Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Acoust Soc Am ; 151(3): 2159, 2022 03.
Article in English | MEDLINE | ID: mdl-35364946

ABSTRACT

Transcranial focused ultrasound (FUS) is a noninvasive treatment for brain tumors and neuromodulation. Based on normal incidence, conventional FUS techniques use a focused or an array of ultrasonic transducers to overcome the attenuation and absorption of ultrasound in the skull; however, this remains the main limitation of using FUS. A dual-mode conversion technique based on Lamb waves is proposed to achieve high transmission efficiency. This concept was validated using the finite element analysis (FEA) and experiments based on changes in the incident angle. Aluminum, plexiglass, and a human skull were used as materials with different attenuations. The transmission loss was calculated for each material, and the results were compared with the reflectance function of the Lamb waves. Oblique incidence based on dual-mode conversion exhibited a better transmission efficiency than that of a normal incidence for all of the specimens. The total transmission losses for the materials were 13.7, 15.46, and 3.91 dB less than those associated with the normal incidence. A wedge transducer was designed and fabricated to implement the proposed method. The results demonstrated the potential applicability of the dual-mode conversion technique for the human skull.


Subject(s)
Skull , Transducers , Animals , Head , Sheep , Skull/diagnostic imaging , Ultrasonics , Ultrasonography
2.
Sensors (Basel) ; 21(10)2021 May 12.
Article in English | MEDLINE | ID: mdl-34066179

ABSTRACT

We present a noncontact, non-immersion ultrasonic inspection method. A broadband ultrasound signal generated by a pulsed laser was measured using a hydrophone. The generated ultrasound signals propagated through the specimen and received a signal from the hydrophone in the water. Soldered chip ceramic capacitors, resistors, and surface-mount-type chip amplifiers were used as experimental specimens. A polydimethylsiloxane layer was used to prevent the specimen from being impacted by contact with water. The presence of a crack in the middle of the specimen resulted in an air layer, and the intermediate air layer reduced the magnitude of the signal transmitted owing to impedance mismatch. Using this principle, the cracks in each specimen could be distinguished. The image contrast ratio derived from the proposed method is approximately two to three times higher than that derived using the conventional immersion ultrasonic method. These results show that the proposed method can replace existing immersion-type ultrasound transmitted images.

3.
Ultrasonics ; 140: 107298, 2024 May.
Article in English | MEDLINE | ID: mdl-38531115

ABSTRACT

Stimulating the brain in a precise location is crucial in ultrasound neuromodulation. However, improving the resolution proves a challenge owing to the characteristics of transcranial focused ultrasound. In this paper, we present a new neuromodulation system that overcomes the existing limitations based on an acoustic radiation force with a frequency-modulated waveform and standing waves. By using the frequency-modulated pattern interference radiation force (FM-PIRF), the axial spatial resolution can be reduced to a single wavelength level and the target location can be controlled in axial direction electronically. A linear frequency-modulated chirp waveform used in the experiment was designed based on the simulation results. The displacement of the polydimethylsiloxane (PDMS) cantilever was measured at intervals of 0.1 mm to visualize the distribution of radiation force. These results and methods experimentally show that FM-PIRF has improved spatial resolution and capability of electrical movement.


Subject(s)
Equipment Design , Humans , Ultrasonic Therapy/methods , Ultrasonic Therapy/instrumentation , Dimethylpolysiloxanes/chemistry
4.
World Neurosurg ; 180: e317-e323, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37757941

ABSTRACT

BACKGROUND: Fractionated stereotactic radiotherapy (FSRT) is a common modality used to treat pituitary adenomas with good control rates. It is not known whether FSRT should be performed early or delayed until progression occurs. We compared FSRT in treating nonfunctional pituitary adenomas (NFPA) as an adjuvant (ADJ) or on-progression (PRG) therapy. METHODS: A retrospective review of patients who underwent FSRT for an NFPA between January 2004 and December 2022 at a single institution was performed. We compared endocrinologic, ophthalmologic, and radiographic outcomes in FSRT delivered as ADJ and PRG treatment. RESULTS: Seventy-five patients were analyzed, with a median follow-up of 53 months. FSRT was administered to 35 and 40 patients as ADJ and PRG, with a median time to treatment of 5.5 and 40 months, respectively. The tumor control rate was 94.3% for ADJ and 95.0% for PRG. Treatment resulted in 4 (11.4%) versus 7 (17.5%) new endocrinopathies and 2 (5.7%) versus 1 (2.5%) new visual deficits for ADJ versus PRG. A survival analysis of time to new endocrinopathy showed no difference between the 2 cohorts. The median time from surgery to new endocrinopathy was significantly different between ADJ and PRG, at 15.5 and 102.0 months, respectively. CONCLUSIONS: FSRT is effective in treating NFPA for residual and progressive tumors, with excellent tumor control rates and a low risk of developing new endocrinopathies and visual deficits. Delaying treatment delayed the development of new endocrinopathies, suggesting that observation with FSRT on tumor progression may delay the onset of hypopituitarism and maintain similar effectiveness in tumor control.


Subject(s)
Adenoma , Pituitary Neoplasms , Radiosurgery , Humans , Pituitary Neoplasms/radiotherapy , Pituitary Neoplasms/surgery , Pituitary Neoplasms/pathology , Dose Fractionation, Radiation , Radiosurgery/methods , Adenoma/radiotherapy , Adenoma/surgery , Adenoma/pathology , Survival Analysis , Retrospective Studies , Treatment Outcome , Follow-Up Studies
5.
Ultrasonics ; 132: 107003, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37099939

ABSTRACT

Ultrasonic reflectivity using a V(z) technique is a powerful characterization method in acoustic microscopy to measure the elastic properties of materials. Conventional techniques generally use a low f-number with high frequency; however, to measure the reflectance function of the highly attenuative material, a low frequency is essential. In this study, the transducer-pair method based on Lamb waves is used to measure the reflectance function of a highly attenuative material. The results demonstrate the feasibility of the proposed method using a commercial ultrasound transducer with high f-number.

6.
J Neuroimaging ; 33(5): 781-791, 2023.
Article in English | MEDLINE | ID: mdl-37188633

ABSTRACT

BACKGROUND AND PURPOSE: Spinal cord injury (SCI) results in the loss of motor and sensory function from disconnections between efferent and afferent pathways. Most SCI patients are affected with chronic neuropathic pain, but there is a paucity of data concerning neuroplastic changes following SCI. Chronic pain disrupts default networks and is associated with abnormal insular connectivity. The posterior insula (PI) is associated with the degree of pain and intensity of pain. The anterior insula (AI) is related to signal changes. Comprehension of SCI pain mechanisms is essential to elucidate effective treatment options. METHODS: This study examines the insular gyri functional connectivity (FC) of seven (five male, two female) SCI participants with moderate-severe chronic pain compared to 10 (five male, five female) healthy controls (HC). All subjects had 3-Tesla MRI performed and resting-state functional MRI (fMRI) was acquired. FC metrics were obtained from the comparisons of resting-state fMRI among our various groups. A seed-to-voxel analysis was pursued, encompassing six gyri of the insula. For multiple comparisons, a correction was applied with a significance level of p < .05. RESULTS: There were significant differences in FC of the insula between SCI participants with chronic pain compared with HC. In the SCI participants, there was hyperconnectivity of the AI and PI to the frontal pole. In addition, there was increased FC noted between the PI and the anterior cingulate cortex. Hyperconnectivity was also observed between the AI and the occipital cortex. CONCLUSIONS: These findings illustrate that there is a complex hyperconnectivity and modulation of pain pathways after traumatic SCI.


Subject(s)
Chronic Pain , Spinal Cord Injuries , Humans , Male , Female , Magnetic Resonance Imaging/methods , Chronic Pain/diagnostic imaging , Chronic Pain/etiology , Frontal Lobe , Spinal Cord Injuries/complications , Spinal Cord Injuries/diagnostic imaging , Nerve Net/diagnostic imaging
7.
Front Neurosci ; 17: 1182509, 2023.
Article in English | MEDLINE | ID: mdl-37694125

ABSTRACT

Background and purpose: Traumatic brain injury (TBI) can cause progressive neuropathology that leads to chronic impairments, creating a need for biomarkers to detect and monitor this condition to improve outcomes. This study aimed to analyze the ability of data-driven analysis of diffusion tensor imaging (DTI) and neurite orientation dispersion imaging (NODDI) to develop biomarkers to infer symptom severity and determine whether they outperform conventional T1-weighted imaging. Materials and methods: A machine learning-based model was developed using a dataset of hybrid diffusion imaging of patients with chronic traumatic brain injury. We first extracted the useful features from the hybrid diffusion imaging (HYDI) data and then used supervised learning algorithms to classify the outcome of TBI. We developed three models based on DTI, NODDI, and T1-weighted imaging, and we compared the accuracy results across different models. Results: Compared with the conventional T1-weighted imaging-based classification with an accuracy of 51.7-56.8%, our machine learning-based models achieved significantly better results with DTI-based models at 58.7-73.0% accuracy and NODDI with an accuracy of 64.0-72.3%. Conclusion: The machine learning-based feature selection and classification algorithm based on hybrid diffusion features significantly outperform conventional T1-weighted imaging. The results suggest that advanced algorithms can be developed for inferring symptoms of chronic brain injury using feature selection and diffusion-weighted imaging.

8.
Ultrasound Med Biol ; 48(3): 497-511, 2022 03.
Article in English | MEDLINE | ID: mdl-34955292

ABSTRACT

Compared with the conventional method of transcranial focused ultrasound stimulation using a single transducer or a focused beam, the compression and tensile forces are generated from the high-pressure gradient of a standing wave that can generate increased stimulation. We experimentally verified a neuromodulation system using patterned interference radiation force (PIRF) and propose a method for obtaining the magnitude of the radiation force, which is considered the main factor influencing ultrasound neuromodulation. The radiation forces generated using a single focused transducer and a standing wave created via two focused transducers were compared using simulations. Radiation force was calculated based on the relationship between the acoustic pressure, radiation force and time-averaged second-order pressure obtained using an acoustic streaming simulation. The presence of the radiation force was verified by measuring the time-averaged second-order pressure generated due to the radiation force, by using a glass tube.


Subject(s)
Brain , Transducers , Acoustics , Brain/diagnostic imaging , Computer Simulation , Ultrasonography
9.
Article in English | MEDLINE | ID: mdl-31976884

ABSTRACT

In this article, we present a single-shot dual-mode imaging system that uses optical ultrasound (US) as an ultrasonic pulser without a transmission circuit. The ultrasonic pulse-echo system comprises an optical US pulser generated by carbon nanotubes (CNTs), which generate a high-power photoacoustic (PA) signal and a capacitive micromachined ultrasonic transducer (CMUT) receiver. By fabricating a thin CNT-polydimethylsiloxane (PDMS) composite capable of semiabsorption of the laser, a single-shot imaging system was developed. By transmitting a semipenetration light to the object, US and PA imaging were performed in a single shot. A CNT thickness of [Formula: see text] produced a maximum pressure of 154 kPa, and US was received by CMUT with a 2-MHz center frequency in PDMS. Additionally, a low-profile and near-depth imaging system was constructed with an intermediate layer of the 6-mm PDMS for the dry contact method. We performed a single-shot dual-mode imaging experiment on point and line phantoms, as well as the particle spread in the soft tissue. Thus, we examined the feasibility of the near-depth and single-shot dual-mode (US and PA) imaging system capable of a dry contact.

SELECTION OF CITATIONS
SEARCH DETAIL