ABSTRACT
Smoking is one of the most serious risk factors for cardiovascular diseases. Although cigarette mainstream and sidestream smoke are significant contributors to increased cardiovascular mortality and morbidity, the underlying mechanism is still unclear. Here, we report that exposure of rat neonatal cardiomyocytes to cigarette smoke extract (CSE) induces mitochondrial hyperfission-mediated myocardial senescence. CSE leads to mitochondrial fission and reactive oxygen species (ROS) production through the complex formation between mitochondrial fission factor Drp1 and actin-binding protein, filamin A. Pharmacological perturbation of interaction between Drp1 and filamin A by cilnidipine and gene knockdown of Drp1 or filamin A inhibited CSE-induced mitochondrial hyperfission and ROS production as well as myocardial senescence. We previously reported that Drp1 activity is controlled by supersulfide-induced Cys644 polysulfidation. The redox-sensitive Cys644 was critical for CSE-mediated interaction with filamin A. The administration of supersulfide donor, Na2S3 also improved mitochondrial hyperfission-mediated myocardial senescence induced by CSE. Our results suggest the important role of Drp1-filamin A complex formation on cigarette smoke-mediated cardiac risk and the contribution of supersulfide to mitochondrial fission-associated myocardial senescence.
Subject(s)
Cigarette Smoking , Myocytes, Cardiac , Animals , Rats , Filamins , Mitochondria , Reactive Oxygen SpeciesABSTRACT
Despite the widespread recognition of the global concern regarding the onset of cardiovascular diseases in a significant number of patients following cancer treatment, definitive strategies for prevention and treatment remain elusive. In this study, we established systems to evaluate the influence of anti-cancer drugs on the quality control of mitochondria, pivotal for energy metabolism, using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Osimertinib, an epidermal growth factor receptor tyrosine kinase inhibitor used for treatment in lung cancer, reportedly increases the risk of cardiovascular disease. However, its underlying mechanism is largely unknown. Here, we found that the treatment of hiPSC-CMs with osimertinib and doxorubicin, but not trastuzumab and cisplatin, revealed a concentration-dependent impairment of respiratory function accompanied by mitochondrial fission. We previously reported the significant role of sulfur metabolism in maintaining mitochondrial quality in the heart. Co-treatment with various inorganic sulfur donors (Na2S, Na2S2, Na2S3) alongside anti-cancer drugs demonstrated that Na2S attenuated the cardiotoxicity of osimertinib but not doxorubicin. Osimertinib decreased intracellular reduced sulfur levels, while Na2S treatment suppressed the sulfur leakage, suggesting its potential in mitigating osimertinib-induced cardiotoxicity. These results imply the prospect of inorganic sulfides, such as Na2S, as a seed for precision pharmacotherapy to alleviate osimertinib's cardiotoxic effects.
Subject(s)
Acrylamides , Aniline Compounds , Antineoplastic Agents , Doxorubicin , Induced Pluripotent Stem Cells , Mitochondria , Myocytes, Cardiac , Sulfides , Humans , Acrylamides/pharmacology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Aniline Compounds/pharmacology , Induced Pluripotent Stem Cells/drug effects , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacology , Doxorubicin/adverse effects , Sulfides/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Cardiotoxicity/prevention & control , Cardiotoxicity/etiology , Cells, Cultured , Mitochondrial Dynamics/drug effects , Sulfur , Indoles , PyrimidinesABSTRACT
During the COVID-19 pandemic, diabetic and obese patients experienced higher rates of hospital admissions, severe illness, and mortality. However, vaccinations failed to provide those vulnerable populations the same level of protection against COVID-19 severity as those without diabetic and obese phenotypes. Our study aimed to investigate how diabetes mellitus (DM) impacts the immune response following vaccination including the artificially designed trimeric SARS-CoV-2 spike (S)-protein. By using two diabetic mouse models, ob/ob mice (obese, hyperglycemic, and insulin-resistant) and STZ-treated mice (insulin-deficient and hyperglycemic), we observed a significant reduction in S-protein-specific IgG antibody titer post-vaccination in both diabetic models compared to wild-type (WT) mice. Both diabetic mouse models exhibited significant abnormalities in spleen tissue, including marked reductions in splenic weight and the size of the white pulp regions. Furthermore, the splenic T-cell and B-cell zones were notably diminished, suggesting an underlying immune dysfunction that could contribute to impaired antibody production. Notably, vaccination with the S-protein, when paired with an optimal adjuvant, did not exacerbate diabetic cardiomyopathy, blood glucose levels, or liver function, providing reassurance about the vaccine's safety. These findings offer valuable insights into potential mechanisms responsible for the decreased persistence of antibody production in diabetic patients.
Subject(s)
Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Diabetes Mellitus, Experimental , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Spleen , Animals , Mice , COVID-19 Vaccines/immunology , Spleen/immunology , COVID-19/immunology , COVID-19/prevention & control , Spike Glycoprotein, Coronavirus/immunology , SARS-CoV-2/immunology , Diabetes Mellitus, Experimental/immunology , Antibodies, Viral/immunology , Immunoglobulin G/immunology , Immunoglobulin G/blood , Humans , Antibody Formation/immunology , Male , Mice, Inbred C57BL , Mice, ObeseABSTRACT
Although an association has been reported between diuretics and myocarditis, it is unclear whether the risk of immune checkpoint inhibitor (ICI)-induced myocarditis is affected by concomitant diuretics. Thus, the aim of this work was to evaluate the impact of concomitant diuretics on ICI-induced myocarditis. This cross-sectional study used disproportionality analysis and a pharmacovigilance database to assess the risk of myocarditis with various diuretics in patients receiving ICIs via the analysis of data entered into the VigiBase database through December 2022. Multiple logistic regression analysis was performed to identify risk factors for myocarditis in patients who received ICIs. A total of 90 611 patients who received ICIs, including 975 cases of myocarditis, were included as the eligible dataset. A disproportionality in myocarditis was observed for loop diuretic use (reporting odds ratio 1.47, 95% confidence interval [CI] 1.02-2.04, P = .03) and thiazide use (reporting odds ratio 1.76, 95% CI 1.20-2.50, P < .01) in patients who received ICIs. The results of the multiple logistic regression analysis showed that the use of thiazides (odds ratio 1.67, 95% CI 1.15-2.34, P < .01) was associated with an increased risk of myocarditis in patients who received ICIs. Our findings may help to predict the risk of myocarditis in patients receiving ICIs.
Subject(s)
Immune Checkpoint Inhibitors , Myocarditis , Humans , Immune Checkpoint Inhibitors/adverse effects , Sodium Chloride Symporter Inhibitors/adverse effects , Myocarditis/chemically induced , Cross-Sectional Studies , Retrospective Studies , Diuretics/adverse effects , Thiazides/adverse effectsABSTRACT
To promote the clinical application of human induced pluripotent stem cell (hiPSC)-derived hepatocytes, a method capable of monitoring regenerative processes and assessing differentiation efficiency without harming or modifying these cells is important. Raman microscopy provides a powerful tool for this as it enables label-free identification of intracellular biomolecules in live samples. Here, we used label-free Raman microscopy to assess hiPSC differentiation into hepatocyte lineage based on the intracellular chemical content. We contrasted these data with similar phenotypes from the HepaRG and from commercially available hiPSC-derived hepatocytes (iCell hepatocytes). We detected hepatic cytochromes, lipids, and glycogen in hiPSC-derived hepatocyte-like cells (HLCs) but not biliary-like cells (BLCs), indicating intrinsic differences in biomolecular content between these phenotypes. The data show significant glycogen and lipid accumulation as early as the definitive endoderm transition. Additionally, we explored the use of Raman imaging as a hepatotoxicity assay for the HepaRG and iCell hepatocytes, with data displaying a dose-dependent reduction of glycogen accumulation in response to acetaminophen. These findings show that the nondestructive and high-content nature of Raman imaging provides a promising tool for both quality control of hiPSC-derived hepatocytes and hepatotoxicity screening.
Subject(s)
Chemical and Drug Induced Liver Injury , Induced Pluripotent Stem Cells , Humans , Hepatocytes , Cell DifferentiationABSTRACT
Abnormal sulfide catabolism, especially the accumulation of hydrogen sulfide (H2S) during hypoxic or inflammatory stresses, is a major cause of redox imbalance-associated cardiac dysfunction. Polyhydroxynaphtoquinone echinochrome A (Ech-A), a natural pigment of marine origin found in the shells and needles of many species of sea urchins, is a potent antioxidant and inhibits acute myocardial ferroptosis after ischemia/reperfusion, but the chronic effect of Ech-A on heart failure is unknown. Reactive sulfur species (RSS), which include catenated sulfur atoms, have been revealed as true biomolecules with high redox reactivity required for intracellular energy metabolism and signal transduction. Here, we report that continuous intraperitoneal administration of Ech-A (2.0 mg/kg/day) prevents RSS catabolism-associated chronic heart failure after myocardial infarction (MI) in mice. Ech-A prevented left ventricular (LV) systolic dysfunction and structural remodeling after MI. Fluorescence imaging revealed that intracellular RSS level was reduced after MI, while H2S/HS- level was increased in LV myocardium, which was attenuated by Ech-A. This result indicates that Ech-A suppresses RSS catabolism to H2S/HS- in LV myocardium after MI. In addition, Ech-A reduced oxidative stress formation by MI. Ech-A suppressed RSS catabolism caused by hypoxia in neonatal rat cardiomyocytes and human iPS cell-derived cardiomyocytes. Ech-A also suppressed RSS catabolism caused by lipopolysaccharide stimulation in macrophages. Thus, Ech-A has the potential to improve chronic heart failure after MI, in part by preventing sulfide catabolism.
Subject(s)
Heart Failure , Myocardial Infarction , Ventricular Dysfunction, Left , Humans , Mice , Rats , Animals , Myocardial Infarction/drug therapy , Heart Failure/drug therapy , Heart Failure/etiology , Heart Failure/prevention & control , Myocardium/metabolism , Sulfides/metabolism , Ventricular Dysfunction, Left/etiology , Ventricular Dysfunction, Left/prevention & control , SulfurABSTRACT
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly spread and led to global health crises. COVID-19 causes well-known respiratory failure and gastrointestinal symptoms, such as diarrhea, nausea, and vomiting. Thus, human gastrointestinal cell models are urgently needed for COVID-19 research; however, it is difficult to obtain primary human intestinal cells. In this study, we examined whether human induced pluripotent stem cell (iPSC)-derived small intestinal epithelial cells (iPSC-SIECs) could be used as a SARS-CoV-2 infection model. We observed that iPSC-SIECs, such as absorptive and Paneth cells, were infected with SARS-CoV-2, and remdesivir treatment decreased intracellular SARS-CoV-2 replication in iPSC-SIECs. SARS-CoV-2 infection decreased expression levels of tight junction markers, ZO-3 and CLDN1, and transepithelial electrical resistance (TEER), which evaluates the integrity of tight junction dynamics. In addition, SARS-CoV-2 infection increased expression levels of proinflammatory genes, which are elevated in patients with COVID-19. These findings suggest iPSC-SIECs as a useful in vitro model for elucidating COVID-19 pathology and drug development.
Subject(s)
COVID-19 , Induced Pluripotent Stem Cells , Epithelial Cells , Humans , Intestinal Mucosa , SARS-CoV-2ABSTRACT
Coronavirus disease 2019 (COVID-19) remains prevalent worldwide since its onset was confirmed in Wuhan, China in 2019. Vaccines against the causative virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have shown a preventive effect against the onset and severity of COVID-19, and social and economic activities are gradually recovering. However, the presence of vaccine-resistant variants has been reported, and the development of therapeutic agents for patients with severe COVID-19 and related sequelae remains urgent. Drug repurposing, also called drug repositioning or eco-pharma, is the strategy of using previously approved and safe drugs for a therapeutic indication that is different from their original indication. The risk of severe COVID-19 and mortality increases with advancing age, cardiovascular disease, hypertension, diabetes, and cancer. We have reported three protein-protein interactions that are related to heart failure, and recently identified that one mechanism increases the risk of SARS-CoV-2 infection in mammalian cells. This review outlines the global efforts and outcomes of drug repurposing research for the treatment of severe COVID-19. It also discusses our recent finding of a new protein-protein interaction that is common to COVID-19 aggravation and heart failure.
Subject(s)
COVID-19 Drug Treatment , Heart Failure , Animals , Drug Repositioning , Humans , Mammals , SARS-CoV-2ABSTRACT
Imatinib has been reported to induce heart failure and/or QTc prolongation. To better understand their underlying mechanisms, we assessed its effects on cardiohemodynamic, electrocardiographic and echocardiographic variables along with biomarkers of myocardial damage. Imatinib mesylate in doses of 1 and 10 mg/kg was intravenously administered to the halothane-anesthetized beagle dogs (n = 4). Effects of imatinib on each phase of isovolumetric contraction, ejection, isovolumetric relaxation and filling were studied, whereas its electrophysiological effects on early and late repolarization were analyzed by measuring J-Tpeak and Tpeak-Tend, respectively. The low and high doses of imatinib provided peak plasma concentrations of 3.23 and 17.39 µg/mL, reflecting clinically-relevant and supratherapeutic concentrations, respectively. Neither lethal ventricular tachyarrhythmia nor cardiohemodynamic collapse was observed. Imatinib decreased amplitude of peak -dP/dt, indicating suppression of isovolumetric relaxation, whereas no significant change was detected in the other phases. Imatinib prolonged QTc and J-Tpeakc without altering Tpeak-Tend, indicating increase of net inward current, which leads to intracellular Ca2+ overload. Thus, imatinib suppressed ventricular active relaxation and early repolarization, which may suggest the association of mitochondrial dysfunction-associated inhibition of ATP production. Since those findings were also reported for dasatinib, sunitinib and lapatinib, they could be common cardiac phenotype of tyrosine kinase inhibitors in vivo.
Subject(s)
Halothane , Protein Kinase Inhibitors , Adenosine Triphosphate , Animals , Biomarkers , Dasatinib , Dogs , Halothane/pharmacology , Imatinib Mesylate/pharmacology , Lapatinib , Protein Kinase Inhibitors/adverse effects , SunitinibABSTRACT
Vitamin D is a fat-soluble micronutrient that plays essential roles in a range of biological processes, including cell proliferation, inflammation, and metabolism. In this study, we investigated the effects of a novel synthetic lithocholic acid derivative with vitamin D activity (Dcha-20) on pharmacokinetic gene expression in human induced pluripotent stem cell-derived intestinal organoids. Compared with vitamin D3 treatment, Dcha-20 was found to upregulate the expression and enzyme activity of the drug-metabolizing enzyme CYP3A4, an indicator of intestinal functional maturation. In addition, Dcha-20 specifically increased expression levels of the xenobiotic detoxification enzyme UGT1A and excretion transporter MRP2. These results suggest that Dcha-20 promotes activity of the intrinsic defense system of the intestinal epithelium.
Subject(s)
Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Organoids , Lithocholic Acid/pharmacology , Lithocholic Acid/metabolism , Cell Differentiation , Intestinal Mucosa/metabolism , Vitamin D/metabolism , Vitamin D/pharmacologyABSTRACT
Evaluation of drug-induced cardiotoxicity is still challenging to avoid adverse effects, such as torsade de pointes (TdP), in non-clinical and clinical studies. Numerous studies have suggested that human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a useful platform for detecting drug-induced TdP risks. Comprehensive in vitro Proarrhythmia Assay (CiPA) validation study suggested that hiPSC-CMs can assess clinical TdP risk more accurately than the human ether-a-go-go-related assay and QT interval prolongation. However, there were still some outliers, such as bepridil, mexiletine, and ranolazine, among the CiPA 28 compounds in the CiPA international multi-site study using hiPSC-CMs. In this study, we assessed the effects of the positive compound dofetilide, the negative compound aspirin, and several CiPA compounds (bepridil, mexiletine, and ranolazine) on the electromechanical window (E-M window), which were evaluated using multi-electrode array assay and motion analysis, in hiPSC-CMs. Similar to previous in vivo studies, dofetilide, which has a high TdP risk, decreased the E-M window in hiPSC-CMs, whereas aspirin, which has a low TdP risk, had little effect. Bepridil, classified in the high TdP-risk group in CiPA, decreased the E-M window in hiPSC-CMs, whereas ranolazine and mexiletine, which are classified in the low TdP-risk group in CiPA, slightly decreased or had little effect on the E-M window of hiPSC-CMs. Thus, the E-M window in hiPSC-CMs can be used to classify drugs into high and low TdP risk.
Subject(s)
Induced Pluripotent Stem Cells , Aspirin , Bepridil , DNA-Binding Proteins , Humans , Mexiletine , Myocytes, Cardiac , Ranolazine , Risk AssessmentABSTRACT
Growing evidence suggests that cancer originates from cancer stem cells (CSCs), which can be identified by aldehyde dehydrogenase (ALDH) activity-based flow cytometry. However, the regulation of CSC growth is not fully understood. In the present study, we investigated the effects of Transforming Growth Factor-ß (TGFß) in breast CSC expansion. Stimulation with TGFß increased the ALDH-positive breast CSC population via the phosphorylation of sphingosine kinase 1 (SphK1), a sphingosine-1-phosphate (S1P)-producing enzyme, and subsequent S1P-mediated S1P receptor 3 (S1PR3) activation. These data suggest that TGFß promotes breast CSC expansion via the ALK5/SphK1/S1P/S1PR3 signaling pathway. Our findings provide new insights into the role of TGFß in the regulation of CSCs.
Subject(s)
Neoplasms , Transforming Growth Factor beta , Ligands , Neoplastic Stem Cells , Phosphorylation , Signal Transduction , Transforming Growth Factor beta/pharmacologyABSTRACT
The benchmark dose (BMD) approach is updated to create an international harmonizing process following rapid theoretical sophistication. We calculated the lower limit of BMD confidence interval (BMDL) for carcinogenicity based on 193 tumorigenicity bioassay data published in 50 pesticide risk assessment reports by the Food Safety Commission of Japan (FSCJ) to validate the appropriateness and necessity for the refinement of the FSCJ-established BMD guidance. Three well-known BMD software, PROAST, BMDS, and BBMD were used to compare their BMDLs with no-observed-adverse-effect levels (NOAELs) for carcinogenicity. Recently implemented methodologies such as model averaging or Bayesian inference were also used. Our results indicate that the BMD approach provides a point of departure similar to the NOAEL approach if the data used exhibit a clear dose-response relationship. In some cases, particularly in software with a frequentist approach, the calculation failed to provide BMDL or provided considerably lower BMDLs than NOAELs. However, most of the datasets that resulted in failed calculations or extremely low BMDLs exhibited unclear dose-response relationships, i.e., non-monotonous and sporadic responses. The expert review on the shape of the dose-response plot would help better apply the BMD approach. Furthermore, we observed that Bayesian approaches provided fewer failed or extreme BMD calculations than the frequentist approaches.
Subject(s)
Benchmarking , Pesticides , Bayes Theorem , Benchmarking/methods , Confidence Intervals , Dose-Response Relationship, Drug , Japan , No-Observed-Adverse-Effect Level , Pesticides/toxicity , Risk Assessment/methods , SoftwareABSTRACT
Cryopreservation is widely used to maintain backups of cells as it enables the semipermanent storage of cells. During the freezing process, ice crystals that are generated inside and outside the cells can lethally damage the cells. All conventional cryopreservation methods use at least one cryoprotective agent (CPA) to render water inside and outside the cells vitreous or nanocrystallized (near-vitrification) without forming damaging ice crystals. However, CPAs should ideally be avoided due to their cytotoxicity and potential side effects on the cellular state. Herein, we demonstrate the CPA-free cryopreservation of mammalian cells by ultrarapid cooling using inkjet cell printing, which we named superflash freezing (SFF). The SFF cooling rate, which was estimated by a heat-transfer stimulation, is sufficient to nearly vitrify the cells. The experimental results of Raman spectroscopy measurements, and observations with an ultrahigh-speed video camera support the near-vitrification of the droplets under these conditions. Initially, the practical utility of SFF was demonstrated on mouse fibroblast 3T3 cells, and the results were comparable to conventional CPA-assisted methods. Then, the general viability of this method was confirmed on mouse myoblast C2C12 cells and rat primary mesenchymal stem cells. In their entirety, the thus-obtained results unequivocally demonstrate that CPA-free cell cryopreservation is possible by SFF. Such a CPA-free cryopreservation method should be ideally suited for most cells and circumvent the problems typically associated with the addition of CPAs.
Subject(s)
Cell Survival/physiology , Cryopreservation/methods , Vitrification , 3T3 Cells , Animals , Bioprinting , MiceABSTRACT
The fact that animal models fail to replicate human disease faithfully is now being widely accepted by researchers across the globe. As a result, they are exploring the use of alternatives to animal models. The time has come to refine our experimental practices, reduce the numbers and eventually replace the animals used in research with human-derived and human-relevant 3-D disease models. Oncoseek Bio-Acasta Health, which is an innovative biotechnology start-up company based in Hyderabad and Vishakhapatnam, India, organises an annual International Conference on 3Rs Research and Progress. In 2021, this conference was on 'Advances in Research Animal Models and Cutting-Edge Research in Alternatives'. This annual conference is a platform that brings together eminent scientists and researchers from various parts of the world, to share recent advances from their research in the field of alternatives to animals including new approach methodologies, and to promote practices to help refine animal experiments where alternatives are not available. This report presents the proceedings of the conference, which was held in hybrid mode (i.e. virtual and in-person) in November 2021.
Subject(s)
Animal Experimentation , Animal Testing Alternatives , Animal Testing Alternatives/methods , Animal Welfare , Animals , Humans , India , Models, AnimalABSTRACT
Triple-negative breast cancer (TNBC) is a highly aggressive cancer for which targeted therapeutic agents are limited. Growing evidence suggests that TNBC originates from breast cancer stem cells (BCSCs), and elucidation of the molecular mechanisms controlling BCSC proliferation will be crucial for new drug development. We have previously reported that the lysosphingolipid sphingosine-1-phosphate mediates the CSC phenotype, which can be identified as the ALDH-positive cell population in several types of human cancer cell lines. In this study, we have investigated additional lipid receptors upregulated in BCSCs. We found that lysophosphatidic acid (LPA) receptor 3 was highly expressed in ALDH-positive TNBC cells. The LPAR3 antagonist inhibited the increase in ALDH-positive cells after LPA treatment. Mechanistically, the LPA-induced increase in ALDH-positive cells was dependent on intracellular calcium ion (Ca2+), and the increase in Ca2+ was suppressed by a selective inhibitor of transient receptor potential cation channel subfamily C member 3 (TRPC3). Moreover, IL-8 production was involved in the LPA response via the activation of the Ca2+-dependent transcriptional factor nuclear factor of activated T cells. Taken together, our findings provide new insights into the lipid-mediated regulation of BCSCs via the LPA-TRPC3 signaling axis and suggest several potential therapeutic targets for TNBC.
Subject(s)
Lysophospholipids/metabolism , Neoplastic Stem Cells/metabolism , TRPC Cation Channels/metabolism , Triple Negative Breast Neoplasms/metabolism , Breast/metabolism , Calcium/metabolism , Cell Line, Tumor , Epithelial-Mesenchymal Transition/physiology , Female , Gene Expression Regulation, Neoplastic/physiology , Humans , Interleukin-8/metabolism , Receptors, Lysophosphatidic Acid/metabolism , Signal Transduction/physiology , Sphingosine/analogs & derivatives , Sphingosine/metabolismABSTRACT
Myocardial damage caused by the newly emerged coronavirus (SARS-CoV-2) infection is one of the key determinants of COVID-19 severity and mortality. SARS-CoV-2 entry to host cells is initiated by binding with its receptor, angiotensin-converting enzyme (ACE) 2, and the ACE2 abundance is thought to reflect the susceptibility to infection. Here, we report that ibudilast, which we previously identified as a potent inhibitor of protein complex between transient receptor potential canonical (TRPC) 3 and NADPH oxidase (Nox) 2, attenuates the SARS-CoV-2 spike glycoprotein pseudovirus-evoked contractile and metabolic dysfunctions of neonatal rat cardiomyocytes (NRCMs). Epidemiologically reported risk factors of severe COVID-19, including cigarette sidestream smoke (CSS) and anti-cancer drug treatment, commonly upregulate ACE2 expression level, and these were suppressed by inhibiting TRPC3-Nox2 complex formation. Exposure of NRCMs to SARS-CoV-2 pseudovirus, as well as CSS and doxorubicin (Dox), induces ATP release through pannexin-1 hemi-channels, and this ATP release potentiates pseudovirus entry to NRCMs and human iPS cell-derived cardiomyocytes (hiPS-CMs). As the pseudovirus entry followed by production of reactive oxygen species was attenuated by inhibiting TRPC3-Nox2 complex in hiPS-CMs, we suggest that TRPC3-Nox2 complex formation triggered by panexin1-mediated ATP release participates in exacerbation of myocardial damage by amplifying ACE2-dependent SARS-CoV-2 entry.
Subject(s)
COVID-19 , NADPH Oxidase 2 , TRPC Cation Channels , Animals , Humans , Rats , Adenosine Triphosphate/metabolism , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Myocytes, Cardiac/metabolism , NADPH Oxidase 2/metabolism , Protein Binding , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Up-Regulation , TRPC Cation Channels/metabolismABSTRACT
Citreoviridin (CTV) is a mycotoxin produced by various fungi, including Penicillium citreonigrum. One of the toxicities reportedly associated with CTV is neurotoxicity. CTV is also suspected to be associated with acute cardiac beriberi (also known as "Shoshin-kakke") and Keshan disease, which can have adverse effects on the heart, so the in vivo and in vitro toxicity of CTV on the heart or cardiomyocytes in experimental animal models have been reported. However, the toxicity of CTV for the human heart, especially its electrophysiological effect, remains poorly understood. Therefore, to investigate the electrophysiological effect of CTV on the human cardiomyocytes, we conducted a multi-electrode array (MEA) using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). The MEA revealed that 30 µmol/L of CTV stopped the beating of hiPSC-CMs, and the field potential duration and first peak amplitude were shortened at 10 µmol/L. Before the hiPSC-CMs stopped beating, the length of the inter-spike interval varied two- to four-fold. These results demonstrated that CTV induced an electrophysiological disturbance on human cardiomyocytes. This is first paper to elucidate the electrophysiological effect of CTV on human heart directly and may aid in analyzing the risk associated with CTV to ensure food safety.
Subject(s)
Induced Pluripotent Stem Cells , Myocytes, Cardiac , Humans , Myocytes, Cardiac/physiology , Induced Pluripotent Stem Cells/physiology , Aurovertins/pharmacology , Cells, CulturedABSTRACT
Growing evidence suggests that breast cancer originates from a minor population of cancer cells termed cancer stem cells (CSCs), which can be identified by aldehyde dehydrogenase (ALDH) activity-based flow cytometry analysis. However, novel therapeutic drugs for the eradication of CSCs have not been discovered yet. Recently, drug repositioning, which finds new medical uses from existing drugs, has been expected to facilitate drug discovery. We have previously reported that sphingosine kinase 1 (SphK1) induced proliferation of breast CSCs. In the present study, we focused on the immunosuppressive agent FTY720 (also known as fingolimod or Gilenya), since FTY720 is known to be an inhibitor of SphK1. We found that FTY720 blocked both proliferation of ALDH-positive cells and formation of mammospheres. In addition, we showed that FTY720 reduced the expression of stem cell markers such as Oct3/4, Sox2 and Nanog via upregulation of protein phosphatase 2A (PP2A). These results suggest that FTY720 is an effective drug for breast CSCs in vitro.
Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Fingolimod Hydrochloride/pharmacology , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Protein Phosphatase 2/metabolism , Apoptosis/drug effects , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Humans , Immunosuppressive Agents/pharmacology , MCF-7 Cells , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Up-Regulation/drug effectsABSTRACT
Human stem cell-derived cardiomyocytes (hSC-CMs) hold great promise as in vitro models to study the electrophysiological effects of novel drug candidates on human ventricular repolarization. Two recent large validation studies have demonstrated the ability of hSC-CMs to detect drug-induced delayed repolarization and "cellrhythmias" (interrupted repolarization or irregular spontaneous beating of myocytes) linked to Torsade-de-Pointes proarrhythmic risk. These (and other) studies have also revealed variability of electrophysiological responses attributable to differences in experimental approaches and experimenter, protocols, technology platforms used, and pharmacologic sensitivity of different human-derived models. Thus, when evaluating drug-induced repolarization effects, there is a need to consider 1) the advantages and disadvantages of different approaches, 2) the need for robust functional characterization of hSC-CM preparations to define "fit for purpose" applications, and 3) adopting standardized best practices to guide future studies with evolving hSC-CM preparations. Examples provided and suggested best practices are instructional in defining consistent, reproducible, and interpretable "fit for purpose" hSC-CM-based applications. Implementation of best practices should enhance the clinical translation of hSC-CM-based cell and tissue preparations in drug safety evaluations and support their growing role in regulatory filings.