ABSTRACT
The use of dietary supplements (DS) is increasing worldwide. There is limited evidence of their intake level and mode of consumption in association with the Greek population's dietary and lifestyle habits. Adults (n 4011, 1873 males and 2138 females) aged > 18 years old living in Greece were included in the 2013-2014 National Health and Nutrition Survey - HYDRIA. A dietary supplement user (DSU) was defined as anyone who reported one or more DS on either a Food Propensity Questionnaire, two 24-h dietary recalls, or a questionnaire completed during the blood sample collection examination. DS use was examined according to socio-economic, anthropometric and lifestyle characteristics and the participants' health and dietary status. DS use was reported by 31 % of the population (40 % women and 22 % men), and it was higher among individuals living in urban areas, men with good self-reported health status and women with a chronic medical condition and higher consumption of fruits. The types of DS more frequently reported were multivitamins with minerals (5·4 %), Ca (5·3 %), multivitamins (4·7 %) and Fe (4·6 %). MVM supplements were preferred by men, while Ca was more frequently reported by women and participants with low education levels. Plant- and oil-based supplement use was below 5 %. Whether DS intake benefits health must be explored. It should also be assessed if dietary supplement intake is as efficient as food intake.
ABSTRACT
Dickkopf-1 (Dkk-1) is a key regulator of bone remodeling in spondyloarthropathies. Nevertheless, data regarding its expression in cells of pathophysiologic relevance, such as mesenchymal stem cells (MSCs), are lacking. Herein, we aimed to address DKK1 gene expression and Wnt pathway activation in MSCs from patients with ankylosing spondylitis (AS) and explore the effect of IL-17 on MSCs with respect to DKK-1 expression and Wnt pathway activation. Primary MSCs were isolated from the bone marrow of the femoral head of two patients with AS and two healthy controls undergoing orthopedic surgery. MSCs were cultured for 7 days in expansion medium and for 21 days in osteogenic medium in the presence or absence of IL-17A. Gene expression of DKK-1 and osteoblastic markers was determined by RT-PCR. Alkaline phosphatase activity, alizarin red and Van Kossa staining were used to assess osteoblastic function and mineralization capacity. DKK-1 was significantly downregulated in MSCs and osteoblasts from patients with AS compared to controls. Moreover, MSCs and osteoblasts from AS patients displayed increased Wnt pathway activation and enhanced osteoblastic activity, as indicated by increased expression of osteoblast marker genes and alkaline phosphatase activity. IL-17 downregulated DKK-1 expression and increased osteoblastic activity and mineralization capacity. DKK-1 is underexpressed in MSCs from AS patients compared to controls, whereas IL-17 has an inhibitory effect on DKK-1 expression and stimulates osteoblastic function. These data may have pathogenetic and clinical implications in AS.
Subject(s)
Intercellular Signaling Peptides and Proteins/metabolism , Mesenchymal Stem Cells , Spondylitis, Ankylosing , Alkaline Phosphatase/metabolism , Cell Differentiation , Humans , Interleukin-17/metabolism , Mesenchymal Stem Cells/metabolism , Osteoblasts/metabolism , Osteogenesis , Proteins/metabolism , Spondylitis, Ankylosing/metabolism , Wnt Signaling PathwayABSTRACT
Human brain possesses a unique anatomy and physiology. For centuries, methodological barriers and ethical challenges in accessing human brain tissues have restricted researchers into using 2-D cell culture systems and model organisms as a tool for investigating the mechanisms underlying neurological disorders in humans. However, our understanding regarding the human brain development and diseases has been recently extended due to the generation of 3D brain organoids, grown from human stem cells or induced pluripotent stem cells (iPSCs). This system evolved into an attractive model of brain diseases as it recapitulates to a great extend the cellular organization and the microenvironment of a human brain. This chapter focuses on the application of brain organoids in modelling several neurodevelopmental and neurodegenerative diseases.
Subject(s)
Brain/pathology , Neurodegenerative Diseases/pathology , Neurodevelopmental Disorders/pathology , Organoids/pathology , Humans , Induced Pluripotent Stem Cells/pathologyABSTRACT
Finger millet, like other cereals, contains high amounts of antinutrients that bind minerals, making them unavailable for absorption. This study explores the effect of traditional fermentation on nutritional, antinutritional, and subsequent mineral bioaccessibility (specifically iron, zinc, and calcium) of finger millet based Injera. Samples of fermented dough and Injera prepared from light brown and white finger millet varieties were analyzed for nutritional composition, antinutritional content, and mineral bioaccessibility following standard procedures. With some exceptions, the proximate composition of fermented dough was significantly affected by fermentation time. Compared to unfermented flour, the phytate and condensed tannin content significantly (p < 0.05) decreased for fermented dough and Injera samples. A strong decline in phytate and condensed tannin content was observed in white finger millet Injera as fermentation time increased, compared to light brown finger millet based Injera. The mineral bioaccessibility of Injera prepared from finger millet and maize composite flour increased with fermentation time, leading to a significant increase in bioaccessible iron, zinc, and calcium, ranging from 15.4-40.0 %, 26.8-50.8 %, and 60.9-88.5 %, respectively. The results suggest that traditional fermentation can be an effective method to reduce phytate and condensed tannin content, simultaneously increasing the bioaccessibility of minerals in the preparation of finger millet based Injera.
Subject(s)
Biological Availability , Eleusine , Fermentation , Nutritive Value , Phytic Acid , Phytic Acid/analysis , Flour/analysis , Minerals/analysis , Ethiopia , Food Handling/methods , Proanthocyanidins/analysis , Zinc/analysisABSTRACT
Dietary (food) supplements (DSs) have seen a sharp increase in use and popularity in recent years. Information on DS consumption is vital for national nutrition monitoring. The objective of this study was to investigate whether DS intake was reported in the National Nutrition Surveys (NNSs) in all European countries. NNSs reporting DS use were retrieved via literature review (i.e., PubMed, Google Scholar, Scopus), scientific and organizational publications (EFSA), or open-published government and other official reports. Included were the European NNSs referring to adults, published in English, French, or German, post-2000. Out of the 53 European countries, 30 recorded DS intake. Among them, related findings on the percentage of DS intake were published in 21 cases, 5 of them written in the local language. DS use varied by nation, with Finland and Denmark having the greatest (over 50%) and Italy having the lowest percentage (5%). In terms of comprehensive reported data on DS consumption in Europe and the investigation of the contribution of DSs to total nutrient intake, there is a need for improvement. Common DS categories should be defined upon agreement among the involved scientific parties to allow for comparable data and estimations between surveys.
Subject(s)
Diet , Dietary Supplements , Nutrition Surveys , Energy Intake , Surveys and QuestionnairesABSTRACT
Axial spondyloarthritis (axSpA) is a disease characterised by new bone formation. Biologic agents targeting TNFα or IL-17 are used widely and are very effective in controlling symptoms and improving quality of life in these patients. However, the effect of biologics on radiographic progression is still not entirely known. The most crucial question to be addressed is whether new bone formation in the context of axSpA is linked to the inflammatory process. If new bone formation and inflammation are interconnected, then long-term suppression of inflammation with biologic agents may eventually lead to inhibition of ankylosis. On the other hand, if these processes are totally uncoupled then biologics may not have an obvious effect on radiographic progression. In this case, targeting pathways that control new bone formation may be a more feasible approach to retard radiographic progression in axSpA. The molecular mechanisms involved in new bone formation in axSpA have been extensively investigated throughout the last years. In this narrative review we summarise the data regarding the mechanisms of new bone formation in axSpA.
ABSTRACT
The objective of the present study was to identify the association of the TNF-α- 308G/A and leptin receptor (LEPR) Gln223Arg polymorphisms with the risk of development of type 2 diabetes mellitus (T2DM). METHODS: A total of 160 volunteers were studied: 108 with T2DM and 52 participants as control, who served as the control group. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) for the genomic region of TNF-α- 308G/A and LEPR Gln223Arg were carried out. RESULTS: The frequency of LEPR Gln223Arg genotypes in T2DM and control groups showed significant differences in the distribution of genotypes (p < 0.05). The frequency also of TNF-α- 308G/A genotypes in T2DM and control subjects showed significant differences in the distribution of genotypes (p < 0.05). CONCLUSION: Our results indicate that there are significant differences in the distribution of genotypes and alleles between the individuals with T2DM and control subjects (p < 0.05).
Subject(s)
Diabetes Mellitus, Type 2/epidemiology , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Receptors, Leptin/genetics , Tumor Necrosis Factor-alpha/genetics , Case-Control Studies , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Female , Genotype , Greece/epidemiology , Humans , Male , Middle Aged , Risk FactorsABSTRACT
Advances in 3D bioprinting have allowed the use of stem cells along with biomaterials and growth factors toward novel tissue engineering approaches. However, the cost of these systems along with their consumables is currently extremely high, limiting their applicability. To address this, we converted a 3D printer into an open source 3D bioprinter and produced a customized bioink based on accessible alginate/gelatin precursors, leading to a cost-effective solution. The bioprinter's resolution, including line width, spreading ratio and extrusion uniformity measurements, along with the rheological properties of the bioinks were analyzed, revealing high bioprinting accuracy within the printability window. Following the bioprinting process, cell survival and proliferation were validated on HeLa Kyoto and HEK293T cell lines. In addition, we isolated and 3D bioprinted postnatal neural stem cell progenitors derived from the mouse subventricular zone as well as mesenchymal stem cells derived from mouse bone marrow. Our results suggest that our low-cost 3D bioprinter can support cell proliferation and differentiation of two different types of primary stem cell populations, indicating that it can be used as a reliable tool for developing efficient research models for stem cell research and tissue engineering.