mutations. In this multicenter study, we describe therapeutic options and survival outcomes for patients with mutated BRAF V600E. Method: This was a retrospective study in which BRAF V600E-mutated advanced NSCLC patients were retrospectively recruited between January 2015 and December 2021 and had their clinical characteristics, co-mutations, and treatment efficacy assessed. Results: Fifty-three patients with BRAF V600E-mutant advanced NSCLC were included in the study, of which 64.2% were non-smokers, and the BRAF V600E mutation was more prevalent in men (52.8%). In addition, 96.2% of the patients had adenocarcinoma, and most (96.2%) received first-line therapy (23.5% anti-BRAF), with a progression-free survival (PFS) and overall survival (OS) of 10.0 [95% confidence interval (CI): 1.5-36.0 months] and 24.0 months [95% CI: 3.0-53.0 months], respectively. Twenty-three patients (43.4%) received second-line treatment (39.1% anti-BRAF), and PFS and OS were 5.0 [95% CI: 1.0-21.0 months] and 13.0 months [95% CI: 1.5-26.0 months], respectively. BRAF and MEK-targeted therapy (dabrafenib plus trametinib) produced longer PFS compared with that of chemotherapy with or without bevacizumab as a first-line (NA vs. 4.0 months, P = 0.025) or second-line therapy (6.0 vs. 4.6 months, P = 0.017). NSCLC patients harboring driver oncogene mutations such as BRAF V600E, EGFR, or ALK should be treated using targeted therapies. Concurrent TP53 mutations were the most common, affecting 11.3% (n = 6) of the patients, followed by EGFR 19 Del (n = 5). Patients with concurrent mutations had shorter PFS (9.0 vs. 10.0 months, P = 0.875) and OS (14.0 vs. 15.0 months, P = 0.555) than those without these mutations. Conclusion: These results suggest that combined BRAF- and MEK-targeted therapy is effective in BRAF V600E-mutated advanced NSCLC patients. Dabrafenib and trametinib re-challenge is also an option for patients with BRAF V600E-mutated NSCLC.

3.
J Oncol ; 2022: 3645489, 2022.
Article in English | MEDLINE | ID: mdl-36199793

ABSTRACT

Background: Most patients with small-cell lung cancer (SCLC) have extensive-stage (ES) disease with a poor prognosis. Immunotherapy has shown good therapeutic effects in the treatment of ES-SCLC. We performed a real-world retrospective study to evaluate the safety and efficacy of PD-L1 inhibitors plus chemotherapy in patients with ES-SCLC. Method: A total of 224 patients diagnosed with ES-SCLC between March 2017 and April 2021 were included, of which 115 received only etoposide-platinum (EP) chemotherapy,and 109 received programmed cell-death ligand 1 (PD-L1) inhibitors and EP. Results: Immune checkpoint inhibitors (ICIs) plus platinum were associated with a significant improvement in overall survival (OS), with a hazard ratio (HR) of 0.60 (95% CI, 0.42-0.85; P=0.0054); median OS was 19 months in the ICIs plus EP group vs. 12 months in the EP group. The median progression-free survival (PFS) was 8.5 and 5.0 months, respectively (HR for disease progression or death, 0.42; 95% CI, 0.31-0.57; P < 0.0001). Male patients <65 years old, Stage IV, PS 0-1, without liver and brain metastasis had a better OS in the ICIs plus EP group than the EP group. The PFS and OS in the durvalumab plus chemotherapy group were insignificantly longer than that of the atezolizumab plus chemotherapy group. Any adverse effects (AEs) of grade 3 or 4 occurred in 50 patients (45.9%) in the ICIs plus EP group and 48 patients (41.7%) in the EP alone group. The most common immune-related AEs (irAEs) were immune hypothyroidism events (17.1%, 7/41), immune dermatitis (9.8%, 4/41), and immune pneumonia (9.8%, 4/41) in the durvalumab plus platinum-etoposide group. Immune liver insufficiency (10.3%, 7/68) and immune hypothyroidism (8.8%, 6/68) were the most common irAEs in the atezolizumab plus platinum-etoposide group. Conclusion: This study shows that adding PD-L1 inhibitors to chemotherapy can significantly improve PFS and OS in patients with ES-SCLC and demonstrates its safety without additional AEs.

4.
World J Gastroenterol ; 28(29): 3838-3853, 2022 Aug 07.
Article in English | MEDLINE | ID: mdl-36157545

ABSTRACT

BACKGROUND: Obesity is associated with an increased risk of developing Crohn's disease (CD), higher disease activity, and comparatively worse clinical outcomes. AIM: To investigate the role of mesenteric adipose tissue-derived exosomes in the pathogenesis of CD aggravation in obese individuals. METHODS: First, we induced colitis in mice initiated on high-fat and normal diets and compared the severity of colitis. We then extracted and identified exosomes from mesenteric adipose tissue and determined the levels of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in mesenteric adipose tissue-derived exosomes and the colon. Next, we demonstrated an interaction between MALAT1 and the miR-15a-5p/activating transcription factor 6 (ATF6) axis. Finally, we explored the effects of mesenteric adipose tissue-derived exosomes extracted from mice fed a high-fat or normal diet on the severity of 2,4,6-trinitrobe-nzenesulfonic acid (TNBS)-induced colitis and ATF6-related endoplasmic reticulum stress pathways. RESULTS: High-fat diet was found to aggravate TNBS-induced colitis in mice. The expression of MALAT1 in mesenteric adipose tissue-derived exosomes of high-fat diet-fed mice increased. The increased expression of MALAT1 in colon tissue exacerbated TNBS-induced colitis and activated the ATF6 endoplasmic reticulum stress pathway. This effect was partially reversed by the reduced expression of MALAT1 and overexpression of miR-15a-5p. CONCLUSION: Mesenteric adipose tissue-derived exosome-encapsulated long noncoding RNAs MALAT1 targets the colon and aggravates TNBS-induced colitis in obese mice, which may potentially act on the miR-15a-5p/ATF6 axis and activate endoplasmic reticulum stress.


Subject(s)
Colitis , Exosomes , MicroRNAs , RNA, Long Noncoding , Activating Transcription Factor 6 , Adipose Tissue/metabolism , Animals , Colitis/chemically induced , Colitis/complications , Colitis/genetics , Diet, High-Fat/adverse effects , Exosomes/metabolism , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Obesity/metabolism , RNA, Long Noncoding/metabolism
5.
Cancer Commun (Lond) ; 41(12): 1331-1353, 2021 12.
Article in English | MEDLINE | ID: mdl-34713636

ABSTRACT

Patient-derived cancer cells (PDCs) and patient-derived xenografts (PDXs) are often used as tumor models, but have many shortcomings. PDCs not only lack diversity in terms of cell type, spatial organization, and microenvironment but also have adverse effects in stem cell cultures, whereas PDX are expensive with a low transplantation success rate and require a long culture time. In recent years, advances in three-dimensional (3D) organoid culture technology have led to the development of novel physiological systems that model the tissues of origin more precisely than traditional culture methods. Patient-derived cancer organoids bridge the conventional gaps in PDC and PDX models and closely reflect the pathophysiological features of natural tumorigenesis and metastasis, and have led to new patient-specific drug screening techniques, development of individualized treatment regimens, and discovery of prognostic biomarkers and mechanisms of resistance. Synergistic combinations of cancer organoids with other technologies, for example, organ-on-a-chip, 3D bio-printing, and CRISPR-Cas9-mediated homology-independent organoid transgenesis, and with treatments, such as immunotherapy, have been useful in overcoming their limitations and led to the development of more suitable model systems that recapitulate the complex stroma of cancer, inter-organ and intra-organ communications, and potentially multiorgan metastasis. In this review, we discuss various methods for the creation of organ-specific cancer organoids and summarize organ-specific advances and applications, synergistic technologies, and treatments as well as current limitations and future prospects for cancer organoids. Further advances will bring this novel 3D organoid culture technique closer to clinical practice in the future.


Subject(s)
Neoplasms , Organoids , Animals , Disease Models, Animal , Humans , Immunotherapy , Neoplasms/drug therapy , Precision Medicine , Tumor Microenvironment
6.
Front Oncol ; 11: 649766, 2021.
Article in English | MEDLINE | ID: mdl-34249687

ABSTRACT

BACKGROUND: MET amplification or METex14 skipping mutations are uncommon oncogenic events in NSCLC patients. Clinicopathological characteristics, concurrent gene alterations, and prognosis of MET TKIs in these patients are yet to be elucidated. METHODS: We retrospectively analyzed the genomic profiles of 43 MET amplifications or 31 METex14 skipping mutations in NSCLC patients with no previous treatment with EGFR TKIs. Survival outcomes were analyzed in evaluable patients receiving MET TKI treatment: MET amplification cohort (n = 29) and METex14 skipping mutation cohort (n = 29). RESULTS: Among evaluable patients, a shorter PFS was observed in the MET amplification cohort than in the METex14 skipping mutation cohort (7.0 months vs. 11.0 months, P = 0.043). Concurrent mutations in both cohorts resulted in a statistically significant shorter PFS (MET amplification: 3.5 months versus 8.0 months, P = 0.038, METex14 skipping mutation: 7.0 versus NR months, P = 0.022). However, a statistically significant OS (17.0 months versus 20.0 months, P = 0.044) was only observed in the MET amplification cohort. TP53, the most common concurrent mutation in both cohorts, was associated with worse survival outcomes as compared to the wild type. The MET amplification cohort with a concurrent PIK3CA mutation exhibited primary resistance to MET TKIs and showed disease progression (80%). CONCLUSION: MET TKIs could be a better treatment option for patients with METex14 skipping mutations. Concurrent mutations may deteriorate the PFS of MET TKIs in NSCLC patients with MET amplification or METex14 skipping mutations. PIK3CA mutations may confer primary resistance to MET TKIs in patients with MET amplification.

7.
World J Gastroenterol ; 27(48): 8201-8215, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-35068865

ABSTRACT

S-palmitoylation is one of the most common post-translational modifications in nature; however, its importance has been overlooked for decades. Crohn's disease (CD), a subtype of inflammatory bowel disease (IBD), is an autoimmune disease characterized by chronic inflammation involving the entire gastrointestinal tract. Bowel damage and subsequent disabilities caused by CD are a growing global health issue. Well-acknowledged risk factors for CD include genetic susceptibility, environmental factors, such as a westernized lifestyle, and altered gut microbiota. However, the pathophysiological mechanisms of this disorder are not yet comprehensively understood. With the rapidly increasing global prevalence of CD and the evident role of S-palmitoylation in CD, as recently reported, there is a need to investigate the relationship between CD and S-palmitoylation. In this review, we summarize the concept, detection, and function of S-palmitoylation as well as its potential effects on CD, and provide novel insights into the pathogenesis and treatment of CD.


Subject(s)
Crohn Disease , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Crohn Disease/diagnosis , Crohn Disease/epidemiology , Crohn Disease/genetics , Humans , Lipoylation
SELECTION OF CITATIONS
SEARCH DETAIL