Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
J Immunol ; 188(12): 6225-37, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22593616

ABSTRACT

An effective malaria vaccine could prove to be the most cost-effective and efficacious means of preventing severe disease and death from malaria. In an endeavor to identify novel vaccine targets, we tested predicted Plasmodium falciparum open reading frames for proteins that elicit parasite-inhibitory Abs. This has led to the identification of the cysteine-rich protective Ag (CyRPA). CyRPA is a cysteine-rich protein harboring a predicted signal sequence. The stage-specific expression of CyRPA in late schizonts resembles that of proteins known to be involved in merozoite invasion. Immunofluorescence staining localized CyRPA at the apex of merozoites. The entire protein is conserved as shown by sequencing of the CyRPA encoding gene from a diverse range of P. falciparum isolates. CyRPA-specific mAbs substantially inhibited parasite growth in vitro as well as in a P. falciparum animal model based on NOD-scid IL2Rγ(null) mice engrafted with human erythrocytes. In contrast to other P. falciparum mouse models, this system generated very consistent results and evinced a dose-response relationship and therefore represents an unprecedented in vivo model for quantitative comparison of the functional potencies of malaria-specific Abs. Our data suggest a role for CyRPA in erythrocyte invasion by the merozoite. Inhibition of merozoite invasion by CyRPA-specific mAbs in vitro and in vivo renders this protein a promising malaria asexual blood-stage vaccine candidate Ag.


Subject(s)
Antigens, Protozoan/immunology , Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Protozoan Proteins/immunology , Amino Acid Sequence , Animals , Antibodies, Protozoan/immunology , Antigens, Protozoan/genetics , Blotting, Western , Enzyme-Linked Immunosorbent Assay , Erythrocytes/parasitology , Flow Cytometry , Fluorescent Antibody Technique , HEK293 Cells , Humans , Merozoites/immunology , Mice , Mice, Inbred NOD , Mice, SCID , Molecular Sequence Data , Plasmodium falciparum/genetics , Plasmodium falciparum/immunology , Plasmodium falciparum/pathogenicity , Protozoan Proteins/genetics , Sequence Alignment , Surface Plasmon Resonance , Transfection
2.
J Infect Dis ; 206(5): 735-43, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22732921

ABSTRACT

The increasing spread of drug-resistant malaria strains underscores the need for new antimalarial agents with novel modes of action (MOAs). Here, we describe a compound representative of a new class of antimalarials. This molecule, ACT-213615, potently inhibits in vitro erythrocytic growth of all tested Plasmodium falciparum strains, irrespective of their drug resistance properties, with half-maximal inhibitory concentration (IC(50)) values in the low single-digit nanomolar range. Like the clinically used artemisinins, the compound equally and very rapidly affects all 3 asexual erythrocytic parasite stages. In contrast, microarray studies suggest that the MOA of ACT-213615 is different from that of the artemisinins and other known antimalarials. ACT-213615 is orally bioavailable in mice, exhibits activity in the murine Plasmodium berghei model and efficacy comparable to that of the reference drug chloroquine in the recently established P. falciparum SCID mouse model. ACT-213615 represents a new class of potent antimalarials that merits further investigation for its clinical potential.


Subject(s)
Antimalarials/pharmacology , Malaria/drug therapy , Parasitemia/drug therapy , Piperazines/pharmacology , Plasmodium berghei/drug effects , Animals , Antimalarials/pharmacokinetics , Biological Availability , Cell Line , Erythrocytes/parasitology , Inhibitory Concentration 50 , Malaria/blood , Malaria/parasitology , Mice , Parasitemia/parasitology , Piperazines/pharmacokinetics , Rats
3.
J Med Chem ; 57(19): 7971-6, 2014 Oct 09.
Article in English | MEDLINE | ID: mdl-25195945

ABSTRACT

3-Hydroxy-N'-arylidenepropanehydrazonamides represent a new class of antiplasmodial compounds. The two most active phenanthrene-based derivatives showed potent in vitro antiplasmodial activity against the 3D7 (sensitive) and Dd2 (multidrug-resistant) strains of Plasmodium falciparum with nanomolar IC50 values in the range of 8-28 nM. Further studies revealed that the most promising derivative, bearing a 4-fluorobenzylidene moiety, demonstrated in vivo antiplasmodial activity after oral administration in a P. berghei malaria model, although no complete parasite elimination was achieved with a four-dose regimen. The in vivo efficacy correlated well with the plasma concentration levels, and no acute toxicity symptoms (e.g., death or changes in general behavior or physiological activities) were observed, which is in agreement with a >1000-fold lower activity against L6 cells, a primary cell line derived from mammalian (rat) skeletal myoblasts. This indicates that lead compound 29 displays selective activity against P. falciparum. Moreover, both phenanthrene-based derivatives were active against stage IV/V gametocytes of P. falciparum in vitro.


Subject(s)
Antimalarials/pharmacology , Phenanthrenes/pharmacology , Animals , Chloroquine/pharmacology , Malaria/drug therapy , Malaria/parasitology , Mice , Parasitemia/drug therapy , Parasitic Sensitivity Tests , Plasmodium berghei/drug effects , Plasmodium falciparum/drug effects , Rats , Structure-Activity Relationship
4.
J Med Chem ; 55(24): 11022-30, 2012 Dec 27.
Article in English | MEDLINE | ID: mdl-23189922

ABSTRACT

In an effort to address potential cardiotoxicity liabilities identified with earlier frontrunner compounds, a number of new 3,5-diaryl-2-aminopyridine derivatives were synthesized. Several compounds exhibited potent antiplasmodial activity against both the multidrug resistant (K1) and sensitive (NF54) strains in the low nanomolar range. Some compounds displayed a significant reduction in potency in the hERG channel inhibition assay compared to previously reported frontrunner analogues. Several of these new analogues demonstrated promising in vivo efficacy in the Plasmodium berghei mouse model and will be further evaluated as potential clinical candidates. The SAR for in vitro antiplasmodial and hERG activity was delineated.


Subject(s)
Aminopyridines/chemical synthesis , Antimalarials/chemical synthesis , Administration, Oral , Aminopyridines/chemistry , Aminopyridines/pharmacology , Animals , Antimalarials/chemistry , Antimalarials/pharmacology , Drug Resistance, Multiple , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Humans , Malaria/drug therapy , Mice , Microsomes, Liver/metabolism , Plasmodium berghei , Plasmodium falciparum/drug effects , Solubility , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL