Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
J Am Chem Soc ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38604977

ABSTRACT

Polar compounds with switchable polarization properties are applicable in various devices such as ferroelectric memory and pyroelectric sensors. However, a strategy to prepare polar compounds has not been established. We report a rational synthesis of a polar CoGa crystal using chiral cth ligands (SS-cth and RR-cth, cth = 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane). Both the original homo metal Co crystal and Ga crystal exhibit a centrosymmetric isostructure, where the dipole moment of metal complexes with the SS-cth ligand and those with the RR-cth ligand are canceled out. To obtain a polar compound, the Co valence tautomeric complex with SS-cth in the homo metal Co crystal is replaced with the Ga complex with SS-cth by mixing Co valence tautomeric complexes with RR-cth and Ga complexes with SS-cth. The CoGa crystal exhibits polarization switching between the pseudononpolar state at a low temperature and the polar state at a high temperature because only Co complexes exhibit changes in electric dipole moment due to metal-to-ligand charge transfer. Following the same strategy, the polarization-switchable CoZn complex was synthesized. The CoZn crystal exhibits polarization switching between the polar state at a low temperature and the pseudononpolar state at a high temperature, which is the opposite temperature dependence to that of the CoGa crystal. These results revealed that the polar crystal can be synthesized by design, using a chiral ligand. Moreover, our method allows for the control of temperature-dependent polarization changes, which contrasts with typical ferroelectric compounds, in which the polar ferroelectric phase typically occurs at low temperatures.

2.
J Am Chem Soc ; 146(1): 201-209, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38134356

ABSTRACT

Light, a nondestructive and remotely controllable external stimulus, effectively triggers a variety of electron-transfer phenomena in metal complexes. One prime example includes using light in molecular cyanide-bridged [FeCo] bimetallic Prussian blue analogues, where it switches the system between the electron-transferred metastable state and the system's ground state. If this process is coupled to a ferroelectric-type phase transition, the generation and disappearance of macroscopic polarization, entirely under light control, become possible. In this research, we successfully executed a nonpolar-to-polar phase transition in a trinuclear cyanide-bridged [Fe2Co] complex crystal via directional electron transfer. Intriguingly, by exposing the crystal to the wavelength of light─785 nm─without any electric field─we can drive this ferroelectric phase transition to completely depolarize the crystal, during which a measurable electric current response can be detected. These discoveries signify an important step toward the realization of fully light-controlled ferroelectric memory devices.

3.
J Am Chem Soc ; 145(29): 15647-15651, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37462373

ABSTRACT

Molecular-based magnetoelectric materials are among the most promising materials for next-generation magnetoelectric memory devices. However, practical application of existing molecular systems has proven difficult largely because the polarization change is far lower than the practical threshold of the ME memory devices. Herein, we successfully obtained an [FeCo] dinuclear complex that exhibits a magnetic field-induced spin crossover process, resulting in a significant polarization change of 0.45 µC cm-2. Mössbauer spectroscopy and theoretical calculations suggest that the asymmetric structural change, coupled with electron redistribution, leads to the observed polarization change. Our approach provides a new strategy toward rationally enhancing the polarization change.

4.
Chemistry ; 28(59): e202202161, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-35913048

ABSTRACT

The crystallization of a complex having electron transfer properties in a polar space group can induce the polarization switching of a crystal in a specific direction, which is attractive for the development of sensors, memory devices, and capacitors. Unfortunately, the probability of crystallization in a polar space group is usually low. Noticing that enantiopure compounds crystallize in Sohncke space groups, this paper reports a strategy for the molecular design of non-ferroelectric polarization switching crystals based on the use of intramolecular electron transfer and chirality. In addition, this paper describes the synthesis of a mononuclear valence tautomeric (VT) cobalt complex bearing an enantiopure ligand. The introduction of enantiomer enables the crystallization of the complex in the polar space group (P21 ). The polarization of the crystals along the b-axis direction is not canceled out and the VT transition is accompanied by a change in the macroscopic polarization of the polar crystal. Polarization switching via electron transfer is realized at around room temperature.

5.
Angew Chem Int Ed Engl ; 61(39): e202208771, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-35906869

ABSTRACT

Using light as a local heat source to induce a temporary pyroelectric current is widely recognized as an effective way to control the polarization of crystalline materials. In contrast, harnessing light directly to modulate the polarization of a crystal via excitation of the electronic bands remains less explored. In this study, we report an FeII spin crossover crystal that exhibits photoinduced macroscopic polarization change upon excitation by green light. When the excited crystal relaxes to the ground state, the corresponding pyroelectric current can be detected. An analysis of the structures, magnetic properties and the Mössbauer and infrared spectra of the complex, supported by calculations, revealed that the polarization change is dictated by the directional relative movement of ions during the spin transition process. The spin transition and polarization change occur simultaneously in response to light stimulus, which demonstrates the enormous potential of polar spin crossover systems in the field of optoelectronic materials.

6.
J Am Chem Soc ; 142(26): 11434-11441, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32508091

ABSTRACT

Orbital angular momentum plays a vital role in various applications, especially magnetic and spintronic properties. Therefore, controlling orbital angular momentum is of paramount importance to both fundamental science and new technological applications. Many attempts have been made to modulate the ligand-field-induced quenching effects of orbital angular momentum to manipulate magnetic properties. However, to date, reported changes in the magnitude of orbital angular momentum are small in both molecular and solid-state magnetic materials. Moreover, no effective methods currently exist to modulate orbital angular momentum. Here we report a dynamic bond approach to realize a large change in orbital angular momentum. We have developed a Co(II) complex that exhibits coordination number switching between six and seven. This cooperative dynamic bond switching induces considerable modulation of the ligand field, thereby leading to substantial quenching and restoration of the orbital angular momentum. This switching mechanism is entirely different from those of spin-crossover and valence tautomeric compounds, which exhibit switching in spin multiplicity.

7.
Chemistry ; 26(15): 3259-3263, 2020 Mar 12.
Article in English | MEDLINE | ID: mdl-31990092

ABSTRACT

Some cyanide-bridged complexes are known for exhibiting slow magnetic relaxation behavior in a light-induced metastable state. Herein, an unexpected reverse effect is observed for the first time in the S= 1 / 2 {FeII LS -CoIII LS -FeIII LS } (HS=high spin, LS=low spin) ground state of a novel V-shaped trinuclear cyanide-bridged {Fe2 Co} complex. In this complex, light-switchable iron-cobalt charge transfer with repeatable off/on switching of slow magnetic relaxation is discovered upon alternating laser irradiation at 785 and 560 nm. An important characteristic of the present compound is that the S= 1 / 2 ground state exhibits slow magnetic relaxation before irradiation, whereas this is accelerated after irradiation. This is different from the typical behavior, where the light-induced metastable state exhibits slow magnetic relaxation.

8.
Angew Chem Int Ed Engl ; 59(37): 15865-15869, 2020 Sep 07.
Article in English | MEDLINE | ID: mdl-32432809

ABSTRACT

Capability to control macroscopic molecular properties with external stimuli offers the possibility to exploit molecules as switching devices of various types. However, application of such molecular-level switching has often been limited by its speed and thus efficiency. Herein, we demonstrate ultrafast, photoinduced polarization switching in the crystal of a [CrCo] dinuclear complex by ultrafast pump-probe spectroscopy in the visible and mid-infrared regions. The photoinduced polarization switching was found to have a time constant of 280 fs, which makes the [CrCo] complex crystal the fastest polarization-switching material realized using the metastable state. Moreover, the pump-probe data in the visible region reveal the pronounced appearance of coherent nuclear wavepacket motion with a frequency as low as 22 cm-1 , which we attribute to a lattice vibrational mode. The pronounced non-Condon effect for its resonance Raman enhancement implies that this mode couples the relevant electronic states, thereby facilitating the ultrafast polarization switching.

9.
Angew Chem Int Ed Engl ; 56(3): 717-721, 2017 01 16.
Article in English | MEDLINE | ID: mdl-27936289

ABSTRACT

Atypically anisotropic and large changes in magnetic susceptibility, along with a change in crystalline shape, were observed in a CoII complex at near room temperature. This was achieved by combining oxalate molecules, acting as rotor, and a CoII ion with unquenched orbital angular momentum. A thermally controlled 90° rotation of the oxalate counter anion triggered a symmetry-breaking ferroelastic phase transition, accompanied by contraction-expansion behavior (ca. 4.5 %) along the long axis of a rod-like single crystal. The molecular rotation induced a minute variation in the coordination geometry around the CoII ion, resulting in an abrupt decrease and a remarkable increase in magnetic susceptibility along the direction perpendicular and parallel to the long axis of the crystal, respectively. Theoretical calculations suggested that such an unusual anisotropic change in magnetic susceptibility was due to a substantial reorientation of magnetic anisotropy induced by slight disruption in the ideal D3 coordination environment of the complex cation.

10.
J Am Chem Soc ; 138(43): 14170-14173, 2016 11 02.
Article in English | MEDLINE | ID: mdl-27775341

ABSTRACT

The polarization switching mechanism is used in various devices such as pyroelectric sensors and memory devices. The change in polarization mostly occurs by ion displacement. The development of materials whose polarization switches via electron transfer in order to enhance operation speed is a challenge. We devised a synthetic and crystal engineering strategy that enables the selective synthesis of a [CrCo] heterometallic dinuclear complex with a polar crystal structure, wherein polarization changes stem from intramolecular charge transfer between Co and the ligand. Polarization can be modulated both by visible-light irradiation and temperature change. The introduction of chiral ligands was paramount to the successful polarization switching in the valence tautomeric compound. Mixing Cr and Co complexes with enantiopure chiral ligands resulted in the selective formation of only pseudosymmetric [CrCo] heterometallic complexes. Furthermore, the left-handed chiral ligands preferentially interacted with their right-handed counterparts, enabling molecules to form a polar crystal structure.

11.
Chemistry ; 22(2): 532-8, 2016 Jan 11.
Article in English | MEDLINE | ID: mdl-26564335

ABSTRACT

The anionic Fe(III) complex exhibiting cooperative spin transition with a wide thermal hysteresis near room temperature, K[Fe(5-Brthsa)2 ] (5-Brthsa-H2 =5-bromosalicylaldehyde thiosemicarbazone), is reported. The hysteresis (Δ=69 K in the first cycle) shows a one-step transition in heating mode and a two-step transition in cooling mode. X-ray structure analysis showed that the coexistence of hydrogen bond and cation-π interactions, as well as alkali metal coordination bonds, to give 2D coordination polymer structure. This result is contrary to previous reports of broad thermal hysteresis induced by coordination bonds of Fe(II) spin crossover coordination polymers (with 1D/3D structures), and by strong intermolecular interactions in the molecular packing through π-π stacking or hydrogen-bond networks. As a consequence, the importance, or the very good suitability of alkali metal-based coordination bonds and cation-π interactions for communicating cooperative interactions in spin-crossover (SCO) compounds must be reconsidered.

12.
Chemistry ; 22(48): 17130-17135, 2016 Nov 21.
Article in English | MEDLINE | ID: mdl-27629522

ABSTRACT

Two polymorphic structures have been well determined in a valence tautomeric (VT) dinuclear cobalt complex. These polymorphs showed distinct thermal- and photomagnetic behavior, and are thus ideal for studying the "pure" intermolecular factors to VT transitions. In polymorph 1A, the VT cations are arranged head-to-waist with their neighbors and exhibit weak π⋅⋅⋅π interactions, resulting in a gradual and incomplete thermal VT transition. In contrast, the cations in polymorph 1B are arranged head-to-tail and exhibit relatively strong π⋅⋅⋅π interactions, leading to an abrupt and complete thermal VT transition with adjustable hysteresis loop at around room temperature. The VT process for both polymorphs can be induced by light, but the light-excited state of 1B⋅2H2 O has a higher thermal relaxation temperature than that of 1A⋅3H2 O.

13.
Angew Chem Int Ed Engl ; 55(20): 6047-50, 2016 05 10.
Article in English | MEDLINE | ID: mdl-27061860

ABSTRACT

Heterometallic Prussian blue analogues are known to exhibit thermally induced charge transfer, resulting in switching of optical and magnetic properties. However, charge-transfer phase transitions have not been reported for the simplest FeFe cyanide-bridged systems. A mixed-valence Fe(II) /Fe(III) cyanide-bridged coordination polymer, {[Fe(Tp)(CN)3 ]2 Fe(bpe)⋅5 H2 O}n , which demonstrates a thermally induced charge-transfer phase transition, is described. As a result of the charge transfer during this phase transition, the high-spin state of the whole system does not change to a low-spin state. This result is in contrast to FeCo cyanide-bridged systems that exhibit charge-transfer-induced spin transitions.

14.
Angew Chem Int Ed Engl ; 55(47): 14628-14632, 2016 11 14.
Article in English | MEDLINE | ID: mdl-27736025

ABSTRACT

Proton transport via dynamic molecules is ubiquitous in chemistry and biology. However, its use as a switching mechanism for properties in functional molecular assemblies is far less common. In this study, we demonstrate how an intra-carboxyl proton shuttle can be generated in a molecular assembly akin to a rack-and-pinion cascade via a thermally induced single-crystal-to-single-crystal phase transition. In a triply interpenetrated supramolecular organic framework (SOF), a 4,4'-azopyridine (azpy) molecule connects to two biphenyl-3,3',5,5'-tetracarboxylic acid (H4 BPTC) molecules to form a functional molecular system with switchable mechanical properties. A temperature change reversibly triggers a molecular movement akin to a rack-and-pinion cascade, which mainly involves 1) an intra-carboxyl proton shuttle coupled with tilting of the azo molecules and azo pedal motion and 2) H4 BPTC translation. Moreover, both the molecular motions are collective, and being propagated across the entire framework, leading to a macroscopic crystal expansion and contraction.

15.
Dalton Trans ; 53(6): 2512-2516, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38224229

ABSTRACT

Light-induced polarization switchable molecular materials have attracted attention for decades owing to their potential remote manipulation and ultrafast responsiveness. Here we report a valence tautomeric (VT) complex with an enantiopure chiral ligand. By a suitable choice of counter anions, a significant improvement in photoconversion has been demonstrated, leading to novel photo-responsive polarization switching materials.

16.
Chemistry ; 19(39): 12948-52, 2013 Sep 23.
Article in English | MEDLINE | ID: mdl-24038606

ABSTRACT

Spin doctor: A mononuclear ferric complex [Fe(H-5-Br-thsa)(5-Br-thsa)]⋅H2O (1) (H2-5-Br-thsa = 5-bromo-2-hydroxybenzylidene)hydrazinecarbothioamide) was synthesized and its magnetic properties and structure were investigated by DFT calculations. This complex shows unprecedented reversible, six/five-step spin-crossover behavior accompanied by symmetry breaking. More importantly, each step in the multi-step transition was successfully characterized by single-crystal X-ray diffraction.

17.
Chem Sci ; 14(39): 10631-10643, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37829034

ABSTRACT

Ferroelectric, pyroelectric, and piezoelectric compounds whose electric polarization properties can be controlled by external stimuli such as electric field, temperature, and pressure have various applications, including ferroelectric memory materials, sensors, and thermal energy-conversion devices. Numerous polarization switching compounds, particularly molecular ferroelectrics and pyroelectrics, have been developed. In these materials, the polarization switching usually proceeds via ion displacement and reorientation of polar molecules, which are responsible for the change in ionic polarization and orientational polarization, respectively. Recently, the development of electronic ferroelectrics, in which the mechanism of polarization change is charge ordering and electron transfer, has attracted great attention. In this article, representative examples of electronic ferroelectrics are summarized, including (TMTTF)2X (TMTTF = tetramethyl-tetrathiafulvalene, X = anion), α-(BEDT-TTF)2I3 (BEDT-TTF = bis(ethylenedithio)-tetrathiafulvalene), TTF-CA (TTF = tetrathiafulvalene, CA = p-chloranil), and [(n-C3H7)4N][FeIIIFeII(dto)3] (dto = 1,2-dithiooxalate = C2O2S2). Furthermore, polarization switching materials using directional electron transfer in nonferroelectrics, the so-called electronic pyroelectrics, such as [(Cr(SS-cth))(Co(RR-cth))(µ-dhbq)](PF6)3 (dhbq = deprotonated 2,5-dihydroxy-1,4-benzoquinone, cth = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraaza-cyclotetradecane), are introduced. Future prospects are also discussed, particularly the development of new properties in polarization switching through the manipulation of electronic polarization in electronic ferroelectrics and electronic pyroelectrics by taking advantage of the inherent properties of electrons.

18.
Nat Commun ; 14(1): 3394, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37296168

ABSTRACT

To alleviate the energy and environmental crisis, in the last decades, energy harvesting by utilizing optical control has emerged as a promising solution. Here we report a polar crystal that exhibits photoenergy conversion and energy storage upon light irradiation. The polar crystal consists of dinuclear [CoGa] molecules, which are oriented in a uniform direction inside the crystal lattice. Irradiation with green light induces a directional intramolecular electron transfer from the ligand to a low-spin CoIII centre, and the resultant light-induced high-spin CoII excited state is trapped at low temperature, realizing energy storage. Additionally, electric current release is observed during relaxation from the trapped light-induced metastable state to the ground state, because the intramolecular electron transfer in the relaxation process is accompanied with macroscopic polarization switching at the single-crystal level. It demonstrates that energy storage and conversion to electrical energy is realized in the [CoGa] crystals, which is different from typical polar pyroelectric compounds that exhibit the conversion of thermal energy into electricity.


Subject(s)
Electricity , Hot Temperature , Temperature , Electron Transport , Cold Temperature
19.
Inorg Chem ; 51(9): 4982-93, 2012 May 07.
Article in English | MEDLINE | ID: mdl-22490003

ABSTRACT

N,N-Dipyridilaminoxyl, NOpy(2), having a stable aminoxyl, was prepared as a new magnetic coupler for heterospin systems. Solutions of NOpy(2) were mixed with those of bis{1,1,1,5,5,5, hexafluoro-4-(phenylimino)-2-pentanonate}cobalt derivatives, Co(hfpip-X)(2), at a 1:1 ratio to afford the polymeric cobalt(II) complexes, [Co(hfpip-X)(2)(NOpy(2))](n); X = H (1), F (2), F(3) (3), F(5) (4), Cl (5), Cl(3) (6), Br (7), and I (8) as single crystals. In all complexes, the local structures of the cobalt-complex units were compressed octahedra and the pyridine ligands in NOpy(2) units coordinated to the cobalt ions in trans configuration to form linear chains for 1-4 and in cis configuration to form helical chains for 5-8. In the chains, the aminoxyl in NOpy(2) ferromagnetically interacted with the cobalt ions to produce the ferromagnetic chains with J(intra)/k(B) = 9-14 K. In the magnetic susceptibility experiments of aligned sample of 6, the magnetic easy axis was determined to be the a* axis, which was the direction perpendicular to the b axis of the chain axis. The resulting chains, all except 4, interacted antiferromagnetically among each other, and especially in 1, 5, 7, and 8, the magnetic behaviors characteristic to canted two-dimensional (2D) antiferromagnets with T(c) = 5.6, 4.0, 4.0, and 6.2 K, respectively, were observed. All complexes showed slow magnetic relaxations affected by the interchain antiferromagnetic interaction. The effective activation barriers, Δ(eff)/k(B), for the reorientation of the magnetism for all complexes except 4 were estimated to be 25-39 K in the presence of a direct current (dc) field.


Subject(s)
Cobalt/chemistry , Magnetic Phenomena , Organometallic Compounds/chemistry , Pyridines/chemistry , Crystallography, X-Ray , Models, Molecular , Molecular Conformation , Polymers/chemistry
20.
Nat Commun ; 12(1): 4836, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34376674

ABSTRACT

Pyroelectricity plays a crucial role in modern sensors and energy conversion devices. However, obtaining materials with large and nearly constant pyroelectric coefficients over a wide temperature range for practical uses remains a formidable challenge. Attempting to discover a solution to this obstacle, we combined molecular design of labile electronic structure with the crystal engineering of the molecular orientation in lattice. This combination results in electronic pyroelectricity of purely molecular origin. Here, we report a polar crystal of an [FeCo] dinuclear complex exhibiting a peculiar pyroelectric behavior (a substantial sharp pyroelectric current peak and an unusual continuous pyroelectric current at higher temperatures) which is caused by a combination of Fe spin crossover (SCO) and electron transfer between the high-spin Fe ion and redox-active ligand, namely valence tautomerism (VT). As a result, temperature dependence of the pyroelectric behavior reported here is opposite from conventional ferroelectrics and originates from a transition between three distinct electronic structures. The obtained pyroelectric coefficient is comparable to that of polyvinylidene difluoride at room temperature.

SELECTION OF CITATIONS
SEARCH DETAIL