Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
J Nat Prod ; 87(4): 1230-1234, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38626456

ABSTRACT

Three new cyclic heptapeptides, talaromides A-C (1-3), were isolated from cultures produced by the fungus Talaromyces siglerae (Ascomycota), isolated from an unidentified sponge. The structures, featuring an unusual proline-anthranilic moiety, were elucidated by analysis of spectroscopic data and chemical transformations, including the advanced Marfey's method and GITC derivatization. Talaromides A and B inhibited migration activity against PANC-1 human pancreatic cancer cells without significant cytotoxicity.


Subject(s)
Peptides, Cyclic , Porifera , Talaromyces , Talaromyces/chemistry , Animals , Porifera/microbiology , Humans , Molecular Structure , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemistry , Peptides, Cyclic/isolation & purification , Drug Screening Assays, Antitumor , Marine Biology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification
2.
J Nat Prod ; 87(4): 976-983, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38438310

ABSTRACT

Three unique linear oligomeric depsipeptides, designated as cavomycins A-C (1-3), were identified from Streptomyces cavourensis, a gut bacterium associated with the annelid Paraleonnates uschakovi. The structures of these depsipeptides were determined through a combination of spectroscopic methods and chemical derivatization techniques, including methanolysis, the modified Mosher's method, advanced Marfey's methods, and phenylglycine methyl ester derivatization. The unique dipeptidyl residue arrangements in compounds 1-3 indicate that they are not degradation products of valinomycin. Compound 2 and its methylation derivative 2a exhibited antiproliferative activity against PANC-1 pancreatic cancer cells with IC50 values of 1.2 and 1.7 µM, respectively.


Subject(s)
Depsipeptides , Streptomyces , Streptomyces/chemistry , Depsipeptides/pharmacology , Depsipeptides/chemistry , Depsipeptides/isolation & purification , Humans , Molecular Structure , Animals , Drug Screening Assays, Antitumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification
3.
Mar Drugs ; 22(2)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38393059

ABSTRACT

Anithiactin D (1), a 2-phenylthiazole class of natural products, was isolated from marine mudflat-derived actinomycetes Streptomyces sp. 10A085. The chemical structure of 1 was elucidated based on the interpretation of NMR and MS data. The absolute configuration of 1 was determined by comparing the experimental and calculated electronic circular dichroism (ECD) spectral data. Anithiactin D (1) significantly decreased cancer cell migration and invasion activities at a concentration of 5 µM via downregulation of the epithelial-to-mesenchymal transition (EMT) markers in A549, AGS, and Caco-2 cell lines. Moreover, 1 inhibited the activity of Rho GTPases, including Rac1 and RhoA in the A549 cell line, suppressed RhoA in AGS and Caco-2 cell lines, and decreased the mRNA expression levels of some matrix metalloproteinases (MMPs) in AGS and Caco-2 cell lines. Thus 1, which is a new entity of the 2-phenylthiazole class of natural products with a unique aniline-indole fused moiety, is a potent inhibitor of the motility of cancer cells.


Subject(s)
Neoplasms , Streptomyces , Humans , Cell Line, Tumor , Caco-2 Cells , Streptomyces/metabolism , A549 Cells , rho GTP-Binding Proteins/metabolism , Cell Movement , Epithelial-Mesenchymal Transition
4.
Cell ; 134(3): 405-15, 2008 08 08.
Article in English | MEDLINE | ID: mdl-18674809

ABSTRACT

The benefits of endurance exercise on general health make it desirable to identify orally active agents that would mimic or potentiate the effects of exercise to treat metabolic diseases. Although certain natural compounds, such as reseveratrol, have endurance-enhancing activities, their exact metabolic targets remain elusive. We therefore tested the effect of pathway-specific drugs on endurance capacities of mice in a treadmill running test. We found that PPARbeta/delta agonist and exercise training synergistically increase oxidative myofibers and running endurance in adult mice. Because training activates AMPK and PGC1alpha, we then tested whether the orally active AMPK agonist AICAR might be sufficient to overcome the exercise requirement. Unexpectedly, even in sedentary mice, 4 weeks of AICAR treatment alone induced metabolic genes and enhanced running endurance by 44%. These results demonstrate that AMPK-PPARdelta pathway can be targeted by orally active drugs to enhance training adaptation or even to increase endurance without exercise.


Subject(s)
Aminoimidazole Carboxamide/analogs & derivatives , Multienzyme Complexes/metabolism , Muscle, Skeletal/metabolism , PPAR delta/agonists , Physical Endurance/drug effects , Protein Serine-Threonine Kinases/metabolism , Ribonucleotides/pharmacology , Thiazoles/pharmacology , AMP-Activated Protein Kinases , Administration, Oral , Aminoimidazole Carboxamide/administration & dosage , Aminoimidazole Carboxamide/pharmacology , Animals , Biomimetics , Male , Mice , Mice, Inbred C57BL , Physical Conditioning, Animal , Ribonucleotides/administration & dosage
5.
J Nat Prod ; 86(4): 751-758, 2023 04 28.
Article in English | MEDLINE | ID: mdl-36812487

ABSTRACT

A chemical investigation of the endophytic Streptomyces sp. HBQ95, associated with the medicinal plant Cinnamomum cassia Presl, enabled the discovery of four new piperazic acid-bearing cyclodepsipeptides, lydiamycins E-H (1-4), and one known compound (lydiamycin A). Their chemical structures, including absolute configurations, were defined by a combination of spectroscopic analyses and multiple chemical manipulations. Lydiamycins F-H (2-4) and A (5) exhibited antimetastatic activity against PANC-1 human pancreatic cancer cells without significant cytotoxicity.


Subject(s)
Cinnamomum aromaticum , Plants, Medicinal , Pyridazines , Streptomyces , Humans , Cinnamomum aromaticum/chemistry , Streptomyces/chemistry , Pyridazines/chemistry
6.
Mar Drugs ; 19(9)2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34564183

ABSTRACT

Five new bicyclic carboxylic acids were obtained by antibacterial activity-guided isolation from a Korean colonial tunicate Didemnum sp. Their structures were elucidated by the interpretation of NMR, MS and CD spectroscopic data. They all belong to the class of aplidic acids. Three of them were amide derivatives (1-3), and the other two were dicarboxylic derivatives (4 and 5). The absolute configurations were determined by a bisignate pattern of CD spectroscopy, which revealed that the absolute configurations of amides were opposite to those of dicarboxylates at every stereogenic centers. Compound 2 exhibited the most potent antibacterial activity (MIC, 2 µg/mL).


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Fatty Acids/chemistry , Fatty Acids/pharmacology , Urochordata/chemistry , Animals , Molecular Structure , Staphylococcus aureus/drug effects
7.
Int J Mol Sci ; 22(11)2021 May 23.
Article in English | MEDLINE | ID: mdl-34071042

ABSTRACT

Osteoporosis is a chronic disease that has become a serious public health problem due to the associated reduction in quality of life and its increasing financial burden. It is known that inhibiting osteoclast differentiation and promoting osteoblast formation prevents osteoporosis. As there is no drug with this dual activity without clinical side effects, new alternatives are needed. Here, we demonstrate that austalide K, isolated from the marine fungus Penicillium rudallenes, has dual activities in bone remodeling. Austalide K inhibits the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation and improves bone morphogenetic protein (BMP)-2-mediated osteoblast differentiation in vitro without cytotoxicity. The nuclear factor of activated T cells c1 (NFATc1), tartrate-resistant acid phosphatase (TRAP), dendritic cell-specific transmembrane protein (DC-STAMP), and cathepsin K (CTSK) osteoclast-formation-related genes were reduced and alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), osteocalcin (OCN), and osteopontin (OPN) (osteoblast activation-related genes) were simultaneously upregulated by treatment with austalide K. Furthermore, austalide K showed good efficacy in an LPS-induced bone loss in vivo model. Bone volume, trabecular separation, trabecular thickness, and bone mineral density were recovered by austalide K. On the basis of these results, austalide K may lead to new drug treatments for bone diseases such as osteoporosis.


Subject(s)
Bone Density Conservation Agents/therapeutic use , Bone Resorption/prevention & control , Osteoblasts/drug effects , Osteoclasts/drug effects , Penicillium/chemistry , Xanthenes/therapeutic use , Animals , Bone Density Conservation Agents/isolation & purification , Bone Density Conservation Agents/pharmacology , Bone Resorption/chemically induced , Cell Differentiation/drug effects , Disease Models, Animal , Drug Evaluation, Preclinical , Gene Expression Regulation/drug effects , Geologic Sediments/microbiology , Lipopolysaccharides/toxicity , Male , Mice , Mice, Inbred ICR , Molecular Structure , NFATC Transcription Factors/biosynthesis , NFATC Transcription Factors/genetics , Osteoporosis , Penicillium/isolation & purification , RANK Ligand/pharmacology , Tartrate-Resistant Acid Phosphatase/antagonists & inhibitors , Xanthenes/isolation & purification , Xanthenes/pharmacology
8.
Molecules ; 25(19)2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32987657

ABSTRACT

A new thiopeptide (micrococcin P3, 1) and a known one (micrococcin P1, 2) were isolated from the culture broth of a marine-derived strain of Bacillus stratosphericus. The structures of both compounds were elucidated using spectroscopic methods, including extensive 1D and 2D NMR analysis, high resolution mass spectrometry (HRMS), and tandem mass spectrometry. Both compounds exhibited potent antibacterial activities against Gram-positive strains with minimum inhibitory concentration (MIC) values of 0.05-0.8 µg/mL and did not show cytotoxicity in the MTT assay up to a concentration of 10 µM. This study adds a new promising member, micrococcin P3, to the family of thiopeptide antibiotics, which shows potential for the development of new antibiotics targeting Gram-positive bacteria.


Subject(s)
Anti-Bacterial Agents , Aquatic Organisms/chemistry , Bacillus/chemistry , Bacteriocins , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Aquatic Organisms/growth & development , Bacillus/growth & development , Bacteriocins/chemistry , Bacteriocins/isolation & purification , Bacteriocins/pharmacology
9.
J Nat Prod ; 82(12): 3357-3365, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31829592

ABSTRACT

Pancreatic cancer, which has an extremely poor prognosis, is one of the most fatal human cancers. Chemotherapy is the main palliative treatment for advanced cancer patients and also plays an indispensable role in postoperative treatments for surgical patients. Therefore, there is an urgent need to develop more innovative anticancer drugs to fight against this fatal disease. Here, we investigate the potential of benzophenone derivatives, obtained from a marine-derived strain of the fungus Pestalotiopsis neglecta, as antiproliferative lead compounds for the treatment of pancreatic cancer. The compounds, seven new (1-7) and two known (8 and 9) halogenated benzophenone derivatives, were obtained by bioactivity-guided fractionation from the cultures of Pestalotiopsis neglecta. The structures were defined by spectroscopic methods including X-ray crystallographic analysis. Using the commonly used pancreatic cancer cell line PANC-1, 2 and 4 were found to suppress cell proliferation and induce apoptosis in the low micromolar range of 7.6 and 7.2 µM, respectively. Mechanistically, benzophenone derivatives not only inhibit MEK activity in the cytoplasm but also suppress ERK activity in the cytoplasm and nucleus. An in silico study suggests that benzophenone derivatives could potentially inhibit MEK activity by binding to the allosteric pocket in MEK. Benzophenones could serve as new lead compounds for the treatment of pancreatic cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Benzophenones/pharmacology , Cell Proliferation/drug effects , MAP Kinase Signaling System/drug effects , Marine Biology , Pancreatic Neoplasms/pathology , Xylariales/chemistry , Antineoplastic Agents/chemistry , Benzophenones/chemistry , Benzophenones/isolation & purification , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Microbial Sensitivity Tests , Micrococcaceae/drug effects , Molecular Docking Simulation , Staphylococcus aureus/drug effects
10.
J Nat Prod ; 82(11): 3083-3088, 2019 11 22.
Article in English | MEDLINE | ID: mdl-31710223

ABSTRACT

Four new meroterpenoids, austalides V-X (1-3) and a farnesylated phthalide derivative (4), were isolated from the culture of the marine fungus Penicillium rudallense, together with eight known meroterpenoids derivatives (5-12). Their structures, including absolute configurations, were determined by spectroscopic methods. All of the isolated compounds were evaluated for their inhibitory activities on the receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation. Compounds 1, 2, 5-7, and 10 exhibited potent osteoclast differentiation inhibitory activity with ED50 values of 1.9-2.8 µM.


Subject(s)
Bone Density Conservation Agents/chemistry , Bone Density Conservation Agents/pharmacology , Osteoclasts/drug effects , Penicillium/chemistry , Terpenes/chemistry , Terpenes/pharmacology , Animals , Cell Differentiation/drug effects , Fermentation , Mice , Mice, Inbred ICR , Molecular Structure , RANK Ligand/drug effects , Seawater/microbiology
11.
Mar Drugs ; 17(7)2019 Jul 19.
Article in English | MEDLINE | ID: mdl-31331101

ABSTRACT

Mycousfurans (1 and 2), two new usnic acid congeners, along with (-)-mycousnine (3), (-)-placodiolic acid (4), and (+)-usnic acid (5), were isolated using high-performance liquid chromatography-ultraviolet (HPLC-UV)-guided fractionation of extracts of Mycosphaerella sp. isolated from a marine sediment. The planar structures of 1 and 2 were elucidated using 1D and 2D NMR spectra. The relative configurations of the stereogenic carbons of 1 and 2 were established via analysis of their nuclear Overhauser spectroscopy (NOESY) spectra, and their absolute configurations were determined using a comparison of experimental and calculated electronic circular dichroism (ECD) spectra. Compounds 1 and 2 were found to have antibacterial activity, showing moderate activity against Kocuria rhizophila and Staphylococcus aureus.


Subject(s)
Anti-Bacterial Agents/pharmacology , Ascomycota/chemistry , Benzofurans/pharmacology , Furans/pharmacology , Geologic Sediments/microbiology , Heterocyclic Compounds, 3-Ring/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Benzofurans/chemistry , Benzofurans/isolation & purification , Furans/chemistry , Furans/isolation & purification , Heterocyclic Compounds, 3-Ring/chemistry , Heterocyclic Compounds, 3-Ring/isolation & purification , Microbial Sensitivity Tests , Micrococcaceae/drug effects , Molecular Structure , Staphylococcus aureus/drug effects
12.
Bioorg Med Chem ; 26(15): 4382-4389, 2018 08 15.
Article in English | MEDLINE | ID: mdl-30054191

ABSTRACT

In this study, we designed and synthesized several novel "Y"-shaped biaryl PPARδ agonists. Structure-activity relationship (SAR) studies demonstrated that compound 3a was the most active agonist with an EC50 of 2.6 nM. We also synthesized and evaluated enantiospecific R and S isomers of compound 3a to confirm that R isomer (EC50 = 0.7 nM) shows much more potent activity than S isomer (EC50 = 6.1 nM). Molecular docking studies between the PPAR ligand binding domain and enantiospecific R and S isomers of compound 3a were performed. In vitro absorption, distribution, metabolism, excretion, and toxicity (ADMET) and in vivo PK profiles show that compound 3a possesses superior drug-like properties including good bioavailability. Our overall results clearly demonstrate that this orally administrable PPARδ agonist 3a is a viable drug candidate for the treatment of various PPARδ-related disorders.


Subject(s)
Acetates/chemistry , Biphenyl Compounds/chemical synthesis , PPAR delta/agonists , Acetates/chemical synthesis , Acetates/pharmacokinetics , Administration, Oral , Animals , Binding Sites , Biphenyl Compounds/chemistry , Biphenyl Compounds/pharmacology , Crystallography, X-Ray , Drug Design , Half-Life , Humans , Inhibitory Concentration 50 , Mice , Microsomes/metabolism , Molecular Docking Simulation , PPAR delta/metabolism , Protein Structure, Tertiary , Rats , Stereoisomerism , Structure-Activity Relationship , Thiazoles/chemistry , Thiazoles/metabolism
13.
Molecules ; 23(12)2018 Dec 03.
Article in English | MEDLINE | ID: mdl-30513974

ABSTRACT

Intensive study on the chemical components of a Korean marine sponge, Spongia sp., has led to the isolation of four new scalarane sesterterpenes, scalalactams A⁻D (1⁻4). Their chemical structures were elucidated from the analysis of spectroscopic data including 1D-and 2D-NMR as well as MS data. Scalalactams A⁻D (1⁻4) possess a scalarane carbon skeleton with a rare structural feature of a γ-lactam moiety within the molecules. Scalalactams A and B (1 and 2) have an extended isopropanyl chain at the lactam ring, and scalalactams C and D (3 and 4) possess a phenethyl group at the lactam ring moiety. Scalalactams A⁻D (1⁻4) did not show FXR antagonistic activity nor cytotoxicity up to 100 µM.


Subject(s)
Porifera/chemistry , Sesterterpenes/chemistry , Sesterterpenes/pharmacology , Animals , Aquatic Organisms/chemistry , Drug Evaluation, Preclinical/methods , Humans , Lactams/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
14.
Bioorg Med Chem Lett ; 27(3): 574-577, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28043797

ABSTRACT

Activity-guided fractionations of the tunicate Pseudodistoma antinboja yielded four new compounds of the cadiolide class (cadiolides J-M, 1, 3-5) along with a known one (cadiolide H, 2). The structures were defined by spectroscopic methods including X-ray crystallographic analysis. These compounds were evaluated for their antibacterial activity and exhibited potent antibacterial activity against all of the drug resistant strains tested with MICs comparable to those of marketed drugs such as vancomycin and linezolid.


Subject(s)
4-Butyrolactone/analogs & derivatives , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/drug effects , Gram-Positive Bacteria/drug effects , Urochordata/chemistry , 4-Butyrolactone/chemistry , 4-Butyrolactone/isolation & purification , 4-Butyrolactone/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Molecular Structure , Republic of Korea , Structure-Activity Relationship
15.
Mar Drugs ; 15(8)2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28771166

ABSTRACT

Intensive study of the organic extract of the marine-derived bacterium Saccharomonospora sp. CNQ-490 has yielded three new α-pyrones, saccharomonopyrones A-C (1-3). The chemical structures of these compounds were assigned from the interpretation of 1D, 2D NMR and mass spectrometry data. Saccharomonopyrone A (1) is the first α-pyrone microbial natural product bearing the ethyl-butyl ether chain in the molecule, while saccharomonopyrones B and C possess unusual 3-methyl and a 6-alkyl side-chain within a 3,4,5,6-tetrasubstituted α-pyrone moiety. Saccharomonopyrone A exhibited weak antioxidant activity using a cation radical scavenging activity assay with an IC50 value of 140 µM.


Subject(s)
Actinomycetales/chemistry , Biological Products/isolation & purification , Geologic Sediments/chemistry , Pyrones/isolation & purification , Biological Products/chemistry , Marine Biology , Molecular Structure , Pyrones/chemistry
16.
J Nat Prod ; 79(7): 1730-6, 2016 07 22.
Article in English | MEDLINE | ID: mdl-27356092

ABSTRACT

A new inhibitor, acredinone C (1), of receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation was isolated from the culture broth of the fungus Acremonium sp. (F9A015) along with acredinones A (2) and B (3). The structure of acredinone C (1), which incorporates benzophenone and xanthone moieties, was established by the analyses of combined spectroscopic data including 1D and 2D NMR and MS. All of the acredinones studied efficiently inhibited the RANKL-induced formation of TRAP(+)-MNCs in a dose-dependent manner without any cytotoxicity up to 10 µM. Acredinone A showed dual activity in both osteoclast and osteoblast differentiation in vitro and good efficacy in an animal disease model of bone formation.


Subject(s)
Acremonium/chemistry , Benzophenones/pharmacology , Animals , Benzophenones/chemistry , Cell Differentiation , Disease Models, Animal , Mice , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Osteoclasts/drug effects , Osteogenesis/drug effects , RANK Ligand/antagonists & inhibitors
17.
J Nat Prod ; 79(3): 499-506, 2016 Mar 25.
Article in English | MEDLINE | ID: mdl-26821210

ABSTRACT

Three new structurally related depsipeptides, halicylindramides F-H (1-3), and two known halicylindramides were isolated from a Petrosia sp. marine sponge collected off the shore of Youngdeok-Gun, East Sea, Republic of Korea. Their planar structures were elucidated by extensive spectroscopic data analyses including 1D and 2D NMR data as well as MS data. The absolute configurations of halicylindramides F-H (1-3) were determined by Marfey's method in combination with Edman degradation. The absolute configurations at C-4 of the dioxyindolyl alanine (Dioia) residues of halicylindramides G (2) and H (3) were determined as 4S and 4R, respectively, based on ECD spectroscopy. The C-2 configurations of Dioia in 2 and 3 were speculated to both be 2R based on the shared biogenesis of the halicylindramides. Halicylindramides F (1), A (4), and C (5) showed human farnesoid X receptor (hFXR) antagonistic activities, but did not bind directly to hFXR.


Subject(s)
Depsipeptides , Petrosia/chemistry , Receptors, Cytoplasmic and Nuclear/drug effects , Animals , Depsipeptides/chemistry , Depsipeptides/isolation & purification , Depsipeptides/pharmacology , Humans , Marine Biology , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Republic of Korea
20.
J Nat Prod ; 78(11): 2846-9, 2015 Nov 25.
Article in English | MEDLINE | ID: mdl-26474119

ABSTRACT

Chemical investigation of a marine-derived actinomycete isolated from marine sediments collected off the coast of southern California and identified as a Nocardiopsis sp. (strain CNQ115) led to the isolation of two new 4-aminoimidazole alkaloids, nocarimidazoles A (1) and B (2). The chemical structures of nocarimidazoles A and B were assigned by interpretation of NMR spectroscopic data and through methylation to yield monomethyl and dimethyl derivatives. Nocarimidazoles A and B possess a 4-aminoimidazole ring combined with a conjugated carbonyl side chain, which is rarely found in microbial secondary metabolites.


Subject(s)
Actinomycetales/chemistry , Alkaloids/isolation & purification , Imidazoles/isolation & purification , Alkaloids/chemistry , Alkaloids/pharmacology , Bacillus subtilis/drug effects , California , Escherichia coli/drug effects , Humans , Imidazoles/chemistry , Imidazoles/pharmacology , Klebsiella pneumoniae/drug effects , Marine Biology , Microbial Sensitivity Tests , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Salmonella typhimurium/drug effects , Staphylococcus aureus/drug effects , Staphylococcus epidermidis/drug effects , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL